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The human music faculty might have evolved from rudimentary components

that occur in non-human animals. The evolutionary history of these rudimen-

tary perceptual features is not well understood and rarely extends beyond a

consideration of vertebrates that possess a cochlea. One such antecedent is a pre-

ferential response to what humans perceive as consonant harmonic sounds,

which are common in many animal vocal repertoires. We tested the phonotactic

response of female túngara frogs (Physalaemus pustulosus) to variations in the fre-

quency ratios of their harmonically structured mating call to determine whether

frequency ratio influences attraction to acoustic stimuli in this vertebrate that

lacks a cochlea. We found that the ratio of frequencies present in acoustic stimuli

did not influence female response. Instead, the amount of inner ear stimulation

predicted female preference behaviour. We conclude that the harmonic relation-

ships that characterize the vocalizations of these frogs did not evolve in response

to a preference for frequency intervals with low-integer ratios. Instead, the pres-

ence of harmonics in their mating call, and perhaps in the vocalizations of many

other animals, is more likely due to the biomechanics of sound production

rather than any preference for ‘more musical’ sounds.
1. Introduction
The evolution of the human music faculty, our neural system for processing

music, is mysterious from both functional and phylogenetic perspectives. We

might begin to understand the evolution of this complex trait by considering

the evolutionary history of the rudimentary cognitive components that make

up this system [1–4]. Several vertebrate species exhibit simple cognitive features

that are a part of our music faculty, such as octave generalization in rhesus

macaques [5], chord discrimination in pigeons [6], tone-sequence recognition

in chickadees and starlings [7,8], relative pitch recognition in ferrets [9] and

motor entrainment to rhythm in cockatoos and parrots [10,11]. Such antece-

dents of musicality are not universally held: fish cannot generalize octaves

[12], and pigeons cannot learn rhythmic structure [13]. Understanding which

animals possess which antecedents might help illuminate the path by which

a music faculty evolved.

Preferential response to consonance is a component of the music faculty

that occurs in human infants [14] and in some non-human primates [15]

but not in others [16]. In human research, consonance is a psychophysical

phenomenon and defines how the receiver perceives a stimulus—consonant

listening experiences are pleasant and dissonant ones are unpleasant [17].

Pythagoras, however, defined consonance according to the physical character-

istics of the sound. He proposed that simultaneous tones are more consonant

when the mathematical ratio of their frequencies has lower integer values

[18]. Human consonance rankings match Pythagoras’ predictions for many

intervals [17–19] but average consonance rankings compiled from several

psychophysical studies demonstrate that the integer numbers do not accurately
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predict all rankings [17], and a clear mathematical predictor

of human consonance is not known. This could be related

to the influence of human language on the evolution of

consonance perception [17,20].

Listening experience cannot be reported in animals, but we

can quantify their reactions to sounds that we find consonant

or dissonant. Differential reactions to these sounds might

derive from a simple biophysical interaction between sound

and the auditory system, which would vary with sound prop-

erties such as frequency ratios. Such interactions might be a

precursor to human consonance perception. Helmholtz pro-

posed that the properties of our auditory system dictate

consonance perception [21]. Research with domestic cats illus-

trates this principle. Spike patterns recorded in the auditory

nerve fibres are temporally regular in response to what we per-

ceive as consonant intervals and irregular in response to

dissonant intervals [19]. In addition to spike rate, ‘place’ or

location of excitation also contributes to frequency perception

due to the tonotopic nature of the basilar membrane. Mem-

brane vibrations caused by closely located frequencies might

physically interact, contributing to a dissonant experience

[22]. Given some of the shared properties of vertebrate audi-

tory systems, it is expected that some antecedents to the

music faculty appear in non-human vertebrates. Attraction

to sounds that cause temporally regular spike rates or avoid

close membrane interactions might be an antecedent to

human consonance perception.

Many animal signals are consonant to humans, and one

might expect this acoustic structure evolved in response to

receiver preference for low-integer frequency intervals that

humans find to be consonant [23,24]. On the other hand,

when membranes such as vocal folds are excited, they vibrate

in multiple modes, producing a fundamental frequency and

higher harmonics determined by the resonance of the vibrat-

ing material [25,26]. Thus, the perceptual properties of the

receiver, the biophysical properties of the sender or both

could be responsible for widespread production of conso-

nant low-integer frequency ratios in the animal kingdom.

To demonstrate a preference for these simple ratios, it is

necessary to study the preference directly and not assume it

exists because of signal structure.

This study explores whether an anuran preferentially

approaches dyadic frequency intervals with low-integer ratios.

The anuran inner ear has two separate organs, the amphibian

papilla (AP) and the basilar papilla (BP) [27]. The AP is structured

tonotopically, in a similar manner as the basilar membrane. The

BP is not structured in this way, so harmonic frequencies cannot

elicit a place-dependent response in the BP. In the túngara frog

(Physalaemus pustulosus), stimulation of primarily the AP by the

call’s main component is necessary and sufficient for mate

recognition. Stimulation of primarily the BP by an additional

element further enhances the call’s attractiveness [24]. Both call

components are harmonically structured.

We added artificial frequencies to attractive stimuli and

measured female preference between stimuli with variable

frequency intervals. We also considered whether BP stimu-

lation explained female preference. Our results bring insight

into two broad questions. First, does a preference for conso-

nant sounds relate to tonotopic inner ear organization? If

tonotopy contributes to preference for low-integer ratio

sounds, females should preferentially approach lower integer

frequency ratios only when they stimulate the AP alone.

Second, did the harmonic structure of frog vocalizations
evolve in response to a receiver bias for musicality? If females

do not preferentially approach harmonic sounds, the pro-

duction of harmonic vocalizations likely results from physical

features of the vocal apparatus.
2. Methods and results
(a) General experimental methods
The túngara frog’s AP is most sensitive to sounds below

1500 Hz, with a best excitatory frequency (BEF) of 500 Hz.

The BP is sensitive to sounds above 1500 Hz, with a BEF of

2100 Hz [28,29]. Males produce advertisement calls with an

initial whine followed by 0–7 terminal chucks [24,30]. The

whine is a downward frequency sweep from about 900 to

400 Hz and has substantial energy in harmonics 2–6 [29].

Females do not discriminate between the fundamental

frequency sweep and the fundamental plus harmonics

2 and 3 [29]. It is not known, however, whether in other

cases adding harmonics increases attractiveness, or con-

versely whether inharmonic upper frequencies decrease a

signal’s attractiveness. Although some anurans are sensitive

to the harmonicity of frequency intervals [31,32], phonotaxis

studies show either no influence on attraction [33] or an influ-

ence that depends on frequency modulation in stimuli

with multiple frequency bands [34]. This study uses simple

frequency dyads, considers ordinal variation in frequency

ratios that might relate to biophysical origins of consonance

and controls for BP stimulation by presenting frequencies

that stimulate only the AP.

Frogs were collected between May and August of 2003 and

2004 in Gamboa, Panama. We performed phonotaxis tests,

offering females a choice between two speakers broadcasting

different stimuli. Collection, testing and stimulus construction

procedures followed methods published previously [35].

(b) Do frequency ratios influence the attractiveness of a
stimulus?

If frequency ratio integer values predict a female’s attraction to a

stimulus, dyads with lower integer ratios would be more attrac-

tive. This theory has informed research on cats [19] and on

human consonance [18]. However, the biophysical interaction

between sound, auditory organs and behavioural attraction

is not clearly understood. Thus, we also tested whether the

simple distinction between harmonic and inharmonic intervals

explains female preference.

We created stimuli with two pure tones that swept

downward. We tested whether females preferred a harmonic

2 : 1 relationship to four other stimuli with the same lower

frequency, but variable inharmonic upper frequencies in

ratios of 3 : 2, 5 : 2, 7 : 4 and 9 : 4 (figure 1). If frogs prefer

lower integer ratios, they will always choose 2 : 1. We

ranked each stimulus according to the ratio integer values.

The octave (2 : 1) has the lowest integers, followed by the 3 :

2, 5 : 2, 7 : 4 and 9 : 4 stimuli, ranked 1, 2, 3 and 4, respectively.

If ratio integers explain preference, then the proportion of

females that prefer the octave should increase along with

the integer values of the alternative stimulus. If females

choose based on a general preference for harmonic over

inharmonic sounds, then the proportion of females that

prefer the octave should be significant and consistent for

each test.

http://rspb.royalsocietypublishing.org/
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Figure 1. Sonograms for 900 – 450 Hz sweeps with variable higher frequencies: (a) 1800 – 900 Hz, 2 : 1; (b) 1350 – 675 Hz, 3 : 2; (c) 2250 – 1250 Hz, 5 : 2;
(d ) 1575 – 787.5 Hz, 7 : 4 and (e) 2025 – 1075 Hz, 9 : 4.
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Figure 2. The percentage of females choosing the octave over the inharmonic call (a) decreased as the difference between the maximum frequencies of the
inharmonic and octave stimuli increased and (b) was not influenced by the low-integer value ranking of the inharmonic stimulus. Bars show 95% CIs.
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Alternatively, the amount of BP stimulation might deter-

mine preference. Decades of work show that sound

stimulating both inner ear organs is most attractive to anuran

females [36,37], including túngara frogs [38]. Frequency

sweeps that cover a greater range of frequencies above

1500 Hz will stimulate the BP more. If this determines female

preference, we predict a preference for 2 : 1 (maximum

frequency 1800 Hz) over 3 : 2 (1350 Hz), and over 7 : 4

(1575 Hz). But the other stimuli (9 : 4, 2025 Hz; 5 : 2, 2250 Hz)

would be preferred to 2 : 1, with the strongest preference for

5 : 2. We calculated the difference in BP stimulation for each

pair of sounds as the maximum frequency of the test stimulus

minus that of the octave.

Females could respond to multiple tests, but each female

was presented with a given test only once. Females complet-

ing some but not all tests were included in the dataset, and

the generalized estimating equation (GEE) in SPSS 21

accounted for one individual completing multiple tests as

repeated measures with missing data. Experiment 1 used 80

females to complete 102 choices (2 : 1 versus 3 : 2 N ¼ 40;

versus 7 : 4 N ¼ 22; versus 9 : 4 N ¼ 20; versus 5 : 2 N ¼ 20).

Females preferred 2 : 1 over 3 : 2 (87.5% preference, two-

tailed exact binomial test p ¼ 0.0000014) and showed

no preference in the other tests (59% preference for 2 : 1 over 7

: 4, p ¼ 0.5235; 55% preference for 2 : 1 over 9 : 4, p ¼ 0.8238;

65% preference for 5 : 2 over 2 : 1, p ¼ 0.2632). Females preferred
the octave only when the BP is not stimulated by the alternative,

thus there is no evidence that túngara frogs prefer harmonic

over inharmonic intervals.

A GEE test with choice (octave or inharmonic stimulus) as

the dependent variable, and integer value ranking, difference

in maximum frequency and their interaction as independent

variables reveals that maximum frequency difference was

the only significant factor explaining female response (Wald

x2 ¼ 7.286, d.f. ¼ 1, p¼ 0.007). Removing the interaction and

integer value ranking variables improved the corrected quasi-

likelihood under independence model criterion (QICC), a

goodness-of-fit statistic, and in this model maximum frequency

difference was significant at p , 0.0001 (Wald x2 ¼ 16.371,

d.f. ¼ 1). Thus, preference increased with BP stimulation

(figure 2a), but the ratio integer values did not influence

preference (figure 2b).

(c) Within the amphibian papilla, does low ratio integer
value increase attractiveness?

We tested whether frequency ratios within the response range

of the tonotopic AP influence call attractiveness. Here, we

tested preference between stimuli each consisting of two

sequential tones. Sequential pure tones, resembling a fre-

quency sweep, elicit phonotaxis. First, we tested whether a

pure tone stimulus with no upper frequencies is equally

http://rspb.royalsocietypublishing.org/
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preferred to a one with the first harmonic added (figure 3).

Then we asked how the integer values for ratios of two fre-

quencies within the AP influences preference. To test this,

we presented the 2 : 1 stimulus versus a stimulus with identi-

cal lower frequency but with an inharmonic upper frequency

distorting the ratio relationship by 100 Hz above or below

the 2 : 1 ratio, creating high-integer ratios (15 : 7 followed by

24 : 11, and 13 : 7 followed by 20 : 11). If frogs prefer harmonic

stimuli, they should choose the octave in both tests. We also

considered whether frogs prefer sounds with frequencies

closer to the AP’s BEF (500 Hz) [28,29]. If so, females

should prefer the lower frequency call in each test. No

female responded more than once in a given test.

Within the AP, harmonics influence the attractiveness of

artificial stimuli. Females prefer a two tone series when the

2 : 1 harmonic is added (75% preference, N ¼ 20, two-tailed

exact binomial test, p ¼ 0.0414). Neither ratio integer values

nor coincidence with the AP’s BEF influenced phonotaxis.

Females showed no preference between a 2 : 1 ratio series of

two tones and a stimulus distorting the relationship by

100 Hz above (50% preference, N ¼ 20, two-tailed exact

binomial test, p ¼ 1.0) or below (50% preference, N ¼ 20,

two-tailed exact binomial test, p ¼ 1.0) the 2 : 1 ratio.
3. Discussion
Attraction to harmonically structured sounds is a basic

feature of human consonance perception. Harmonic vocaliza-

tions abound in the animal kingdom, including the mating

calls of túngara frogs. Harmonicity, however, does not influ-

ence female túngara frog attraction to acoustic stimuli, even

when controlling for BP stimulation by restricting frequencies

to those detected by the AP. Although females do attend to

harmonic components of mating calls, they do not discrimi-

nate based on frequency ratio, and they do not avoid

intervals that would be dissonant to humans. Instead, their

preference behaviour matches the prediction that increased

BP stimulation increases attraction.

Although some melodic animal vocalizations are not

strictly musical [39], consonant harmonics are common in

animal vocalizations. Yet, it is not clear whether such signal

structures evolved in response to selection generated by
receivers, or even whether harmonics per se matter to recei-

vers. Removing the harmonics completely from conspecific

calls does not inhibit recognition, and calls with only upper

harmonics are not attractive [29]. Disrupting the harmonic

relationships as we have done in this study demonstrates

that these intervals are not important to receivers even

though they are present. This finding suggests that voca-

lizations are bound by the laws of physics, and when

membranes such as vocal folds are set to vibrate certain fre-

quencies resonate according to the properties of the tissues in

the vocal apparatus, and these by their nature produce

sounds defined consonant by both Pythagoras and listening

experience. Thus the consonance of animal sounds cannot be

taken as an indication that animals possess antecedents to

human consonance perception.

In túngara frogs and anurans in general, stimulation of

the BP is important in eliciting female choice [36,37,38].

Thus, it is not surprising that we found that the maximum

frequency present was a significant factor in female response

to variable frequency intervals. It is possible that controlling

for amount of BP stimulation while still stimulating both

the AP and BP would reveal more sensitivity to harmonicity,

but this would require changing the lower frequency, which

would compromise species recognition by females.

The tonotopic nature of the cochlea might influence conso-

nance perception in humans [22,40], although this possibility

is debated [41–43]. Even when stimulation of the BP was

eliminated, we found no evidence that the tonotopic nature

of the AP causes females to prefer consonant sounds. Thus,

our data do not support the idea that tonotopic auditory

organs result in attraction to frequency combinations in low-

integer ratios. Also, previous studies found anuran sensitivity

to harmonicity using sounds stimulating both the AP and BP

[31–32,34], which further suggest that tonotopic organization

does not play a role in harmonicity detection.

Although our results do not support an evolutionary

origin to human consonance perception in a common ances-

tor with anurans, it is possible that other rudimentary

components to the music faculty are present in anurans.

Some anurans do respond differently to harmonic and inhar-

monic sounds [31,32], which might be a relevant antecedent

to consonance perception even without behavioural attrac-

tion. Also, music is an emergent process drawing from

several aspects of sound perception, including both tonality

and rhythmicity. Anurans might have some sensitivity to

rhythm, since males that call with alternating or synchronous

patterns in a chorus must respond to perceiving other males’

call timing [44,45]. Extending an understanding of the types

of cognitive processing abilities that make up the music fac-

ulty and the diversity of animals that express these abilities

will improve our understanding of how such a complex

trait could evolve in humans.
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