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Abstract
We use a connectionist model, a recurrent artificial
neural network, to investigate the evolution of species
recognition in sympatric taxa. We addressed three ques-
tions: (1) Does the accuracy of artificial neural networks
in discriminating between conspecifics and other sym-
patric heterospecifics depend on whether the networks
were trained only to recognize conspecifics, as opposed
to being trained to discriminate between conspecifics
and sympatric heterospecifics? (2) Do artificial neural
networks weight most heavily those signal features that
differ most between conspecifics and sympatric hetero-
specifics, or those features that vary less within con-
specifics? (3) Does selection for species recognition gen-
erate sexual selection? We find that: (1) Neural networks
trained only on self recognition do not classify species as
accurately as networks trained to discriminate between
conspecifics and heterospecifics. (2) Neural networks
weight signal features in a manner suggesting that the
total sound environment as opposed to the relative vari-
ation of signals within the species is more important in
the evolution of recognition mechanisms. (3) Selection
for species recognition generates substantial variation in
the relative attractiveness of signals within the species
and thus can result in sexual selection.
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Introduction

Many animal communication systems are involved in
discriminating between self and others. This is especially
true in species recognition, in which individuals discrimi-
nate between conspecifics and heterospecifics. The evolu-
tion of species recognition mechanisms has long been of
interest to animal behaviorists and evolutionary biologists
alike due to their importance in processes of speciation and
sexual selection [Dobzhansky, 1940; Blair, 1958, 1964;
Mayr, 1963; Alexander, 1975; Andersson, 1994]. Several
issues exist regarding the behavioral processes involved in
the evolution of species recognition. These issues have
proven difficult or intractable to investigate empirically, and
include: the degree to which the evolution of the recognition
mechanism is influenced by response to heterospecifics; the
salience of the various signal features in recognition; and
the degree to which the evolution of species recognition has
pleiotropic effects or unintended consequences for recogni-
tion of individuals within the species, thus potentially gen-
erating sexual selection.

We address these issues in the context of auditory com-
munication systems, which are critically important to mate
recognition in a number of species, especially song birds,
frogs, and insects [Andersson, 1994; in the context of kin
selection see Getz, 1981, 1982; Lacy and Sherman, 1983;
Getz and Page, 1991; Hepper, 1991]. We use an Elman
neural network model (see appendix) to conduct our analy-
ses [Elman, 1990; Demuth and Beale, 1997].

The first issue we address is how animals form categories
of self and others. In order to discriminate between self and



others an individual must have a set of sensory rules or con-
cepts to which they refer when forming these two cate-
gories. Different referential rules or ‘self-concepts’ have
been implied in the speciation literature with little under-
standing of how these mechanisms might influence the
process of species recognition. At the two extremes are
suggestions by Dobzhansky [1937, 1940] and Paterson
[1978, 1982, 1985]. In Dobzhansky’s [1937,1940] hypothe-
sis of reproductive character displacement or reinforcement
[Butlin, 1987], mate recognition mechanisms begin to
diverge when the incipient species are geographically iso-
lated, but there is subsequent selection to discriminate
between conspecifics and heterospecifics if and when the
species come back into contact. Selection acts against those
females that mate with heterospecifics due to the reduced
vigor of offspring that are able later to mate and reproduce
themselves. (Note that selection can act on both signal-pro-
duction and perceptual mechanisms, we treat the latter
here.) In the character displacement (reinforcement) sce-
nario, therefore, the evolution of the recognition mechanism
is influenced by sampling the difference in signals between
conspecifics and heterospecifics; this is true whether the
selection against mismatings is generated from hybrid dis-
advantage or other factors such as ineffective syngamy or
increased search time [cf. Butlin, 1987]. In contradistinc-
tion, Paterson [1985] suggests there is strong selection for
self recognition, which then results incidentally in individu-
als distinguishing between self and other; he also suggests
there is little empirical support for character displacement.
Thus Paterson posits that there is no need for selection
against heterospecific matings to result in conspecific versus
heterospecific recognition.

One strength of Paterson’s argument comes from the lack
of much empirical support for character displacement [but
see Coyne and Orr, 1989; Gerhardt, 1994; Ryan et al., 1996;
Saetre et al., 1997]. Paterson and others [e.g. Passmore,
1981] seem to assume that species recognition logically
could have evolved equally effectively with or without
selection generated by interaction with heterospecifics.
Their argument addresses how species recognition actually
evolved.

We investigate the influence of heterospecific signals on
the evolution of recognition mechanisms by using four
different training regimes; the training sessions mimic the
evolutionary processes of selection and mutation. In the self
referential assessment, training is based on reference to a
‘typical’ or mean conspecific signal without any reference
to heterospecifics, as suggested by Paterson. In the mean
referential assessment, training involves a comparison be-
tween the mean conspecific signal and the mean (or typical)

heterospecific signal in the same environment. In the vari-
ance referential assessment, training involves comparisons
between a population sample of the conspecific and het-
erospecific signals in the sound community. In the noisy
variance referential assessment, training is similar to that in
the variance referential approach but ambient noise is added
to the signal to assess the degree to which it might increase
the difficulty of achieving recognition [Ryan and Brenowitz,
1985; Klump, 1996].

The second issue we address is feature weighting. Most
signals are parsed by organisms into multivariate arrays rep-
resenting different components or features. It is known,
however, that the receiver does not equally attend to all the
potential information encoded by each component, and it
has been of interest to determine those features salient in
discriminating signals [e.g. Emlen, 1972; Brenowitz, 1983;
Nelson, 1988; Nelson and Marler, 1990; Wilczynski et al.,
1995; Miller, 1996]. Feature weighting is a question that
involves both the mechanisms of communication and the
process of evolution: how does the receiver decode infor-
mation, and how did it come to rely on certain signal param-
eters for decoding?

The statistical distributions of signal components within
the sound environment are likely candidates for influencing
how a receiver decodes signals; how it weights various fea-
tures of the signal. Nelson and Marler [1990] explored this
issue by contrasting two hypotheses that predict feature
weighting in conspecific (acoustic) recognition. The feature
invariance hypothesis suggests that those signal features
with relatively less variation within the population will be
most heavily weighted in discrimination tasks. The sound
environment hypothesis predicts that those features that best
statistically discriminate between conspecific versus others
in a sound community will be most heavily weighted. For
any given data set (i.e. the multivariate distribution of sig-
nals in an acoustic community), however, these hypotheses
might not be mutually exclusive. Nelson and Marler [1990]
tested these hypotheses in a study of a song bird community.
Unfortunately, signal dominant frequency was both the
feature that tended to have less variation within a species
(feature invariance hypotheses) and best predicted species
identity in a discriminant function analysis (sound environ-
ment hypothesis). Relative to the importance of this sound
feature, these hypotheses did not make mutually exclusive
predictions; the examination of receiver discrimination of
other variables, however, tended to support the sound envi-
ronment hypothesis.

The third issue we address is the pleiotropic effects of
species recognition on sexual selection. The referential
system that is the basis of the recognition mechanism, the
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statistical distributions of signal features, and the influence
of environmental noise might all influence how well the
receiver is able to evolve species-discriminating abilities.
There are, however, likely to be incidental but important
consequences of the receivers on how conspecific signals
are perceived. For example, selection to avoid a heterospe-
cific signal could cause females to be less responsive to con-
specific signals that more closely resemble heterospecific
ones. Such receiver biases can result in reproductive char-
acter displacement and sexual selection [Fisher, 1930;
Dobzhansky, 1937; Ryan and Rand, 1993; Gerhardt, 1994;
Pfennig, 1998; Ryan, 1998]. Thus it is interesting to under-
stand how the above variables influence not only the accu-
racy with which the receiver can discriminate between con-
specific and heterospecifics, but also how the receiver
responds to conspecific signal variation.

An Artificial Neural Network Model
Artificial neural networks or connectionist models con-

sist of simple units or ‘neurons’ that are connected to one
another in varying degrees. Each unit is computationally
simple, but the network derives its computational power
from the inter-connectedness of the units. It is these proper-
ties of the connectionist models that result in the analogy to
a nervous system [e.g. Churchland and Sejnowski, 1992].
Although artificial networks have been used for more than a
decade in fields such as computational neurobiology, com-
puter science, and linguistics, their uses have been more
restricted in animal behavior and evolutionary biology [but
see Enquist and Arak, 1993, 1994; Bateson and Horn, 1994;
Johnstone, 1994; Hurd et al., 1995; Phelps and Ryan, 1998,
2000; Holmgren and Getz, 2000].

When applied to behavior and evolution, these models
can provide important insights into both the mechanisms
underlying sensory decoding as well as the processes by
which sensory mechanisms evolve, even though in many
studies the networks themselves do not reflect the architec-
ture of the brains of the animals of interest [e.g. Elman,
1990; Churchland and Sejnowski, 1992]. The Elman net is
designed to investigate perceptual questions involving tem-
porally patterned input signals in which the recent past
structure of the signal provides an essential context for the
current structure of the signal. In particular, an Elman net
performs much better than many other types of connec-
tionist nets when it comes to parsing auditory information
[Elman, 1990]. Of course, the issues we address could
also be analyzed in the context of visual, olfactory, or
other sensory systems, using other types of neural nets
more appropriate to the particular sensory system under
consideration.

The purpose of this study is to use an artificial neural
network model to explore how this particular recognition
mechanism and the statistical distribution of signal proper-
ties we employ might influence a receiver’s ability to dis-
criminate between conspecifics and heterospecifics, how
these receivers weight signal features to make such discrim-
inations, and to uncover consequential biases in response to
conspecific signal variation.

Materials and Methods

Statistical Distribution of Signal Features
We constructed populations of stimuli in which two signal parame-

ters or features were varied in four populations. Frequency, the less
variant feature, overlapped the most between populations, whereas
temporal duration, the more variant feature, overlapped the least
between populations (fig. 1). This resulted in the feature invariance
and sound environment hypotheses making mutually exclusive predic-
tions as to which features should be weighted more heavily by the
receiver because the less variant feature was not the best predictor of
species identity.

We synthesized signals for four populations. For each population
the coefficient of variation for frequency was 5% and the coefficient of
variation for duration was 25%. These values are within the range that
Nelson [1988] found for species used in the analysis by Nelson and
Marler [1990]. The mean frequency and time values for each popula-
tion were: population A, 1,000 Hz, 6,000 ms; population B, 950 Hz,
2,000 ms; population C, 1,050 Hz, 500 ms; population D, 1,000 Hz and
125 ms (fig. 1). We synthesized twenty five signals for each popula-
tion, whose relative values are shown in figure 2.

Signals were synthesized in the software applications package
Signal [Beeman, 1996]. All signals were centered in a time bin of
11,500 ms, large enough to contain the longest signal (6,000 ms × 3
SD, where SD = 0.25 × 6,000; fig. 1). The sampling rate was 4 kHz,
giving a Nyquist frequency which was above the highest frequency
value (1,050 Hz + 3 SD = 1,050 + 3 × 0.05 × 1,050 = 1,207.5; fig. 1).
(The Nyquist frequency is half the digital sampling rate, i.e. 2,000 Hz,
and is the highest frequency that can be accurately represented in digi-
tal reconstruction of a signal as one cycle of a sine wave requires a
minimum of two points to define it.) All signals had the same peak
amplitude and relative amplitude envelope, a simple cosine function.
A sonogram was calculated for each signal representing a pure tone
(i.e. produced by only one frequency). A sonogram is a frequency-by-
time matrix in which the relative amplitude of each point is repre-
sented. We selected a frame length of 256 for the fast Fourier trans-
form. The frequency resolution we used was 15.6 Hz and the temporal
resolution was 64 ms because the sampling frequency was 4 kHz. Tem-
poral and frequency resolution are inversely related in digital spectral
analysis. The sonogram data were saved as a matrix of 104 rows (in
15.6 Hz increments) by 125 columns (in 64 ms increments), with fre-
quency varying among rows and time varying among columns. The
cell values, which represent amplitude, were scaled to a maximum of
1.0. This matrix was then trimmed to 28 by 125, eliminating frequency
bands (rows) not used by any of the signals. This was the matrix used
for the stimulus input.
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The Neural Network
All simulations were run in MatLab version 5.1 in a PC environ-

ment. The network architecture is an Elman net [Elman, 1990; Demuth
and Beale, 1997; see also Appendix]. This type of net has an input layer
that receives the stimulus input and feeds information forward to a hid-
den layer and then an output layer (fig. 3). Units of the hidden layer
also feed information back onto itself and all other units of the hidden
layer. It is this recurrence (feedback) with time that provides the Elman
net with the time-dependent memory that is critical for decoding
temporally structured signals such as sound. As with other neural net-
works, the activity of a unit is a product of the stimulus input or activ-
ity of other units connecting to that unit and any weights on the con-
nections and biases of the units themselves. It is the difference in the
weights and biases that result in networks of the same architecture giv-
ing different responses to the same stimulus.

The architecture of the net we used consisted of 28 input neurons
that corresponded to the 28 frequency bands (rows of the input matrix)
of the signal (i.e. m = 28, see Appendix). Each of these input units fed
forward to each of 20 units in the hidden layer (i.e. n = 20, see Appen-
dix). This ratio of input neurons to neurons in the hidden layer is in a
range of values that has proven to be effective in other studies [Elman,
1990; Demuth and Beale, 1997; Phelps and Ryan, 1998, 2000]. In our
model, the units in the hidden layer feed forward onto a single output
unit. Each of the units in the hidden and output layer were influenced
by bias elements of the vector c (equation 1, Appendix), and each of the
connections between units were influenced by a weight (elements of
matrix A, equation 1, Appendix). There were 960 connections (num-
ber of elements in the matrix A is (20 + 28) × 20 = 960, see Appendix)
and thus the same number of weights between the input and hidden
layer (forward and backward); there were 20 connections (number of
elements in matrix B is 1 × 20, see Appendix), each with a weight,
between the hidden and output layer. There was no weight between the
stimulus and the input units, and the input units were not influenced by
a bias. The activity of the input units was determined merely from the
stimulus input. The activity of the units in the hidden layer was deter-
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Fig. 1. A representation of the distribution
of signal parameters for four populations,
A–D, used in the artificial neural network
studies. The letters indicate population and
mean values, the inner solid circles represent
one standard deviation around the mean, and
the dashed outer circles two standard devia-
tions around the mean. Note that the axes are
on a logarithmic scale.

Fig. 2. Points show the stimulus values synthesized for each popula-
tion as standard deviations from the mean (A–D; 0 = mean population
value). The percentage values show the number of signals selected
from each area in a simulation of 1,000 runs in which values were
selected between –3 and +3 from a normal random distribution with a
mean of 0.



mined from the interaction of the activity and weights of connections
to it as well as the bias, and was calculated using a hyperbolic tangent
function as a squashing function [Demuth and Beale, 1997]. The activ-
ity of the output unit was also determined from the activity and bias
of its connections but was calculated using a pure linear function
[Demuth and Beale, 1997].

Evolution (Training) of the Network
We created one hundred networks of the architecture described

with randomly chosen weights and biases that were constrained to be
within values of –1 to 1. Each network was trained with a conspecific
signal and several heterospecific signals (except for the self referential
training regime, see below for details). Prior to training, we added
noise to each signal, except in the training regime in which noise was
specifically eliminated. The noise was a matrix the same size as the
signal matrix. We chose each cell value from a random uniform distri-
bution between 0 and 0.10. Thus for any cell the noise level was a max-
imum of 10% the peak signal value. In some training regimes (variance
referential and self referential) noise was not added to the stimuli.
The addition of noise is biologically realistic because animals commu-
nicate in a noisy world [Klump, 1996].

We assigned fitnesses to each net based on the differences in their
response to conspecific versus heterospecific signals. In particular, the
heterospecific response was subtracted from the conspecific response
for all six pairs of conspecific-heterospecific comparisons, and the
average of these six differences was designated to be the fitness of the
network in question.

After each generation we selected nets for use in the next generation.
The probability of selecting a particular net was weighted in proportion
to its relative fitness and 100 nets were otherwise selected at random
with replacement. Additionally, we assured that the net with maximum
fitness was always one of those selected. These nets were then subject to
mutation. Weights and biases were selected for mutation with a proba-
bility of 0.01. If selected, the weight or bias was perturbed by a number
randomly selected from a uniform distribution between –0.5 and
0.5 subject to the constraint that the final values were always between –1
and 1. One net with the maximum fitness was not mutated.

We ran each training session for 500 generations. Preliminary
results showed that fitness tended to plateau within this time frame.
At the end of the training session we saved the network with the maxi-
mum fitness (i.e. its weights and biases were retained); we refer to this
as the trained network. We repeated these training sessions 20 times
to obtain a sample of 20 trained networks for each of the four types
of analyses we undertook to address the four different issues raised
above (i.e. self referential, mean referential, noisy variance referential,
variance referential).

Population Comparisons: Reference and Noise
We ran four sets of 20 training sessions for all four populations

(A–D) whose signal parameters are detailed above (fig. 2). In each of
these 320 training sessions one of the popùlations is designated the
conspecific (e.g. population A), whereas all others are designated the
heterospecifics (e.g. populations B, C, D). We conducted training ses-
sions in which each population was treated as the conspecific.
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Fig. 3. A discrete-time Elman Net consists of an input layer of dimension m, a hidden layer of dimension n, and an out-
put layer of dimension r. A series of m-dimensional input vectors ut, are feed into the net at each time step t = 1,2,3…, k.
In effect, the input is an mxk dimensional matrix. At each time step, each input node in the hidden layer receives a
weighted sum of inputs (different weights for each node), as well as the output from the hidden layer in the previous time
step (see Appendix for details). The summed information is then transformed using an activation function (represented
here by a ramp) to scale the variable in question to lie between 0 and 1. At each time step, besides information in the
hidden layer being fed back into this layer, it is also fed forward to the output layer. Here we only show an output layer
of dimension r = 1, because that is what we used in our study. In addition to this layer, we have a fourth layer which we
used in our study. In addition to this layer, we have a fourth layer which simply sums the output yt over time where the
final value of this sum at time t = k determines whether the receiver identifies the caller (represented by the input matrix)
as a conspecific or as a heterospecific.



The four different sets of 20 training sessions differed in their train-
ing regimes. In the self referential (sr) training regime, we trained net-
works to discriminate between the mean conspecific signal and noise.
The noise in this case was constructed by assigning values from 0 to 1
from a random uniform distribution to a matrix that was the same size
as the conspecific signal. (This white-noise stimulus is not to be con-
fused with the noise that was added to the signals in the mean referen-
tial and variance referential training sessions.) These values were then
normalized so that the column sums of the noise were equal to the col-
umn sums of the signal. Thus the noise had the same amplitude enve-
lope (column sums), the same total amplitude, and the same root-
mean-square amplitude as the signal but the distribution of frequencies
(row columns) did not match that of the signal. Six comparisons were
made for each net. Populations in these training sessions are denoted
with subscripts indicating self-referential (e.g. Asr). Noise was added
to each stimulus prior to training the net.

In the mean-referential (mn) training regime, we used only
the mean signals in each population. Noise was added to each sig-
nal. Each net was trained with (i.e. its output was determined in
response to) the mean conspecific signal, and with each of the mean
signals from the three heterospecific populations. Thus for each net
there were three conspecific-heterospecific contrasts that we used to
determine the net’s fitness. Noise was added to the signals as described
above. Populations in these simulations are denoted with subscripts mn
(e.g. Amn).

In the noisy variance referential (vn) training regime, the full pop-
ulation variation of signals was used for each population and noise was
added to these signals. For each population, signals had frequency and
time values that were various combinations of the mean (denoted as 0)
and –3 to +3 SDs of the mean value (fig. 2). The conspecific signal to
be used in training was selected by randomly choosing a number
between –3 to 3 from a standard normal distribution. A simulation of
1,000 selections showed that 87% of the signals chosen had values for
both frequency and time that were within ± 1 SDs of the mean, 12%
had values in which at least one value was ± 2 SDs of the mean, and
only 1% of the signals had at least one value that was +3 or –3 SDs from
the mean (fig. 3).

In the noisy variance referential (vn) training sessions we randomly
chose a signal to be tested from the pool of the full range of population
variation represented by the 25 signals in each of the three heterospe-
cific populations. Each net was trained with one conspecific signal,
chosen at random from the full range of conspecific variation, and six
heterospecific signals. Populations in these simulations are denoted
with subscripts vn (e.g. Avn).

The fourth training regime was the same as the noisy variance
referential, but without the overlay of noise on the signals. Thus for
this variance referential (vs) we used the symbols s to indicate silence
(i.e. no background noise) and the appropriate populations are denoted
with subscripts indicating this (e.g. Avs).

Testing the Nets
After completing each set of 20 training sessions for each training

regime with each population, we had 20 ‘best’ nets from each regime/
population that were retained for further testing; these we refer to as
the trained nets. We tested each trained net with (i.e. allowed them to
respond to) all of the 25 conspecific signals (fig. 3). We calculated the
response to each signal relative to the mean signal of the same popula-
tion by taking the sum of the difference between the output vectors, as
described above. We then calculated z scores for the mean responses.
Thus the relative response to the mean call is always 0; a positive value

for a call indicates that the response is greater than the response to the
mean and a negative value shows a lesser response to that call.

Statistical Analysis
Self Recognition versus Species Discrimination. We calculated the

mean and the standard error of the maximum fitnesses for each popula-
tion in each set of training sessions. Maximum fitness of all popula-
tions reached a plateau before 500 generations were reached.

We determined to what extent the trained networks could distin-
guish between the population of conspecific signals versus the other
heterospecific signals. This was a simple discrimination task in which
conspecific recognition was scored if the net showed a greater response
to the conspecific signal versus a heterospecific one. The signals to be
compared were drawn at random from the conspecific and hetero-
specific populations as described above. We determined the responses
of each of the 20 trained nets to 50 pairs of conspecific-heterospecific
signals for a total sample size of 1,000 for each population.

Feature Weighting. We assessed feature weighting by calculating
the differences in the networks’ responses as a z score between neigh-
boring signals (i.e. within 1 SD) along four signal axes through the
conspecific population (cf. fig. 2). These axes were: Hz, signals varied
in frequency from –3 to +3 SDs and were all of mean duration; Ms,
signals varied in duration from –3 to +3 SDs but had the mean fre-
quency; Ds, all signals varied in the same magnitude on both axes of
SD from –3 to +3 and bear the same sign; Df, all signals varied in
the same magnitude on both axes of SD from –3 to +3 but have a dif-
ferent sign. All four axes contained the mean signal of the population
(i.e. 0 SD Hz, 0 SD Ms; fig. 2). For the 20 trained nets for each training
regime/population we determined the average response difference
between neighboring signals on each axis. We then compared the mean
response differences for each axis within a population with an analysis
of variance. Fisher’s least-significant-difference test was used as a post
hoc test to compare differences among the individual axes. This analy-
sis allows us to examine variation in response to conspecific signals
relative to each signal feature we varied, as well as a direct comparison
to the results of Nelson and Marler in their test of the feature invariance
versus sound environment hypotheses [Nelson and Marler, 1990].

Incidental Sexual Selection. We also examined how the trained nets
responded to variation in the conspecific signals. We standardized the
responses to conspecific signals as z scores or standard normal deviates
with a mean of 0 and a variance of 1. In these analyses it is irrelevant
how strong the responses were to heterospecific signals; we are con-
cerned with how the receivers responded to differences only among
conspecific signals.

A Control
An uncontrolled feature of the artificial neural networks just

described is that time and frequency are processed differently by the
networks. Time is processed in columns with a feedback loop between
columns whereas frequency is processed in rows. Although this is
biologically realistic, we asked if the processing mode itself made
a difference. We rotated the stimulus matrix by 90°, thus the columns
of cells in the matrix now became rows, and the rows became columns.
The coefficients of variation, however, remained the same. Because the
number of columns in the input matrix changed, so did the number
of units in the network. The trained networks were then tested with
their population of signals to determine the parameter to which they
were more sensitive.

The training and testing of the networks with the rotated stimuli
were conducted as described above. We used these data to test two
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alternative predictions. First, if processing mode was critical we would
expect the networks to differ in their relative responsiveness to fre-
quency and time variation from the previous study as the parameters
are being processed in different modes even though the variation of
these signal parameters in the populations remained the same. We note
however that if the results differ from the previous study it could also
be due to the change in the size of the network. This is an uncontrolled
variable. Second, if the mode of processing does not make a difference,
and the coefficients of variation do, then we would predict the net-
works to be similar in their relative responses to frequency and dura-
tion regardless of whether these signal parameters are represented in
rows or columns.

Results

Evolution of Nets
The mean and the standard error (SE) of the maximum

fitnesses for the 20 trained nets in four populations in each
of the types of training are shown in table 1. There were
significant differences among mean maximum fitnesses. A
multiple analysis of variance shows a statistically significant
effect for training types across populations (F3,304 = 48.1,
p < 0.001) and populations across training types (F3,304 =
23.7, p < 0.001) as well as an interaction effect (F9,304 = 8.9,
p < 0.001). We conducted one-way analyses of variance
for each of the main effects to allow post-hoc comparisons.
Training types again had a significant effect (F3,304 = 33.4,
p < 0.001). The Fisher’s least-significant-difference test
showed that the average maximum fitness of the self-refer-
ential training regime was significantly lower than that of
the mean-referential training regime, and that the fitness
of the mean-referential training regime was significantly
greater than the other two training regimes (table 1). There
were significant differences among populations across train-
ing regimes (F3,304 = 14.1, p < 0.001). Population A differed
from C and D, whereas population D differed from popula-
tions A, B, and C (table 1).

These results show that nets trained in the self referential
training regime, that is, those nets trained to distinguish the

mean population signal from noise with no reference to het-
erospecific signals, do not perform this task as well as nets
trained to distinguish between conspecific and heterospe-
cific signals as indicated by the average maximum fitnesses
(table 1). Of the latter, the nets trained to distinguish the
mean conspecific versus heterospecific signals, that is, the
mean referential training regime, perform that task better
than nets trained to discriminate between samples of con-
specific and heterospecific signals (table 1). Another trend is
that regardless of the training task, the populations at the
edge of the acoustic space (A and D; fig. 1) perform their
tasks better than those nearer the center of the acoustic
space (table 1).

The maximum fitnesses obtained by each population of
nets during its training is specific to the training task: for
example, discriminating between self and noise (sr),
between the mean conspecific call versus mean heterospe-
cific calls (mn), or between a sample of conspecific call
variants versus heterospecific call variants (vn and vs). A
more appropriate comparison is to ask how each population
of networks fared in their ability to discriminate among the
varieties of calls in the acoustic environment once its nets
reached maximum fitness. To assay this parameter, each of
the trained nets were tested with 50 pairs of calls, a conspe-
cific and heterospecific chosen from the random normal dis-
tribution of population variation and scored according to
whether the conspecific or heterospecific signal elicited the
greatest response. The percent correct and incorrect classifi-
cations were compared with a χ2 likelihood ratio.

In the self-referential training regime the percent of sig-
nals correctly classified as conspecific was not much better
than the random expectation of 50%: Asr, 53%; Bsr, 56%;
Csr, 58%; Dsr, 62%. In the mean-referential training regime
the percent correct classifications for each population were:
Amn, 83%; Bmn, 71%; Cmn, 77 %; Dmn, 87%. When the train-
ing relied on all of the call variation in the populations and
noise was added to all signals prior to discrimination (noisy
variance referential), the nets of maximum fitness exhibited
the following measures of classification accuracy: Avn, 95%;
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Table 1. Mean and (standard error) of the
maximum fitness of the 20 trained networks
in the four populations for each simulation

Simulation type Populations

A B C D

Self-referential (sr) 1,985 (65.7) 1,798 (59.5) 1,687 (31.3) 1,743 (31.9)
Mean-referential (mn) 2,586 (41.3) 2,330 (33.6) 2,286 (50.0) 2,369 (32.5)
Noisy-variance (vn) 2,293 (48.8) 1,982 (69.6) 2,031 (101.1) 1,989 (95.5)
Variance-referential (vs) 2,263 (38.5) 1,830 (35.5) 1,819 (40.0) 1,598 (49.6)



Bvn, 78%; Cvn, 72%; Dvn, 86%. Finally, when the total vari-
ation was utilized in training, but noise was not added to sig-
nals (variance referential), the percent correct classifications
were: Avs, 93%; Bvs, 74%; Cvs, 78%; Dvs, 84%.

Among training regimes there was a clear trend in that
the greater the amount of signal variation encountered dur-
ing training, the greater the average classification accuracy:
self-referential, 57.5%; mean-referential, 79.5%; variance
referential, 82.2%; noisy variance referential, 84.2%. The
classification accuracy was significantly lower in the self-
referential training regime than in the other three types of
training regimes (χ2 likelihood ratio, criterion p = 0.05).

There was also a trend in the accuracy of conspecific
recognition among populations across training regimes. The
two populations bordered by a population on one side in the
duration dimension had greater accuracy in classification
(A, 81%; D, 79.8%), whereas the populations bordered
by populations on both sides had lower accuracy in recog-
nizing the conspecific signal (B, 69.7%; C, 71.2%). There
were no significant differences in the accuracy of classifica-
tion among populations within the self-referential training
regimes (χ2 = 2.3, p = 0.517), but in the mean referential
training regimes the differences were almost significant
(χ2 = 6.80, p = 0.079), and were significant in both the noisy
variance referential (χ2 = 23.2, p < 0.001), and the variance
referential training regimes (χ2 = 15.4, training regimes p =

0.001). When comparing the populations within the latter
two training regimes (likelihood ratio χ2, criterion p = 0.05),
populations A (95%) and D (86%) showed greater classifi-
cation accuracy than B (78%) and C (72%) in the variance
referential noise training regimes, and population A (93%)
showed greater classification accuracy than populations B
(74%), C (78%), and D (84%) in the variance referential
training regimes.

The general results of the classification tests tend to par-
allel the results of the differences in fitness. Neural networks
that were trained with no reference to heterospecific signals
had the lowest accuracy, and populations at the edge of
acoustic space tended to exhibit the highest accuracy.

Feature Weighting 
In the self-referential training regime (sr), nets were

trained only to discriminate the mean population signal
from noise. In two of these populations, Bsr and Csr, there
were no significant differences in the mean response differ-
ence of trained nets between neighboring signals on the
same axis (Bsr, F3,76 = 1.81, p = 0.150; Csr, F3,76 = 1.32, p =
0.271; fig. 4). In the other two populations, Asr and Dsr, the
response difference along axes of signal variation showed
significant differences (Asr, F3,76 = 3.01, p = 0.035; Dsr, F3,76

= 4.11; p = 0.009; fig. 4). In both of these populations, the
response differences along the Hz axis were significantly
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Fig. 4. The mean response difference in the
responses to neighboring calls along one of
four transects through conspecific call varia-
tion by the 20 best nets from the self referen-
tial training regime (sr). The populations A–D
differ in their signal parameters as indicated in
figure 2 and the text. The four transects are:
Hz = signals vary in sequency but have the
mean duration; Ms = signals vary in duration
but have the mean frequency; Ds = all signals
have the same magnitude and sign SD for Hz
and Ms; Df = all signals have the same mag-
nitude but different sign SD for Hz and Ms.
The bars represent the mean response differ-
ence plus one standard deviation. The hori-
zontal lines indicate response differences that
were not significantly different from one
another by Fisher’s least-significant-differ-
ence post hoc test. In these simulations only
the mean calls among populations were com-
pared. *Indicates a value of 0.003.



smaller than along the Ms, Ds, and Df axes, and there were
no significant differences among the responses along those
three axes (Fisher’s least-significant-difference test, crite-
rion p = 0.05; fig. 4).

In the mean-referential training regime (mn) only the
mean signals among populations were compared during
training, as opposed to sampling conspecific and heterospe-
cific calls from the distribution indicated in figure 3. For all
four populations in this training regime, there were statisti-
cally significant differences in the mean response among
the axes for each of the four populations (Amn, F3,76 = 78.4,
p < 0.001; Bmn, F3,76 = 73.8, p < 0.001; Cmn, F3,76 = 21.0, p <
0.001; Dmn, F3,76 = 31.8, p < 0.001; fig. 5). Fisher’s least-
significant-difference post hoc tests showed that in all popu-
lations the mean response difference along the Hz axis is
significantly smaller than the response along the other three
axes. In populations Amn, Bmn, and Dmn there were no sig-
nificant differences among the other three axes, whereas in
population Cmn the mean response difference along axes Ds
and Df are significantly different, but the others are not sig-
nificantly different from one another (fig. 5).

In the noisy variance referential training regime (popula-
tions Avn-Dvn), the conspecific and heterospecific calls were
chosen from a population distribution and noise was added
to each stimulus. Qualitatively, the result are very sirnilar to
the previous training regime: the response difference along
the Hz axis was always less (but not always statistically dif-
ferent, see below) than the response along the other three
axes, and the response differences along those three axes
were not different from one another. More specifically, in

populations Avn (F3,76 = 31.8, p < 0.001) and Bvn (F3,76 =
40.2, p < 0.001), in which responses differed among the
four axes, the post-hoc test showed that the response dif-
ferences along the Hz axis were significantly different from
the other axes, and the response differences among the Ms,
Ds and Df axes were not significantly different from one
another (fig. 6). The responses in populations Cvn and Dvn

showed the same trends but they were not statistically sig-
nificant (population Cvn, F3,76 = 1.6, p = 0.21; population
Dvn, F3,76 = 0.9, p = 0.44; fig. 6).

The same trend in response differences along the axes
within the populations is apparent in the training regime in
which calls were chosen from population distributions but
no noise was added to the stimuli. In populations Avs (F3,76

= 31.7, p < 0.001) and Bvs (F3,76 = 30.9, p < 0.001) there
were significant response differences among the axes. Pop-
ulation Dvs showed the same pattern but it was not statis-
tically significant (F3,76 = 0.4, p = 0.73). The post-hoc test
shows that the response difference along the Hz axis is sig-
nificantly lower than those along the Ms, Ds, and Df axes
and those three axes are not significantly different from one
another (fig. 7). Population Cvs also shows significant differ-
ences in the response differences along the four axes (Cvs,
F3,76 = 5.47, p = 0.002). This is the only population in all
sets of training regimes in which when there are differences,
the response differences are not the smallest along the Hz
axis. The post hoc test shows that in population Cvs the
response differences along the Df axis is significantly larger
than the response differences along the other three axes, and
that those three axes do not differ in this measure (fig. 7).
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Fig. 5. The mean response difference in the
responses to neighboring calls along one of
four transects through conspecific call varia-
tion by the 20 best nets from the mean refer-
ential training regime (mn). All abbreviations
and statistical analyses are as in figure 4.



These results show quite clearly that the responses of
networks differ along different axes in acoustic space. The
general conclusion is that the networks are more sensitive to
changes in duration than in frequency. Frequency is the less
variant of the two features but is not a good predictor of
species identity, whereas duration is the more variant feature
but is a good predictor of species identity (fig. 2).

Preference Landscapes and Pleiotropy
We examined the strength of preferences for signals

distributed over the variation of conspecific calls (i.e. the

acoustic landscape); we refer to these distributions of re-
sponse variation superimposed on the acoustic landscape as
preference landscapes. The acoustic landscape plots signals
in units of SD relative to the mean, and the entire set of
signals for a population consisted only of calls that were
the population mean or differed from the mean in units of
1–3 SDs (fig. 3). Onto this acoustic landscape we plotted
the relative strength of response of the networks; thus we
determined the mean strength of response of the nets in
the population to each signal. The responses were standard-
ized to z scores using the mean and standard deviation of
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Fig. 6. The mean response difference in the
responses to neighboring calls along one of
four transects through conspecific call varia-
tion by the 20 best nets from the noisy vari-
ance referential training regime (vn). All
abbreviations and statistical analyses are as in
figure 4. 

Fig. 7. The mean response difference in the
responses to neighboring calls along one of
four transects through conspecific call varia-
tion by the 20 best nets from the variance ref-
erential training regime (vs). All abbrevia-
tions and statistical analyses are as in figure 4.
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Fig. 8. The mean relative responses of the trained networks to call variation within the conspecific population. The X
and Y axes of each plot show how the conspecific signals varied in standard deviations of the mean duration (Ms) and
frequency (Hz; see fig. 2), which is denoted as 0,0. Twenty five of the possible 49 calls were synthesized and evaluated
by the nets. The 24 white cells that do not correspond to dots in figure 2 were not synthesized and evaluated. Populations
are represented across columns and training regimes across rows (see text for abbreviations of training regimes). The
average responses of each of the 20 trained networks for each population/simulation were measured in response to each
conspecific call relative to the mean conspecific call. These response values were then normalized to z scores and coded
by the color of each cell in reference to the color bar on the right of each plot. The red end of the color spectrum signifies
responses greater than the mean, and the blue end of the spectrum indicates responses weaker than the mean. White
patches (0 on the color bar) are empty spaces in the acoustic space for which signals were not synthesized and thus
responses are not quantified, as noted above.



responses for each population. The z scores of the responses
are by definition measured in units of standard deviation.
This is an appropriate way to analyze the response data
when we ask to what degree might the nets generate selec-
tion on the distribution of signals within the populations.
Thus we can compare the relative response of the networks
to mean signals and signals that differ from the mean signals
in measures of standard deviation. In figure 8 the z scores
are coded in integer units of standard deviations.

In the self-referential populations (sr), as in all the popu-
lations we examined, there is variation in the responses of
the nets across the population variation. In population Asr,
variation in responses were between –2 and +2 SD. In the
other populations in this training regime, the strengths of
response ranged from –2 to +3 SDs. In none of these four
populations were the strongest preferences for the mean
signal, and the distribution of responses was usually dis-
placed from the mean along both the duration and frequency
axes. Population Bsr exhibited a heightened response toward
longer durations and lower frequency, whereas population
Csr exhibited a heightened response toward longer durations
and higher frequencies. In both populations Asr and Bsr there
was divergence in the most preferred signals, longer times at
lower or higher but not intermediate frequencies in Asr,
whereas the picture in Dsr was rather mixed.

In the mean referential training regime (mn) the amount
of variation is marginally less than that seen in the self
referential training regime. One population, Dmn, varied in
the strength of response between –1 and +3 SDs, Cmn

between –1 and +2 SDs, and Amn and Bmn vary between
–2 and +2 SDs. Unlike the previous training regime, there
was not a clear displacement of stronger responses along
the time axis. Bmn and Cmn showed stronger responses for
higher and lower frequencies, respectively; Amn showed
more divergent preferences.

In the noisy variance referential training regime (vn), the
variation in responses was similar to the mean referential
training regimes. Avn, Bvn, and Cvn varied in strength of
response between –2 and +2 SDs, whereas population Cvn

varied from –1 to +3 SDs. Dvn showed a strong preference
for mean frequencies across most of the time axis, Bvn for
higher frequencies across time, Cvn for longer signals with
lower frequencies, and Avn, once again, showed preferences
divergent in frequency.

The responses of networks derived from the variance ref-
erential training regime (vs) were quite similar to those from
the noisy variance referential training regime. Avs, Bvs, and
Cvs showed the same range of variation in response strength
(–2 to +2 SDs), with Dvs ranging from –1 to +3 SDs. Also,
the directions by which the strengths of response were dis-

placed from the mean were identical with the exception of
more divergent preference in Bvs along the frequency axis.

A Control
Figure 9 shows the response of neural networks that were

trained in the noisy variance referential regime (nv) in
response to calls from population C in the control experi-
ments. In this case the stimulus matrix was rotated 90°.
These results are shown together with the neural networks
that were trained in the same training regime to the same
calls from population C but in which the stimulus matrix
was not rotated. The responses were quite similar. This sug-
gests that the different sensitivities to Ms and Hz are not due
to processing-mode but to CV. Although the network size
was different, the similar responses suggest that network
size was not critically important in determining the relative
responsiveness of the nets to different signal parameters.

Discussion

The purpose of this study is to use an artificial neural
network model to investigate how signal recognition might
evolve given the distribution of signal parameters of several
species in the same acoustic environment. We are specifi-
cally interested in how the referent used for recognition
influences discrimination abilities, how the variance of sig-
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Fig. 9. The responses of the neural net in the control tests in which the
stimulus matrix was rotated by 90°. Networks were trained in the noisy
variance referential simulations (vn) and only trained to calls from
population C. The mean response difference in the responses to neigh-
boring calls along one of four transects through conspecific call varia-
tion by the 20 best nets from the networks trained under the control
conditions and the networks whose results are reported in figure 6. All
abbreviations are as in figure 4.



nal features within and among species influence the weight-
ing of these features in signal decoding, and if evolution of
species recognition has pleiotropic effects on discrimination
of signals within species.

If the relevance of artificial neural networks models to
these issues is in question, the results we obtain certainly
provide deeper insights and a better understanding than pure
verbal arguments that have no way of assessing complexi-
ties that arise when information is processed by networks,
whether they are real brains or highly stylized mathematical
representations of brains. Furthermore, population genetic
models used to explore these same questions tend not to
capture the various contingencies and response biases that
result when complex nervous systems solve difficult prob-
lems. Such response biases are proving to be of some value
in understanding the evolution of animal receiver systems
[Ryan 1998], are commonly seen in artificial neural net-
works [e.g. Enquist and Arak, 1993, 1994; Johnstone,
1994], and can predict quite accurately the response biases
of real animal receiver systems [Phelps and Ryan, 1998,
2000].

Effect of Category Formation
This study suggests the internal reference that an animal

uses in signal recognition influences its ability to discrimi-
nate between conspecific and heterospecific signals. Pater-
son [1978, 1982, 1985] suggested that there is strong selec-
tion for self recognition and that discrimination against
heterospecifics is an incidental consequence. This is in
contrast to Dobzhansky [1937, 1940] and others [e.g. Blair,
1964; Butlin, 1987; Littlejohn, 1988; Coyne and Orr, 1989;
Gerhardt, 1994] who suggest that interactions with hetero-
specifics influence the evolution of the signal recognition
strategy.

In our study, recognition strategies that evolved with
no reference to heterospecific signals were not as successful
in discriminating between conspecific and heterospecific
signals as were those in which the recognition strategy
evolved with specific reference to those signals that would
later have to be discriminated. Amongst the latter, the more
signal variation the nets encountered while being trained,
the better they later discriminated. Making reference to a
sample of conspecific and heterospecific signals during
training resulted in better discrimination than making refer-
ence only to the mean conspecific and heterospecific sig-
nals.

These results rnight seem intuitive but they highlight the
crucial difference in emphasis between two major views
on the evolution of species recognition – the specific mate
recognition system versus the isolation concept [reinforce-

ment/reproductive character displacement, e.g. Coyne et al.
1988]. A prediction of Paterson’s hypothesis is that the
recognition system is under stabilizing selection. Some have
pointed out, however, that there can be substantial variation
in species mate recognition signals, which would seem to
invalidate the specific mate recognition hypothesis [Coyne
et al., 1988; Ryan and Wilczynski, 1991]. Paterson [1993]
states that such criticisms are unwarranted because the
authors utilize a different species concept than he does, and
that stabilizing selection does not predict lack of variation
[p. 214, Paterson, 1993]. It is not clear how to resolve these
issues between species concepts and the precise threshold of
variation that the specific mate recognition hypothesis can
accommodate.

A more fundamental assumption of Paterson’s model,
however, is that a recognition system based only on self-
recognition will result, although incidentally, in effective
discrimination between conspecifics and heterospecifics.
This study shows that this need not be true, at least under the
admittedly restrictive limitations and assumptions of the
artificial neural network models utilized here. The ability
to evolve effective conspecific-heterospecific discrimination
in this study is reduced when the training regime excludes
the potential for false recognition of heterospecific signals
to influence fitness during training. Our results cannot be
viewed as a firm rejection of Paterson’s hypothesis. These
artificial networks certainly do not accurately represent the
recognition strategies used by all organisms in all situations,
and there are other limitations to these models discussed
below. But we believe this is the first study to directly assess
a critical assumption of this debate – that selection for self
recognition will incidentally yield an effective conspecific-
heterospecific discrimination system. In these models self-
recognition is not effective whereas in nature it might be,
but we suggest that perhaps one should not make that
assumption.

Feature Weighting
The second issue we addressed was how the variance in

signal features influences the degree to which they are
weighted in signal decoding strategies. Nelson and Marler
[1990] contrasted the feature invariance hypothesis, which
states that features least variant within the taxa should be
weighted most heavily, and the sound environment hypoth-
esis, which states that those features that best discriminate
among taxa in the environment should be weighted most
heavily. Their study tended to support the sound environ-
ment hypothesis, but given the limitation of their data,
these two hypotheses did not always make exclusive pre-
dictions.
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We constructed signals so that the most invariant feature,
frequency, was not a good predictor of species, whereas the
most variant feature, duration, did accurately predict spe-
cies. Our results are consistent with those of Nelson and
Marler [1990] in supporting the sound environment hypoth-
esis. Once trained, the artificial neural networks were more
sensitive to variation in duration than in the frequency axis.
The nets were also sensitive to variation along the two
orthogonal axes in which duration and frequency covaried.
Thus the nets were sensitive to variation in the feature that
best discriminated among taxa even though this feature was
quite variable within each taxa and, conversely, the nets
were less sensitive to features that did not predict species
status even if these features were relatively invariant within
the species. This generalization tended to hold across most
populations and training regimes.

A number of studies have examined variation of signals
within and among individuals and species to gain some
insight into signal function and evolution. For example,
Barlow [1977] suggested that mate recognition signals
should be less variable than those used in male-male inter-
actions, and Ehret [1990] argued that information in recog-
nition signals should be perceived categorically, whereas
information in aggressive signals should be perceived con-
tinuously. Ryan [1988] emphasized constraints on signal
variation in that the mechanism of signal generation should
influence the variance, predicting that variance should be
higher in features under behavioral-physiological control
and lower in features under morphological control. Gerhardt
[1991] classified signal variance into static versus dynamic,
and argued that females exhibit stabilizing preferences for
static features and directional ones for dynamic features.
This study, together with that of Nelson and Marler [1990],
show that signal variance relative to other species rather
than to other conspecifics is a crucial character in signal
decoding. All of these approaches concentrate on the same
statistical measure of signals and emphasize vastly different
issues. All of these approaches might have some merit, but
future work should consider these various effects on signal
variation in concert.

We want to be quite clear about how constraints of the
neural network architecture relate to some vertebrate sound
processing systems. The input matrix of frequency (rows)
versus time (columns) is not arbitrary but represents our
understanding of some aspects of the physics and biology
of auditory processing. We are especially influenced by our
knowledge of auditory processing in frogs where the neural
processing of mate recognition signals is perhaps best
understood [see various chapters in Fritzsch et al., 1988].
Our input matrix has time arranged in columns, and thus is

inputted into the network in sequence. This aspect of the
network design reflects a constraint of physics: time is an
arrow. The arrangement of frequency in rows, however,
reflects a constraint of biology. Most vertebrate auditory
receptors contain arrays of hair cells that are differentially
sensitive to frequency and vary in their sensitivity in a pre-
dictable manner across space; that is, they are tonotopically
organized. In anurans, for example, the frequency sensitiv-
ity of the auditory receptors, which is a property of the
sensitivity of all the hair cells, tends to match the distribu-
tion of spectral energy of the conspecific advertisement call
[Lewis and Lombard, 1988; Zakon and Wilczynski, 1988].
Thus the arrangement of frequency in rows in the input
matrix, in which each row interacts with a single input neu-
ron, mimics the sensitivity of hair cells to specific frequency
bands. This aspect of the neural network model is not arbi-
trary but intentionally constrained by biology and physics.

We conducted one control experiment in which the stim-
ulus matrix was rotated by 90°, thus the frequency data that
was processed as rows is now processed in columns, and the
temporal data that was processed in columns is now
processed as rows. These nets showed the same patterns
of responsiveness to frequency and time as the networks
trained in the same training regimes and to the same popu-
lation but using the unmanipulated stimulus matrix. Thus
the differential responses to frequency and time that we
observed does not appear to result from how frequency and
time are processed by the neural networks.

Preference Landscapes and Pleiotropy
We do not have a formal set of null and alternative

hypotheses against which we tested the preference land-
scapes. Our discussion, however, can be guided by expecta-
tions that might arise from a purely nonquantitative analysis
and verbal discussion of the issues considered above.

No Conspecific Signal Preferences. One idea is that
networks that evolve to discriminate between conspecific
and heterospecific signals will respond to conspecific sig-
nals categorically; that is, they will ignore variation within
the species and be hypersensitive to a similar magnitude of
variation between species. The rationale for this expectation
might be that the training regime did not impose a fitness
differential for preferring one conspecific signal over an-
other, thereby creating a preference landscape that is flat
across the conspecific call variation. Our results show this is
clearly not the case as there was substantial variation in
responses to conspecific signal variation (fig. 8).

Mean Template. If the response properties of the re-
ceivers resulted strictly from the matching of a template
with no generalization, then we might expect the nets’ pref-
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erence landscapes to reflect this experience during training.
When the networks were trained to discriminate among the
mean signal of conspecific versus noise (sr), or the mean
signals of the conspecific and heterospecific populations
(mn), we might expect the networks to show a strong
response to only mean conspecific signal and little or no
response to the other conspecific signals. This is clearly not
the case (fig. 8). Other signals besides the mean signals
elicit responses and the mean signal elicits the strongest
response in only one of the sixteen training regimes (fig. 8,
population D, variance referential).

Population Distribution. Continuing the template meta-
phor, in the training regimes in which the networks were
trained with a variety of signals that reflected their distribu-
tion in the conspecific and heterospecific populations, we
might expect a preference landscape similar to the signal
landscape (vn, vs). In this case, we might expect to observe
the strongest response to the mean signal with responses
differing from the mean in the same magnitude as did the
signals – that is, a signal 2 SDs from the mean would result
in a signal that elicits a response of 2 SD less than that of the
mean (fig. 8). These predictions are also not supported for
the same reasons detailed above. The strongest responses
are usually not elicited by signals nearer the mean (fig. 8).

Character Displacement. The preference landscapes
could also show a skew from the mean in the direction that
would reduce interaction with other species. This is analo-
gous to the hypothesis of reproductive character displace-
ment in which signals or preferences of species are dis-
placed from heterospecific signals in a manner that reduced
false recognition of heterospecifics (fig. 8). Our results tend
to support the interpretation that the networks are somewhat
influenced by a pattern analogous to displacement during
their training. Displacement from the mean tends to be in
directions that move the responses away from heterospecific
signals thus reducing false positives in recognition of con-
specifics. For example, displacement of preferences along
the frequency axis would be predicted for populations D and
A but not in C and B. Furthermore, to reduce false positives
we would expect displacement toward lower frequencies in
population D and higher frequencies in population A (fig. 2,
8). This pattern tends to hold for the eight training regimes
in populations D and B, but only for two of the training
regimes in population C. For population A, the direction of
displacement from the mean is not consistent with a charac-
ter displacement effect.

This study was not designed specifically to simulate the
effects of character displacement. Instead, we asked the
more general question of whether selection for conspecific-
heterospecific discrimination could generate sexual selec-

tion on signals within populations. These results show this is
clearly the case. Nets do not respond equally to all conspe-
cific variants, and the strongest responses are usually not to
the mean signal. Thus sexual selection appears to be direc-
tional or diversifying rather than stabilizing, and the dis-
placement of the responses from the mean is sometimes
consistent with the direction that would decrease false
recognition of heterospecific and thus mimics the effects of
reproductive character displacement of preferences.

Summary

This study uses artificial neural network models to inves-
tigate the evolution of species recognition among sympatric
species. The models assume that there is a fitness benefit
associated with correct identification of the conspecific sig-
nal relative to heterospecific signals and noise. This is a
realistic assumption, and is implicit in many discussions of
the divergence of communication systems. A further assump-
tion is that the fitness benefits accrued to the receiver do not
vary with the conspecific signal chosen. This is a controver-
sial issue in sexual selection, and it is fair to say that in some
systems females increase their immediate fecundity through
prudent mate choice, although this is not true in other sys-
tems [Andersson, 1994; Ryan, 1997]. An important limita-
tion of this study is that signals are fixed and recognition
evolves. A more detailed understanding of the dynamics of
some of these processes, such as character displacement,
should simulate the evolution of both signal and receiver
[e.g. Holmgren and Enquist, 1999].

The addition of neural network models to studies of
communication system evolution introduces some advan-
tages not apparent in other approaches. In empirical studies
the distribution of signal variables might constrain compet-
ing hypotheses from making mutually exclusive predictions.
Other types of simulations and population genetic models
[e.g. Pfennig, 1998] explicitly define or imply the decoding
strategy of the receiver, but the less deterministic general-
izations that arise from artificial neural networks might be a
better indictor of how brains really work [e.g. Churchland
and Sejnowski, 1992; Phelps and Ryan, 1998]. These types
of simulations, therefore, appear to be useful tools, which in
addition to knowledge of the behavior, neurobiology, and
population genetics of real systems can advance our under-
standing of mechanisms and evolution of animal communi-
cation.
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Appendix: Elman Net Equations

Elman Nets belong to a class of discrete time recurrent
networks that are dynamical systems with the following
characteristics:
1. The hidden units are equivalent to an internal state vector

representation x(t) which is an n-dimensional vector –
that is of the form x = (x1, …, xn)′ (the prime symbol
denotes vector transpose), where x1, i = 1, …, n are real
numbers – at time t. Note t takes on consecutive integer
values from initial time t = 1 to final time t = k (i.e. t = 2,
3, …, k).

2. The input is a sequence of m-dimensional vectors u(t)
(also with real values, in our case nonnegative).

3. The internal state dynamics are a concatenation of two
transformations: (i) a linear transformation A (n × (n +
m) matrix) of the internal state and input vectors, x(t) and
u(t) respectively, biased by an n-dimensional vector, c, to
yield the intermediate n-dimensional vector, z(t), given
by

z(t) = A 1x(t)2 + c, (1)
u(t)

and (ii) a hyperbolic tangent updating function that trans-
forms the i-th element of z at time t into the i-th element of
x at time t + 1 – that is,

xi(t + 1) = tanh (α1zi(t) + α2), i = 1, …, n. (2)
where the first and second elements of α = (α1, α2)′ are scal-
ing and bias constants respectively. (More generally, these
constants could depend on i.)
4. The output is an r-dimensional vector y(t + l) that repre-

sents a linear transformation B (r × n matrix) of the state
x(t) translated (biased) by the constant r-dimensional
vector d – that is,
y(t + 1) = Bx(t + 1) + d. (3)
For the Elman net to act as a computing device, we need

to first specify the n × (n + m) + r × n + (n + m) +r + 2 ele-
ments making up the two matrices, two vectors, and two
updating-function constants thereby defining the parameter
set P = {A, B, c, d, α}. Then for an initial state x(0) and an
m × k-dimensional input matrix U = (u(0), u(1), …, u(k – 1)),
we can calculate the trajectory of the output as represented

by the r × k matrix Y = (y(l), y(2), …, y(k)), using equations
(1)–(3). Thus, in effect, for a given parameter set P, the
Elman Net is a mapping Ep:Rn × Rm × k y Rr × k (where Rn,
etc., is an n-dimensional real Euclidean vector space).

In the study we reported here, the dimension of our out-
put vector is of dimension r = 1; that is, the output set is the
k-dimensional array Y = (y(l), …, y(k)). Further, we always
set the initial state to be x(0) = 0 (null vector) so that the
input matrix Uj produces the same repeatable sequence Yj =
(yj(1), …, yj(k)). If, every time the net is ‘tested’ by the input
‘signal’ Uj we calculate the sum

k

vj = ∑ yj (t) (4)
t=1

then Vj represents a scalar-valued output ‘response’ of the
network to the input matrix Uj.

All the parameters in the set P (i.e. all elements of the
transformation matrices A and B and bias vectors c and d)
are constrained to have values on the interval [–1, 1]. The
input signals we use in our simulations, as elaborated in the
text, have the dimensions m = 28 and k = 125. We selected
the number of hidden units to be 20 – i.e. the state x has
dimension n = 20 – and the summed output vj has the
dimension r = 1. Further, at each point in time t, equation (2)
implies that xi(t) is constrained to lie between –1 and +1 for
each i = 1, …, n. Thus, because of the constraints on the ele-
ments of B and d and the dimension n = 20 of the vector
x(t), equation (3) implies that the corresponding output y(t)
at time t (which is a scalar rather than vector because r = 1)
lies on the interval [–21, 21]. Hence, for any given Uj,
because 125 values of the corresponding output yj(t) t =
1, …, 125, are summed to obtain the response vj (see equa-
tion (4), the response is constrained to lie on the interval
[–2,625, 2,625]. Thus the maximum difference between any
two response values vj1 and vj2 is 5,250.

The fitness of an Elman net Ep is evaluated in terms of its
ability to discriminate between two inputs. In particular, we
are interested in the net being able to respond strongly to
one of these inputs (e.g. when the input is a signal from a
conspecific or some appropriate mate) but not another (e.g.
when the signal is an input from a heterospecific or some
inappropriate mate). If, for example, we regard acceptance
of the ‘right’ signal U1 as the occurrence of a large positive
value v1, and rejection of the ‘wrong’ signal U2, as the
occurrence of the most negative value v2, then we define
fitness in terms of the difference d12 = v1–v2. In particular,
larger values of dij, where Ui, represents a signal that should
be accepted and Uj, represents a signal that should be
rejected, correspond to fitter individuals. The maximum
value for this difference is 5,250, while the minimum is
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–5,250. Note, negative values imply that the net is favoring
signals that detract from fitness over those that add to fit-
ness.

In our simulation we used the average of six different
evaluations dij (from six different pairs of beneficial and
detrimental signals Ui and Uj, respectively) to obtain a fit-
ness measure. Clearly, this average value d̄ lies on the inter-

val [–5,250, 5,250]. To obtain a fitness measure φ that lies
on [–1, 1], we applied the transformation

φ = tanh (α3v̄ + α4)
Pilot studies indicated that the values α3 = l/1,500 and

α4 = 0 provides an extensive range of values for our mea-
sure of fitness (with these values we obtained φ> 0.9 for the
fittest individuals).
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