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ALLOZYME AND ADVERTISEMENT CALL VARIATION IN THE
TUNGARA FROG, PHYSALAEMUS PUSTULOSUS
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Abstract.—We analyzed variation in advertisement calls and allozymes in 30 populations along a 5000-km transect
throughout most of the range of the tingara frog, Physalaemus pustulosus. All 12 call variables measured show
significant differences among populations despite the importance of the advertisement call in species recognition.
Some call variables exhibited clinal variation, whereas most others differed between the two major allozyme groups
that have invaded Panama at different times, perhaps 4-4.5 million yr apart. Call variables that primarily affect
discrimination among conspecifics tended to exhibit greater variation than call variables that are crucial for species
recognition. The proximate mechanism of production underlying a call variable, however, is a better predictor of its
variation. Contrary to predictions of some sexual selection models, call variation exhibits predictable patterns of
geographical variation, although a substantial portion of variation among populations is not explained by geographic
position. Although allozymes, calls, and geography usually covary, closer populations can have more similar calls
independent of allozyme similarity.

Key words.—Advertisement calls, allozyme variation, genetic variation, geographical variation, Physalaemus pustu-

losus, sexual selection, tingara frog.
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Patterns of geographic variation within species give
some indication of both the potential for future evolution and
the past history of selection and constraints. Such patterns
are particularly interesting when they involve characters that
are important in promoting genetic divergence among pop-
ulations. Mate recognition characters do just that.

The importance of sexual signals in reproductive isolation
has been emphasized since Darwin (1859, 1871) and was an
important component of the Evolutionary Synthesis (Mayr
1982). Variation among species in mate recognition char-
acters suggests the potential for species recognition. It has
been demonstrated experimentally in a variety of taxa that
this signal variation can guide a female’s mate preference to
conspecific over heterospecific males (e.g., crickets: Huber
1990; Drosophila: Coyne and Orr 1989; fish: Ryan and Wag-
ner 1987; frogs: Blair 1964; Rand 1988; Ryan 1991; Gerhardt
1994; birds: Marler 1957; Searcy and Andersson 1986). Thus,
divergence in mate recognition signals resulting from rein-
forcement (Dobzhanksy 1937; Butlin 1987; Coyne and Orr
1989) or correlated with more general divergence (Mayr
1963; Blair 1964; Endler 1977; Nevo and Capranica 1985)
can be a significant component of the speciation process.

Mate recognition characters are sometimes classified as
being involved in either species recognition or sexual selec-
tion. Undoubtedly, many mate recognition signals result in
conspecific identification, but the signals still may vary with-
in a species with important evolutionary consequences. Field
observations combined with experimental manipulations
have shown that female preferences among conspecific males
are often influenced by such variation (reviewed in Ryan and
Keddy-Hector 1992; Andersson 1994). Mate recognition
characters, therefore, can result in biased choices both among
conspecifics and among different species, regardless of the
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factors responsible for the origin of such preferences (Ryan
and Rand 1993a).

What are sometimes classified as “‘species recognition sig-
nals” can show substantial variation among populations
(Ryan and Wilczynski 1991). Lande (1982) and West-Eber-
hard (1983) suggested that the rapid and arbitrary divergence
of mate recognition signals under sexual selection could pro-

-mote behavioral isolation among populations and, ultimately,

the formation of new species (see Young et al. 1994 for
empirical support of this hypothesis). Turner and Burrows
(1995) further suggested that sexual selection could cause
sympatric speciation. Lande’s (1982) results are especially
germane to our study. He specifically modeled divergence in
male signals along a cline of parapatric populations with no
barriers to migration, and showed that there can be rapid
displacement of a sexually selected signal over space poten-
tially leading to substantial divergence among populations
(see fig. 2 in Lande 1982). Even with such displacement,
however, gene flow could maintain a cline in similarities
among closer populations (i.e., isolation by distance).

In previous studies, we have examined in detail how vari-
ation in mate recognition signals within a population influ-
ences female mating preferences that generate sexual selec-
tion in the tingara frog, Physalaemus pustulosus (e.g., Ryan
1980; Rand and Ryan 1981; Ryan 1985; Wilczynski et al.
1995), and how variation in signals among the tingara frog
and its closest relatives can result in species recognition and
sensory exploitation (Ryan et al. 1990a; Ryan and Rand
1993a,b, 1995). In this study we examine patterns of call
variation across the geographic range of the tingara frog in
relation to allozyme variation.

We address five major questions: Do advertisement calls
show significant intraspecific variation? Is there call diver-
gence between the two major allozyme groups of tingara
frogs? Does call function or call production better predict
patterns of variation of call components? Are there predict-
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the Panama Canal (top).

able patterns of geographic variation in calls? If call variation
is geographically predictable, is this the result of isolation
by distance?

The System

Taxonomy and Biogeography.—The tingara frog, Physa-
laemus pustulosus, ranges from the Atlantic side of northern
Mexico, south through much of lowland Pacific Middle
America, into northern Colombia and east through Venezuela
to the island of Trinidad and perhaps Guyana (Fig. 1; Table
1). This small frog (ca. 30 mm snout-vent length) is a member
of the family Leptodactylidae (Lynch 1971), and together
with five or six other taxa, constitutes the P. pustulosus spe-
cies group (Cannatella and Duellman 1984; Cannatella et al.,
unpubl.). Within the species group, one clade is restricted to
areas west of the Andes, while the other clade (which contains
P. pustulosus, P. petersi, and its presently undescribed sister
taxon) is restricted to Middle America and South America
east of the Andes.

An analysis of allozyme variation suggests that P. pustu-

Localities at which Physalaemus pustulosus were sampled across the entire transect (bottom), within Panama (middle), and along

losus has crossed from South America into Panama on at
least two occasions (Rand et al., unpubl.). This multiple in-
vasion is now evidenced by a zone of secondary contact with
significant introgression in western Panama. A possible bio-
geographical scenario is that tingara frogs first invaded Cen-
tral America about 8 M.Y.B.P, prior to the establishment of
the land bridge across the Isthmus, which is thought to have
occurred 2.4 M.Y.B.P, and that a subsequent invasion oc-
curred onto this land bridge when it emerged (Rand et al.,
unpubl.). Although the allozymes show two major genetic
groupings within P. pustulosus, it seems clear that these
groups are monophyletic and we consider them one species
(Rand et al., unpubl.).

The Call—The advertisement call of P. pustulosus consists
of a whine that can be produced alone or followed by up to
six chucks (Fig. 2). The whine is necessary and sufficient to
elicit female phonotaxis. Within the whine some parts are
necessary to elicit phonotaxis, others are not necessary but
make the whine more attractive, and still other parts, such
as the upper harmonics of the whine, have no influence on
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Continued.

TABLE 1.

N

CHDM DBI12 DBCH DOMH DRAM DRCH DURT FNLH INIT PAMH TLDR

AMPL

Grand means, standard errors, coefficients of variation

275

0.16

350

868
5.5
0.10

973
6.2
0.10

476
2.3
0.08
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3.2
0.18
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0.6
0.25

0~

1
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4.9
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0.3
0.60
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.55
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correlation with cumulative distance: long transect
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—-0.292 —0.089 —0.474 0.351 0.215 0.374 —-0.470 —0.435 —0.625 0.168 20
*k ns ns *k ns ns * *k *k ns

-0.783

0.349
ns

[

correlation with cumulative distance: central Panama transect

0.227 11
ns

0.273
ns

0.445 0.027 0.718 0.136 —0.264 0.409 —0.136 0.219
ns ns ns *ok ns ns ns ns ns

—0.400

0.187
ns

female phonotaxis (Rand et al. 1992; Wilczynski et al. 1995).
Female tiingara frogs can distinguish between the conspecific
whine and the whine produced by all other males of the
species group (Ryan and Rand 1993a,b), although not be-
tween the conspecific call and what we estimate to be the
call of its most recent common ancestor (Ryan and Rand
1995). There can be substantial variation in the whine among
males. The degree to which this variation influences female
preferences is not known.

The chuck alone does not allow females to identify the
call as signaling a conspecific, but it does enhance the call’s
attractiveness to females. This call component only elicits
phonotaxis when produced in concert with a whine, which
in nature is always the case. Females prefer calls with chucks
(Rand and Ryan 1981; Ryan 1985) and prefer calls of lower
frequency chucks (Ryan 1980, 1985), although recent studies
(Wilczynski et al. 1995) show that this low-frequency pref-
erence is weaker than the earlier studies had suggested. The
chuck also increases predation risk because it makes the call
more attractive to the frog-eating bat, Trachops cirrhosus
(Tuttle and Ryan 1981; Ryan et al. 1982). Other sounds can
replace the chuck with the same influence on call attractive-
ness, suggesting that female preference for chucks might be
quite permissive (Ryan et al. 1990a; Ryan and Rand 1990,
1993a,b).

The effect or the function of the call in different levels of
discrimination differs between the whine and the chuck. Only
the whine is involved in discriminating among different spe-
cies, while the chuck is of obvious importance in discrimi-
nating among individuals; we do not know how whine vari-
ation influences within-species discrimination.

MATERIALS AND METHODS

Field Collections

We collected tingara frogs and tape recorded their adver-
tisement calls from 30 populations throughout most of the
species’ range (Fig. 1; Table 1; Appendixes). The eight sites
ranging from Veracruz, Mexico, south to Puerto Armuelles,
Panama, were sampled in June 1993. Panama was sampled
most extensively; 15 sites were sampled in the country with
10 of them being along a more fine-grained transect that
paralleled the Panama Canal in central Panama (Fig. 1; Table
1). We sampled these sites in central Panama at various times
between 1990 and 1994. Five sites were sampled in South
America. The site at Mariquita, Colombia, was sampled in
November 1993. We sampled three sites in Venezuela in
1992, and the site in Trinidad was sampled by A. H. Wynn
and R. Crombie in 1991.

At each site we recorded advertisement calls of males, and
attempted to collect and preserve these same males as vouch-
er specimens. Calls were recorded using a Marantz PMD 420,
Sony TCDS5M, or a Sony Professional Walkman tape recorder
and a Sennheiser ME-80 microphone with K3-U power mod-
ule on metal tape. Temperatures were recorded at the calling
site of each male. Animals were either transported alive to
the laboratory or tissues were removed and frozen in the field
with liquid nitrogen and then transported in dry ice. We re-
moved the following tissues for electrophoretic analysis after
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F1G. 2. A sample of advertisement calls, a whine followed by a single chuck, of Physalaemus pustulosus (sonograms, top; oscillograms,

bottom) illustrating some of the variation among four populations.

the males were euthanized with MS222: liver, thigh muscle,
heart, and sometimes eyes.

Call Analysis

Calls were analyzed on a Kay DSP 5500 Sonograph at a
sampling rate of 10.24 kHz. One call per individual was
measured, and each call had a single chuck. We usually an-
alyzed the first call with a chuck recorded by that individual.
Most calls were recorded at temperatures between 25° and
28°C and thus we considered temperature effects on call vari-
ables to be trivial. Similarly, a preliminary analysis of 49
individuals from seven populations showed that most call
characters were not significantly influenced over the small
range of sizes encountered in this survey (mean snout—vent
length = 24.5 mm, CV = 0.053). Correlation coefficients of
body size and call characters ranged from 0.23 to —0.23,
with the exception of the whine frequency immediately fol-
lowing the amplitude modulated prefix, which was correlated
with body size at »r = —0.33. But even this factor is only
slightly affected by body size (+2 = 0.11). Thus we did not
use body size as a covariate in our analyses.

The following call characters were analyzed (abbreviations
refer to those used in Table 1 and Figs. 3, 4): AMPL: the
number of pulses in the initial, amplitude-modulated portion
of the whine; CHDM: the dominant frequency of the chuck;
DB12: the difference in amplitude, in decibels, between the
first and second harmonic of the whine at the beginning of
the call; DBCH: the difference in amplitude, in decibels, of
the chuck second harmonic (which is also the final frequency
of the whine) and the chuck dominant; DOMH: the dominant
frequency of the entire call, including the chuck; DRAM: the
duration of the initial amplitude modulated portion of the
whine; DURT: duration of the whine (i.e., to the onset of the
chuck); FNLH: the final frequency of the whine, usually this
is also the second harmonic of the chuck; INIT: the initial
frequency of the whine; PAMH: the frequency of the whine
immediately after the amplitude-modulated portion; TLDR:
the total duration of the call, including the chuck.

Allozyme Analysis

Tissues were kept frozen at —80°C until used. Approxi-
mately equal volumes of heart, liver, eye, and skeletal muscle
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(thigh) were separately homogenized in an equal volume of
grinding buffer (0.25M sucrose, 2% phenoxyethanol) and
centrifuged at 14000 rpm for 10 min. The supernatant was
removed and stored at —80°C until used the following day.

Standard horizontal starch gel electrophoresis (Murphy et
al. 1990) was performed. Data were analyzed with BIOSYS-1
(Swofford and Selander 1981). Complete results and bio-
geographical interpretation of the allozyme analyses are pre-
sented in Rand et al. (unpubl.).

Statistical Analysis and Hypothesis Testing

Tests of Hypotheses: Univariate analysis.—Standard sta-
tistics were calculated for all call variables for all populations
and are presented in Table 1. We present box plots (Fig. 4)
to allow a visual comparison of call characters among pop-
ulations. Individual call characters were statistically com-
pared among populations with a Kruskal-Wallis analysis of
variance and between the two major allozyme groups with a
Mann-Whitney U-test. These data allowed us to address the
first two questions: Do advertisement calls show significant
intraspecific variation? Is there is any evidence for call di-
vergence between the two major allozyme groups of tiingara
frogs?

Because allozyme groups within P. pustulosus are geo-
graphically contiguous, clinal variation could result in sta-
tistically significant differences between the two allozyme
groups (e.g., Ryan and Wilczynski 1991). Thus, for each call
character we determined if there was both significant clinal
variation and differences among the two groups. If characters
varied both clinally and among groups, we could not assume

chuck
——dominant
(CHDM)
| | I
! ! relative
(—
N amplitude
S chuck
— domlnant
& final Hz
A (DBCH)
1 |/
' final Hz
| T (FNLH)
.3 ‘ ! Seconds
M
" i
v\chuck duration

(DRCH)

the differences were due to divergence of the groups per se,
but that such differences could be an incidental effect of clinal
variation. Grant (1972) discusses the analogous problem in
detecting geographic patterns of character displacement (see
fig. 3 in Grant 1972).

We calculated the Spearman rank correlation between dis-
tance and each call character, and interpreted a statistically
significant correlation (i.e., P < 0.05) as evidence of clinal
variation. In the analysis of the larger transect, the straight-
line distance from site to site was measured and the transect
length was 5001 km from beginning to end. For each pop-
ulation we noted the cumulative distance, in which the most
northern population, Veracruz, Mexico, was zero. We ana-
lyzed 20 populations from Veracruz, Mexico, to Trinidad,
using only one population, Gamboa, to represent the smaller,
central Panama transect (Fig. 1). Thus, in order from north-
west to southeast, the populations in this larger transect were:
Veracruz, Tehuantepec, and Tapachula, Mexico; Guatemala;
El Salvador; Nicaragua; Costa Rica; Puerto Armuelles, Gua-
laca, Santiago, Anton, Gamboa, I. El Rey, Metete, and El
Real, Panama; Colombia; L. Maracaibo, Calabozo, and
Carupano, Venezuela; and Trinidad (Fig. 1, Table 1).

We also examined variation across a smaller, more fine-
grained transect in central Panama. In order from northwest
to southeast the populations were: Gatun west, Gatun east,
BCI, Pipeline Road, Gamboa, Gamboa Bridge, Summit Park,
Chiva Chiva, Cocoli, Kobbe, and I. Taboga (Fig. 1, Table 1).

Coefficients of variation for all call characters for all pop-
ulations combined were calculated. This allowed us to com-
pare the amount of variation in measures of the whine and
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the chuck, call components that differ in the level of mate
discrimination in which they function. Only the whine is
involved in species recognition, whereas the chuck has an
important role in discriminating among individuals. We also
compared the coefficients of variation between call characters
that appear to be under passive control, due to their strong
dependence on morphology, rather than those variables that
appear to be actively regulated by behavioral-physiological
mechanisms (Martin 1972; Ryan 1988). These comparison
allow us to answer the third question: Does call function or
call production better predict patterns of variation of call
components?

Tests of Hypotheses: Multivariate Analysis—We used a
Mantel test and a partial Mantel test (Smouse et al. 1986) to
evaluate various hypotheses regarding factors that might in-
fluence intraspecific call variation (see Douglas and Endler
1982 for an analogous approach). The Mantel test calculates
correlational relationships among similarity/dissimilarity and
distance matrices. The partial Mantel (Smouse et al. 1986)
calculates the relationship between two matrices after con-
trolling for covariation with a third matrix. Calculations were

computed for all populations and for three smaller subsets
of the data with the R-package (Legendre and Vaudor 1991).
Tests of significance were computed by running 1000 itera-
tions of the data set. The significance levels determined by
this method were usually quite similar to that from the as-
sumption that the Mantel statistic approximates a ¢-distri-
bution as sample sizes increase (Legendre and Vaudor 1991).
The "dissimilarity matrix for the calls is a matrix of Eu-
clidean distances between means of all call variables com-
puted using Systat (Wilkinson 1990; Appendixes). The ma-
trix of genetic dissimilarity is from Nei’s genetic distances
(Nei 1978) between each pair of populations (Appendixes).
For ease of discussion, test results are considered in terms
of call and allozyme similarity rather than dissimilarity.
The matrix of geographic distances was calculated in the
R-package from the latitudes and longitudes for each site
(Table 1; Appendixes). These distances are the shortest be-
tween all pairs of populations and thus might span water, as
opposed to the distances used above in the univariate cor-
relational analysis, which were calculated from nearest-
neighbor distances along the transect. The distance matrices
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constructed from both techniques give very similar results
(r-values within 0.01).

We used the Mantel test, as well as the univariate method
described above, to address the second question: Is there call
divergence among the two major allozyme groups of tdngara
frogs? We did this by coding pairs of populations as being
in the same or different allozyme groups and compared that
matrix with the call dissimilarity matrix (see also Douglas
and Endler 1982). For this analysis, the populations from
Veracruz to Gualaca are considered the northern allozyme
group, whereas the other populations constitute the southern
allozyme group; introgression of some allozyme morphs near
Gualaca make assignment of that population rather arbitrary
(Rand et al., unpubl.). We also used the Mantel test to evaluate
the fourth and fifth questions we proposed: Are there pre-
dictable patterns of geographical variation in calls? If call
variation is geographically predictable, is this the result of
isolation by distance?

Covariation of the three variables under study would sug-
gest that the observed patterns of call variation result from
patterns of gene flow that are strong enough to mask selection
effects, although there could be alternative explanations such
as an evolutionary response to clinally varying selection (also
see Endler 1977). Lack of clinal variation, as suggested by
lack of a significant Mantel correlation between geographic
distance or allozyme similarity and overall call similarity,
would be consistent with the hypothesis that sexual selection
(or other selective forces) has induced patterns of local vari-
ation that disrupt clinal variation across the species’ range
(Lande 1982). Clinal variation would not exclude the pos-
sibility of sexual selection, but would suggest that it had not
been strong enough to disrupt patterns of clinal variation.

Covariation of all variables analyzed (i.e., geography, al-
lozymes, and calls) would confound the interpretation of the
Mantel correlations of each geography and allozymes with
call similarity. Partial Mantel correlations, however, allow
correlated variation to be controlled by using either geo-
graphic distance or allozyme similarity as a covariate.

The Mantel analyses were conducted for all sites combined.
We also conducted the same analyses for three subsets of the
data. Two subsets of populations represented the two major
allozyme groups. One subset was from Veracruz to Gualaca
(the northern allozyme group). The second group was from
Isla El Rey to Trinidad (Fig. 1). The third subset consisted
only of the sites across central Panama—this represents the
most fine-grained analysis (Fig. 1). Partitioning the data into
smaller subsets allowed us to determine concordance of pat-
terns among levels of variation.

RESULTS

Do Advertisement Calls Show Significant
Intraspecific Variation?

The box plots presented in Figure 4 show that most call
characters exhibit substantial variation across the transect.
Furthermore, a Kruskal-Wallis analysis of variance revealed
significant and quite substantial variation among populations
in all call characters examined (all P < 0.001; Table 1).
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Is There Call Divergence between the Two Major
Allozyme Groups of Tiingara Frogs?

Eleven of the 12 call characters showed significant vari-
ation among the two major allozyme groups. Of these 11,
five also showed clinal variation, and only one call character
showed clinal variation with no variation between the two
groups. Thus most of the call differences between the two
allozyme groups (six of 11) are not merely the result of clinal
variation (Table 1).

In accord with the above results, a Mantel test shows a
significant correlation between allozyme group and call sim-
ilarity (r = 0.20, P < 0.001). As expected, allozyme groups
are correlated with overall allozyme similarity (r = 0.80, P
< 0.001).

Does Call Function or Call Production Better Predict
Patterns of Variation of Call Components?

The coefficients of variation (CV) for all call variables
ranged from 0.08-0.60. Two variables, the number of pulses
in the amplitude modulated portion preceding the whine
(AMPL) and the duration of this portion of the call (DRAM),
were eliminated from the analysis because of the large num-
ber of zero values.

The CVs tended to be higher for variables associated with
the chuck (CHDM, DBCH, DRCH, range 0.12-0.60, mean
= (.32) than for variables of the whine (DB12, DOMH,
FNHZ, INIT, PAMH; range 0.08-0.55, mean = 0.19; Table
1). The differences in the coefficients of variation between
chuck and whine variables were in the direction expected if
selection on the chuck had a more diversifying effect than
selection tending to preserve the species-specific nature of
the whine, but the differences were not statistically significant
(Mann-Whitney U = 3.5, P = 0.15).

There was a significant difference between CVs of call
variables when they were partitioned into those under active
versus passive control (Mann-Whitney U = 33, P = 0.016).
The variables that we assumed were under active control,
usually temporal characters (AMPL, DRAM, DURCH,
DURT, TLDUR), had a mean CV of 0.53 (range 0.25-1.00;
Table 1) compared to spectral call variables, which we as-
sumed are more likely to be under passive control (DB12,
DOMH, FNLH, INIT, PAMH) that had a mean CV 0.18 (range
0.08-0.55).

Is There Predictable Geographic Variation in Calls?

A Mantel test shows a significant correlation between our
estimates of call similarity and the geographical distances
among the 30 populations we sampled (r = 0.49, P < 0.001).
This same pattern was apparent for the three subsets of the
data: northern allozyme group (r = 0.67, P = 0.002), southern
allozyme group (r = 0.62, P = 0.007), and the central Panama
group (r = 0.23, P = 0.046). These analyses reject the hy-
pothesis that call divergence is random among populations,
and reinforces the intuition of some overall patterns in some
call characters from visual examination of the box plots of
individual call variation (Fig. 4). Although there is a statis-
tically significant pattern of geographical variation, geogra-
phy only predicts 24%, 45%, 38%, and 5% of the variation
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among populations for the total data set, northern group,
southern group, and the central Panama group, respectively.

If Call Variation Is Geographically Predictable, Is
This the Result of Isolation by Distance?

Mantel tests show that for the entire data set there is a
significant relationship between geographic distance and allo-
zyme similarity (» = 0.71, P < 0.001) and between call
similarity and allozyme similarity (» = 0.43, P < 0.001). A
partial Mantel test shows that there is still a strong and sta-
tistically significant relationship between calls and geography
after controlling for the covariation between allozymes and
geography (partial r = 0.29, P = 0.003). When geographical
distance is used as the covariate, however, the relationship
between call and allozyme similarity is only barely statisti-
cally significant (partial r = 0.13, P = 0.045).

In the northern allozyme group, there is a significant cor-
relation between calls and geography (r = 0.67, P = 0.002),
and allozymes and calls (r = 0.67, P = 0.002), but not be-
tween allozymes and geography (r = 0.25, P = 0.10). The
partial Mantel tests show that there remains a significant
partial correlation between calls and geography when con-
trolling for allozymes (partial » = 0.71, P < 0.001) and
between calls and allozymes when controlling for geography
(partial » = 0.70, P = 0.001).

In the southern allozyme group, there is a significant cor-
relation between all three variables: calls and geography (r
= 0.62, P < 0.001), allozymes and calls (r = 0.45, P =
0.009), and allozymes and geography ( r = 0.74, P < 0.001).
Although there is a significant partial correlation between
calls and geography when controlling for allozymes (partial
r = 0.47, P = 0.01), there is not a significant correlation
between calls and allozymes when controlling for geography
(partial r = —0.13, P = 0.47).

In the central Panama group, call similarity is correlated
with both geographical distance (r = 0.23, P = 0.046) and
allozyme similarity (r = 0.24, P = 0.048), but allozyme
similarity and geographic distance are not significantly re-
lated (r = 0.14, P = 0.14). Since allozymes and geography
are not highly correlated, using them as covariates in analyses
of call variation has less influence on the results than in the
above analyses. Calls and geography are similarly correlated
with one another when allozyme similarity is used as a co-
variate (r = 0.22, P = 0.057), as are calls and allozymes
similarly correlated when geography is used as a covariate
(r = 0.22, P = 0.056).

DiscussioN

Call Variation in Acoustic Mate Recognition Signals

The anuran advertisement call contains species-specific in-
formation that guides female phonotaxis towards conspecific
calls (Blair 1964; Rand 1988; Ryan 1991; Gerhardt 1994).
The species-specific nature of some signals or signal com-
ponents has suggested to some that there should be relatively
little variation in calls within the species (Paterson 1985),
despite the suggestion that reproductive character displace-
ment could result in signal variation in response to sympatric
heterospecifics (Dobzhansky 1937; Butlin 1987). We might
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also expect that females would be quite sensitive to exper-
imentally induced variation in such signals. This seems to
be the case, as phonotaxis experiments showed that prefer-
ences for whine variation are much more restrictive than
preferences for chuck variation (Wilczynski et al. 1995). The
first question we addressed was: Is there significant intra-
specific variation in advertisement calls of the tingara frog?
Our study shows substantial variation among populations of
P. pustulosus in all call variables; coefficients of variation
ranged from 8-100% and all call variables significantly dif-
fered among populations.

These results are consistent with other recent studies as-
sessing population variation in anuran advertisement calls.
For example, Ryan and Wilczynski (1991; see also Wilczyn-
ski and Ryan in press) compared calls of 17 populations of
cricket frogs, Acris crepitans, along a transect that traversed
two subspecies (A. c. crepitans and A. c¢. blanchardi) and in
which 16 of the populations were within 500 kms. Coeffi-
cients of variation were similarly high for call variables (8-
61%) relative to morphological characters (8-21%), all call
variables differed among populations, there was clinal (east
to west) variation in two of 14 call variables, and some vari-
ables (three of 14) differed among two habitat types (forest
versus open habitat) and two subspecies (seven of 14). Nevo
and Capranica (1985) showed a similar range of variation
throughout the entire range of A. crepitans, which covers
much of the eastern and central United States.

Substantial population variation in mate recognition sig-
nals has also been found in other taxa. For example, there
has been considerable attention given to variation in bird song
(e.g., Baker and Cunningham 1985; Young et al. 1994), as
well as intraspecific variation in acoustic signals of some
insects (e.g., planthoppers: Claridge and Morgan 1993; tet-
tigoniids: Ritchie 1991, 1992). Such levels of variation in
mate recognition signals are not restricted to acoustic cues,
having also been reported in visual (e.g., fish courtship: Hou-
de and Endler 1990; Travis 1994; Endler and Houde 1995)
and chemical cues (e.g., moth pheromones: Lofstedt 1993).
Variation in species-recognition signals might be the rule
rather than the exception, but there are few data to evaluate
this assertion. Most studies that have examined geographic
variation in acoustic mate-recognition signals have concen-
trated on variation across hybrid zones (e.g., grasshoppers:
Ritchie at el. 1992; fire-bellied toads: Sanderson et al. 1992;
leptodactylid frogs: Littlejohn and Robertson 1975) rather
than within species.

Variation among Call Variables

As noted above, some researchers have predicted that a
species recognition function might restrict intraspecific vari-
ation (Paterson 1985), while sexual selection is noted for its
diversifying effects on male signals (Darwin 1871; Anders-
son 1994). Previous phonotaxis studies in the tingara frog,
reviewed above, have shown that the whine alone, but not
the chuck alone, can result in preferences for conspecifics
over heterospecifics. We also know that the presence or ab-
sence of the chuck, the number of chucks, and the chuck’s
frequency structure can all have effects of varying importance
on a female’s preference for male calls. Although there is
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substantial intraspecific and intrapopulational variation in the
whine, we do not know how this variation influences pref-
erences. Thus, the effect or function of the call at different
levels of discrimination varies between the two call com-
ponents. In addition, preference for the chuck was rather
permissive in that a variety of other sounds experimentally
substituted for the chuck increased call attractiveness (Ryan
and Rand 1993b), while the experimental manipulation of
the whine was more likely to disrupt its ability to elicit female
phonotaxis (Wilczynski et al. 1995).

These findings lead to the prediction that the chuck should
be more variable than the whine: thus, we asked if call com-
ponents that function in species recognition and sexual se-
lection exhibit similar patterns of variation. The variables of
the chuck tended to exhibit greater variation than those of
the whine, but the difference was not statistically significant.

The proximate mechanisms controlling call variation might
be a better predictor of degrees of variation among call vari-
ables. Ryan and Wilczynski (1991) attempted to explain pat-
terns of population variation among call components in crick-
et frogs from this perspective. Their data showed that call
variables under passive control (Martin 1972), due to their
close relationship to morphology (e.g., larynx size and dom-
inant frequency; McClelland et al. 1996), have lower coef-
ficients of variation, as is true for morphological characters.
Alternatively, those call variables under active control (due
to behavioral-physiological regulation, such as number of
pulses) have higher coefficients of variation. We found the
same pattern in this study, as well as in interspecific com-
parisons of species of the neotropical genus Smilisca, the
African genus Kassina (Ryan 1988), and some North Amer-
ican treefrogs (Pseudacris), but not North American toads
(Bufo; Cocroft and Ryan 1995).

Geography and Allozymes as Predictors of Call Variation

Given significant intraspecific call variation in the tingara
frog, to what extent can this variation be ascribed to differ-
ences among allozyme groups and clinal variation? Although
some of the call variation among populations was clinal, more
of the call variables exhibited variation that was not clinal,
but could be partitioned between the two major allozyme
groups within P. pustulosus. This was also true in compar-
isons of overall call similarity. This result is not surprising
if the biogeographical scenario proposed by Rand et al. (un-
publ.) is correct, suggesting that the two groups were isolated
for approximately 4—4.5 million yr before the southern allo-
zyme group invaded Panama from the south with the closure
of the Panamanian land bridge about 2.4 M.Y.B.P. This would
also suggest, therefore, that secondary contact and any gene
flow between these two groups over the last 2.4 million yr
has not been sufficient to eradicate all the call differences
that arose due to the period of extended geographic isolation.

We were also interested in the extent that the diversifying
effects of sexual selection could result in random patterns of
call variation among populations. Lande (1982) modeled the
evolution of sexually selected characters in a cline in which
there were no barriers to migration. He showed that sexual
selection could induce local changes in a male’s signal, and
migration among populations would then result in that change
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being exhibited, albeit to a lesser degree, in other populations.
Such a situation occurring in only one population at one end
of a transect could result in smooth clinal variation across
the species’ range. Alternatively and perhaps more likely, if
sexual selection resulted in such changes in a population at
another location besides the end of a transect, or among sev-
eral populations randomly located across a cline, or if the
direction of character change varied among populations, then
sexual selection would disrupt smooth clinal variation. In the
extreme case, sexual selection could generate a random re-
lationship between calls and distance.

In our study, calls do not diverge randomly across space
but instead exhibit statistically predictable patterns of geo-
graphical variation. This is true for all data combined, and
for the three subsets of the data: northern allozyme group,
southern allozyme group, and central Panama. It must be
remembered, however, that geography only predicts a small
amount of call variation. Thus there is still substantial resid-
ual variation that could be due to random sexually selected
driven variation. Although our data do not offer strong sup-
port for the extreme prediction of the sexual selection di-
vergence hypothesis, as would have been the case if there
were no predictable pattern of variation, we can not reject
that hypothesis based on our statistically significant, but
nonetheless weak pattern of geographical variation. A recent
study by Young et al. (1994) reported that an acoustic cue
known to be important in mate choice has diverged in an
isolated population of sage grouse, and this is offered as
support of the sexual-selection divergence hypothesis. Stud-
ies by Houde and Endler (1990) and Endler and Houde (1995)
showed that there is geographical variation in female pref-
erence for orange coloration in guppies, thus suggesting
strongly that there is spatial variation in sexual selection on
male traits. These studies provide especially compelling ev-
idence that sexual selection, combined with natural selection
due to variation in predation pressure (Endler 1983), has
generated substantial variation in guppy signals.

The observed pattern of geographical variation in tingara
frog calls might not merely be the incidental consequence of
more proximate populations sharing more genes in common.
Although calls, geography, and allozymes covary in the com-
bined data set, and tend to do so in each of the subsets of
data, all the partial correlation analyses were consistent in
showing that calls and geography are significantly correlated
(or nearly so) after the effects of allozyme similarity were
controlled. (The initially paradoxical result of geographic dis-
tance and allozyme similarity not being significantly corre-
lated in two of the data sets might be due to the isolating
effects of the Sierra Madres [northern allozyme group] and
the Chagres River [central Panama group] on geographically
close populations.) It is possible, however, that the partial
correlation analyses did not adequately control for covaria-
tion between geographical distance and call similarity due to
the influence of unmeasured variables. For example, allo-
zymes are only an estimate of true genetic similarity and
some aspects of call variation might also be correlated with
genetic variation; calls, in fact, could be a better indicator of
true genetic similarity than allozymes. If so, the call simi-
larities among closer populations could be maintained by
gene flow, but allozyme variation is not the most accurate
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indicator of such a phenomenon. Alternatively, call similar-
ities among proximate populations might have originated
through a common ancestor, but maintenance of these call
similarities might be for reasons other than gene flow—sim-
ilar selection pressures, for example. Environmental selection
on calls would be a candidate for such a selection pressure,
as has been shown in cricket frog calls ( Ryan et al. 1990b).

Our results are in some ways comparable to studies of
dialect variation in song birds, although we address quite
different issues. Dialects, which are learned, are defined as
discontinuous geographical variation in song. Nottebohm
(1969) suggested that learning local dialects by both males
(for later song production) and females (for mate recognition)
might lead to allozyme structuring of populations. His anal-
yses of allozyme variation among dialects did not allow a
clear resolution of this question (e.g., Nottebohm and Selan-
der 1972; Handford and Nottebohm 1976). Although some
studies suggested that allozyme variation was greater among
than within dialects (reviewed in Baker and Cunningham
1985; Balaban 1988), others have questioned that conclusion
(e.g., Zink and Barrowclough 1984). More recent analyses
and discussions (Lougheed and Hanford 1992) have further
suggested a lack of any strong relationship between allozyme
variation and dialect variation, unlike the strong relationship
between allozymes and presumably inherited call variation
in our study.

Although we have documented spatial variation in a mate
recognition trait in some detail, this study leaves open the
question of how this variation influences female phonotaxis
as well as the roles of selection, drift, and morphological
constraints in generating this variation. But the patterns we
uncovered do lead to testable predictions about the interaction
of population variation in signals and receivers that will be
addressed in future studies.
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GEOGRAPHIC VARIATION IN TUNGARA F
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