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DIRECTIONAL PATTERNS OF FEMALE MATE CHOICE AND THE
ROLE OF SENSORY BIASES

MicHAEL J. RyaN AND ANNE KEDDY-HECTOR

Department of Zoology, University of Texas, Austin, Texas 78712

Abstract.—A review of the literature reveals that, if females prefer traits that deviate from the .
population mean, they usually prefer traits of greater quantity. In cases in which the sensory
bases of these preferences are identified, females prefer traits of greater quantity because these
traits elicit greater sensory stimulation. However, two caveats apply. First, the studies surveyed
might not represent an unbiased sample of mate choice, because researchers usually study
systems characterized by exaggerated traits. Second, a preference for traits of greater quantity
does not suggest that preference for average traits is unimportant; it might be more usual than
preference for exaggerated traits. Phylogenetic comparisons sometimes allow one to distinguish
among competing hypotheses for the evolution of female mating preferences. Two hypotheses,
Fisher’s theory of ‘“‘runaway’’ sexual selection and the ‘‘good genes’’ hypothesis, predict that
traits and preferences coevolve, whereas the ‘‘sensory exploitation”” hypothesis predicts that
males evolve traits to exploit preexisting female biases. Some studies of frogs and fish support
the sensory exploitation hypothesis, although this does not exclude the role of other factors in
establishing the preexisting bias or in the subsequent elaboration of the preference. It is sug-
gested that studies of mate choice will benefit by a more integrative approach, especially one
that combines knowledge of sensory mechanisms with appropriate phylogenetic comparisons.

The various behaviors and morphologies that males use in courting females
have long been a source of interest to evolutionary biologists, a target of selection
for animal breeders, and even a source of entertainment for the general public.
The extreme and bizarre courtship traits have drawn the most attention, and, at
least for biologists, this has raised the question of how traits that so obviously
diminish survival could evolve. Darwin resolved this paradox with his theory of
sexual selection (1871).

Female choice as an agent of sexual selection was disputed until recently (see,
e.g., Halliday 1983), despite the fact that the interest in speciation that preoccu-
pied much of the Modern Synthesis of evolutionary biology generated many
proofs that females are preferentially attracted to conspecific courtship relative
to heterospecific courtship (Mayr 1982). However, these proofs usually compared
the average signals of the two species, and they concluded that there should be
strong stabilizing selection for the average species-specific signal. If female choice
within species were to promote the evolution of exaggerated traits, then females
might not prefer the average male trait but rather traits that deviate from the
population mean.

A large number of studies that demonstrate the efficacy of female choice are
now available. As a result, there is a general consensus among evolutionary
biologists that females often compare traits among conspecific males when choos-
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ing mates (Bradbury and Andersson 1987). Unfortunately, this literature provides
few other insights, especially with regard to the evolution of these preferences
(Kirkpatrick and Ryan 1991).

We begin by reviewing studies that show females select male traits that deviate
from the population mean. Because this literature is so vast, employs methods
ranging from purely observational to totally experimental, varies substantially in
quality, and is fraught with pitfalls of interpretation, our goals are modest. First,
we feel it would be a service to compile this literature and to discover how much
evidence for directional female preferences is available. (Given all the reviews of
sexual selection [Bradbury and Andersson 1987], it is surprising that this has not
been done before.) Second, we ask whether there is a directional bias to female
preferences. We are especially interested in cases in which females choose male
traits that deviate from the population mean, because these are the cases in
which female choice most obviously generates sexual selection. Therefore, we
intentionally do not review studies that discuss female preference based on aver-
age traits (e.g., Kodric-Brown and Hohmann 1990); many of these studies address
problems of species recognition. This review, then, is not an unbiased sample of
all studies addressing all aspects of female mate choice; also, the studies them-
selves are biased, because they favor systems in which male traits are especially
elaborate.

After reviewing the literature, we relate the observed patterns of mate choice
revealed therein to recent discussions of the role of sensory systems in sexual
selection (Ryan 1990b). Finally, we consider how such biases might be important
in the evolution of female mating preferences by reviewing studies we and our
colleagues have been conducting in frog mate recognition.

FEMALE MATE CHOICE WITHOUT SEXUAL SELECTION

Searcy and Andersson (1986) suggested that, to demonstrate song-based female
mate choice, two criteria must be met (these criteria can be extended to other
male traits as well): (1) females should exhibit a preference for a trait when all
other traits are controlled, either experimentally or statistically, and (2) male
mating success in nature is correlated with that trait. These criteria are appro-
priate for a consideration of how female mate choice generates variation in male
mating success; however, there are at least two important reasons to document
female preference for male traits even if these preferences do not generate varia-
tion in male mating success (criterion 2). First, sometimes random male mating
success is actually due to the presence rather than the absence of female mating
preferences. For example, in the frog Pseudacris (= Hyla) crucifer, larger males
produce calls with lower frequencies and, while phonotaxis experiments show
that females are attracted preferentially to these calls of larger males, there is no
size-biased male mating success (Forester and Czarnowsky 1985; but see Doherty
and Gerhardt 1984). This might suggest that female frequency preference plays
no role in the mating system. However, smaller males adopt noncalling mating
strategies and intercept females that are attracted to larger males. Therefore,
mating preferences for larger males might result in the adoption of alternative
mating strategies by smaller males, and the two strategies appear to result in equal
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average mating success (Forester and Czarnowsky 1985). Female preference that
promotes the evolution of alternative mating strategies is clearly different from
having no preference at all, although the outcome, the absence of size-biased
mating success, is the same.

The second reason for exploring female preferences in the absence of biases
in male mating success is perhaps best exemplified by the work of M. B.- Ander-
sson (1982). Male widowbirds are distinguished by their extremely long tails.
Andersson found that, in nature, there was no correlation between male tail length
and male mating success. However, when he artificially changed tail length, he
found that females prefer to mate with the longer-tailed males, including males
with tail lengths that exceeded those in the population (supernormal tails). His
finding suggests that although female mate choice did not generate selection for
male tail length in the population studied at that particular time, the preference
still exists and could exert directional selection for tail length if the appropriate
variation were to occur. Although the importance of supernormal stimuli in ani-
mal behavior has had a long and distinguished history (Tinbergen 1951), this
concept has only recently been integrated into studies of sexual selection (e.g.,
West-Eberhard 1979; Burley 1985; Rowland 1989a, 19894; Ryan 1990b,; Ryan and
Rand 1990). Therefore, in our review we also consider studies that do not qualify
under the normal criteria (e.g., Searcy and Andersson 1986) for demonstrating
female mate choice that is based on male traits.

In our review we indicate the range over which most stimuli were varied.
Typically, the stimulus range is restricted to within-population or within-species
variation; we refer to this range as ‘‘normal.”’ In some cases, however, the re-
searchers specifically contrast different populations or different species, and this
is noted. Finally, some studies test the response of females to novel stimuli. Both
novel stimuli and heterospecific stimuli may also be supernormal; that is, they
extend the continuous range of a stimulus beyond what is normally exhibited. All
of these categories are somewhat arbitrary, but the classification of any individual
study does not change any of our general conclusions.

We restrict our review to acoustic and visual cues because the data are more
plentiful and thus allow us to draw more valid conclusions. Alberts (1992) reviews
much of the literature on the role of chemical sex attractants.

DIRECTIONAL PATTERNS OF MATE CHOICE BASED ON ACOUSTIC CUES

There is a rich literature on the role of acoustic signals in female mating prefer-
ences, especially the calls and songs of insects, frogs, and birds. Although calls
of conspecifics are more similar to one another than they are to calls of hetero-
specifics, there can be substantial variation within a species. In our review we
categorize female mate choice on the basis of five general types of acoustic varia-
tion: intensity, rate, duration, complexity, and frequency. Our categories are not
meant to suggest homology. For example, large song repertoires in birds usually
contain many different notes, whereas frogs often increase their call complexity
by adding one different note and, perhaps, repeating it.

We review approximately 60 studies (table 1). Studies of insects and frogs have
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all investigated the role of call intensity in mating preferences. (Different studies
use different measures of the amount of signal energy, but sound power, pressure,
and intensity are all interrelated.) The studies we review show that if a preference
exists on the basis of intensity differences, the females prefer the more intense
call. Some studies have also shown that intensity can cancel or even reverse a
preference that is based on other call characters, such as call frequency or call
complexity preferences in frogs (e.g., Gerhardt 1982, 1988; Ryan and Rand 1990).
However, the intensity dependence of preferences for other traits decreases the
magnitude of selection but does not necessarily remove its effect, unless intensity
is inversely correlated with the degree of attractiveness of the other traits (see
Gerhardt 1988).

Female choice is also influenced by call rate, and the results of these studiés
parallel the intensity results: females prefer calls delivered at a greater rate. In
two insects and a toad, females also prefer supernormal call rates, even though,
in one of the insects, the meadow katydid (Conocephalus nigropleurum), this call
rate puts the stimulus within the range of another species (table 1). Analogous
results are seen for call length. In many species, females prefer the average call
length, perhaps because of its importance in species recognition (Butlin et al.
1985; Gerhardt 1988), but, when there is a preference, it is for longer calls rather
than for shorter calls.

A great deal of research has been directed toward understanding the evolution
of acoustic signal complexity, especially the significance of repertoire size in
birds. Several experiments have shown that repertoire size need not influence
female preferences (Searcy and Marler 1984; Catchpole 1987); Irwin (1990) came
to a similar conclusion when she analyzed phylogenetic patterns of repertoire
size. However, in cases in which there is a preference on the basis of repertoire
size it is for the larger repertoire; we found no studies in which females preferred
smaller repertoires (table 1). This preference can exist in species in which males
do not have repertoires but instead sing only a single call type, as Searcy (in
press) observed in the common grackle.

Frogs can also add different components or syllables to their calls. In the
tangara frog (Physalaemus pustulosus) males produce calls consisting of a whine
that can be followed by up to six chucks (fig. 1). Only the whine is needed to
attract females, but females prefer calls with chucks. This is true even though
the males increase their risk of bat predation when they increase their call com-
plexity (Ryan et al. 1982). Also, there can be preference for novel complexity.
In one case, it was shown that the structure of the chuck can be altered consider-
ably and can even be replaced by white noise (Rand et al., in press), and it will
still elicit preferential phonotaxis from females (Ryan and Rand 1990). In another
example, Physalaemus coloradorum, the close relative of P. pustulosus, does not
produce complex calls. However, when chucks of the P. pustulosus call are
added to the call of P. coloradorum, P. coloradorum females prefer this call of
novel complexity to the normal call of their conspecific males (fig. 2; table 1).

Directional mate choice for frequency is possible, but perhaps the most consis-
tent pattern is that females prefer the average dominant frequency of their species
to the average dominant frequency of a heterospecific; this preference for average
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Fi6. 1.—The call complexity series of the frog Physalaemus pustulosus. Calls consisting
of a whine alone and a whine followed by zero (top) to three (bottom) chucks are shown.
Left, sonograms representing changes in frequency as a function of time; right, oscillograms
representing changes in amplitude as a function of time.

call frequency has also been demonstrated in many frogs for variation within a
species (Gerhardt 1988). In three taxa (insects, fish, and frogs), however, females
prefer call frequencies that deviate from the mean. In all cases, females prefer
lower-frequency calls, which usually indicate larger body size; we do not know
of studies in which females preferred calls that were higher than the population’s
average dominant frequency (table 1). In some cases, such as the gray tree frog
(Hyla chrysoscelis), females prefer lower to higher frequencies, but they do not
exhibit a preference between lower and average frequencies. Still, such prefer-
ences could generate selection favoring lower-frequency calls in the population,
as the estimates of mating success in this study suggest (Morris and Yoon 1989).

We have also investigated call-frequency preferences among conspecific popu-
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Physalaemus pustulosus

-

Physalaemus coloradorum

50 ms

Fi6. 2.—Top, advertisement calls consisting of a whine (left) and a whine followed by
three chucks (right) of Physalaemus pustulosus; bottom, the whinelike call of Physalaemus
coloradorum (left) to which three chucks from a P. pustulosus call have been added (right).

lations. For example, cricket frogs (Acris crepitans) exhibit geographical variation
in body size, and although female preference for low-frequency calls can result
in local mate preferences (Ryan and Wilczynski 1988), in some cases this prefer-
ence can also lead females to choose males from foreign populations if their calls
are of lower frequency (table 1). Because females are tuned to frequencies below
the average male call, lower-frequency calls might be perceived as more intense;
we discuss this below. We also reemphasize that frequency preference is one of
many types of preferences that can be reversed by intensity differences. Thus
the ability of this and other intensity-dependent preferences to generate selection
might be less than implied by intensity-controlled phonotaxis experiments.

There seems to be some misunderstanding about the potential for certain fre-
quency preferences to generate sexual selection. Halliday (1983) criticized studies
that implicated frequency preferences in sexual selection on the basis of prefer-
ences between low and high frequencies; he stated that it is necessary to demon-
strate that females prefer low frequencies to average frequencies. This is clearly
not the case because, if females do not discriminate between low and average
frequencies, then the low-frequency preference generates directional selection.
Also, even if females prefer average to low frequencies, the low- versus high-
frequency preference could still shift the population mean toward lower frequen-
cies, although the magnitude of the effect would be less than in the situation in
which females did not discriminate between low and average frequencies. This
fallacy is important to recognize because it is applied to all types of preferences,
not only those that are based on call frequency.

The studies we review (table 1) reveal a clear trend: whenever there is a prefer-
ence that is based on male acoustic cues, females prefer those calls that are of
greater intensity, delivered at a greater rate, longer, more complex, and of lower
frequency. There is an obvious relation between call intensity, length, and repeti-
tion rate and the amount of stimulation perceived by the female. Females prefer
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calls with more energy, which elicit greater stimulation, and, as we discuss below,
the same principle might apply to preference for lower-frequency calls, given the
relation between auditory tuning and average call frequency.
~ The relation between trait preference and amount of stimulation might also
pertain to complexity, but the relation is more subtle. In P. pustulosus, for exam-
ple, females prefer a whine plus a chuck to a whine only, even if the amplitude
of the whine is increased so it contains more acoustic energy than the whine plus
a chuck (table 1). In another example, Klump and Gerhardt (1987) showed that,
in the tree frog (Hyla versicolor), males can increase total call energy either by
increasing call rate or call length; females prefer faster to slower call rates and
longer to shorter calls. If these two factors differ and total acoustic energy is
the same, females prefer longer calls. Also, in studies of bird song, the number
of different elements rather than the total number of elements is important
(Catchpole 1987). Thus there might be a premium on call complexity that is
independent of any effect of increased acoustic energy. However, in his discus-
sion of Hartshorne’s (1956) ‘‘monotony principle,”” Nottebohm (1972) suggested
that larger repertoires might be favored by sexual selection by female choice
because they reduce attendant habituation and thus elicit a stronger response
from the auditory system. Searcy (in press) supported this hypothesis by showing
that the rate of female courtship-solicitation displays increases with changes in
call elements. Therefore, it appears that more complex acoustic signals also might
increase the amount of stimulation, although not by increasing the total amount
of energy.

Our review of female mate choice based on acoustic characters reveals general
and consistent patterns. In general, we expect species recognition to define a
multivariate signal space within which sexual selection can act, and thus sexual
selection might have greater influence on signals not involved in species recogni-
tion (Ryan 1990a). However, if there is a preference, it is almost unanimously
for the trait of greater quantity, and this pattern suggests a general motivating
factor for preferences; namely, females prefer traits that elicit greater stimulation.
This pattern also suggests that females might be predisposed to favor more exag-
gerated male traits, as well as traits that are not exhibited by their species. We
emphasize again, however, that in many cases there might be preference for the
average signal.

DIRECTIONAL PATTERNS OF MATE CHOICE BASED ON VISUAL CUES

As is the case with acoustic cues used in mate recognition, visual cues are more
similar within than among species, but substantial and biologically meaningful
intraspecific variation does exist. We review more than 50 studies of female mate
choice (and a few studies of male mate choice) that were based on visual cues.
These studies were categorized into female mate choice on the basis of variation
in the amount of courtship, body size, ornaments, and color (table 2).

In fishes, salamanders, and birds there is evidence that variation in the amount
of courtship influences female mate choice and that females prefer males that
exhibit more courtship. Most of these studies concern cases in which the amount
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of courtship varies continuously among males. However, in studies of swordtails
(Xiphophorus genus), females were presented with males that did and males that
did not exhibit courtship behavior. In Xiphophorus nigrensis, this dichotomy is
correlated with allelic variation at a single locus, as well as with body size, and
females prefer larger courting males to smaller noncourting ones (table 2). It is
clear from a variety of reports that females often avoid males exhibiting noncourt-
ing alternative mating behaviors (Van Den Berghe et al. 1989). More interesting
is the case of Xiphophorus pygmaeus, the sister species of X. nigrensis. This
species has only small, noncourting males. When given a choice between a con-
specific male and a larger, courting X. nigrensis male, X. pygmaeus females prefer
the heterospecific (table 2). This suggests that the preference for large, courting
males occurs in the absence of the trait and could generate selection given the
appropriate mutations at the single locus that correlates with size and behavior.

Although it is often not clear whether size per se is the cue or the preference
is predicated on unidentified correlated traits, in many animals, females prefer
larger males. Nevertheless, there are a few exceptions. In the moorhen Gallinula
chloropus, females prefer smaller males, but it was suggested that perhaps this
was because smaller males are also fatter and are thus better at incubating eggs
(table 2). Also, in the duck Anas platyrhynchos, females prefer smaller males,
but body weight did not influence mate preferences. However, if size is important,
it is usually the larger males that are more successful. In some cases this can be
an outcome of assortative mating by body size, as in the crab Uca rapax (table
2). There is a positive correlation between the size of paired males and females,
but because females are larger than males, larger males are more successful at
obtaining the larger, more fecund females. In sticklebacks, both female and male
mate choice is influenced by supernormal-sized stimuli. Rowland (1989a, 19895b)
showed that males prefer dummies whose size range greatly exceeds that of the
females in the population, and Moodie (1982) showed that females can prefer
males from other populations with body sizes that exceed those of local males.
This general trend coincides with preferences that are based on call frequency in
which female preference for lower frequencies also results in preference for larger
body size.

Perhaps the most well known class of sexually dimorphic characters are orna-
‘ments, such as tails, badges, and antlers. The studies of ornaments show that
females usually prefer the more exaggerated state. The ornament most studied is
tail length. Previously, we mentioned M. B. Andersson’s (1982) investigation of
preference for manipulated tail length in widowbirds; this technique has now
been duplicated with similar results in other bird species (table 2). An especially
interesting set of experiments, however, addresses tail length in fish. Basolo
(1990a) showed that female swordtails, Xiphophorus helleri, prefer males with
longer swords. Platyfish are in the same genus as swordtails but lack any signifi-
cant elaboration of the caudal fin. However, in the platyfish Xiphophorus macu-
latus females prefer males with artificially attached swords (Basolo 19906). In
many ways this is similar to the preference of Physalaemus coloradorum for calls
with chucks. In both cases, females in the species lacking the male trait still
exhibit a preference for the trait.
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Another common sexually dimorphic trait is the brighter colors associated with
many males. Not surprisingly, females usually prefer the more brightly colored
males (table 2). This has been demonstrated especially clearly in several studies
of guppies, Poecilia reticulata. These studies have also been among the few to
examine population-based preferences. Endler (1980) has shown that conspicuous
male color patterns evolve in response to the countervailing selection forces of
predation and sexual selection and that the degree of color varies among popula-
tions and is correlated with the predation risk in natural streams and in laboratory
populations. Furthermore, there is a preference for orange after effects of back-
ground contrast are removed (Endler 1983; table 2). Several studies have also
shown that the degree of color preference is correlated with the average amount
of color expressed by the males in that population (Houde 1988; Stoner and Bre-
den 1988; Houde and Endler 1990). Females from low-predation (and colorful-
male) populations have a strong preference for colorful males, whereas females
from high-predation (and drab-male) populations have a weaker preference or a
lack of preference for more colorful males. Interestingly, the females from the
high-predation populations usually do not exhibit a significant preference for
males with less color; rather, they only fail to exhibit a preference for males with
more color. This preference is in accordance with mate choice that is based on
other traits; if there is a preference, it is for the more exaggerated trait. Stoner
and Breden (1988) do not show a preference for drab males in females from
populations with drab males, only a lack of preference for males with more color.

There can also be preference for colors that occur on novel parts of the body.
Female zebra finches prefer males with red leg bands (table 2). Beak color is an
important species-recognition character in finches, and when comparing different
species, Burley (1986) found that the color of the preferred leg band correlated
with the color of the beak for that species. Also in another response to a novel
stimulus, ten Cate and Bateson (1988, 1989) showed that young quail conditioned
to models with spots on the breast later preferred mates with a greater number
of spots.

Within each category of visual cues the results are fairly consistent: there is
preference for more actively displaying, larger, and more colorful males. Rowland
(1989a, 1989b) suggested that there might be a unifying theme to visual cue—based
mate preference similar to that which we discussed in the preceding section for
acoustic cues. He suggested that there is a preference for signals that stimulate
a greater region of the retina because of their size or that stimulate more cone
cells because of their brightness or area of color. Therefore, our review of visual
cue—based mate choice reinforces the same conclusion we reached from the re-
view of acoustic cue—based choice; namely, if females prefer traits that deviate
from the mean, then they prefer traits of greater quantity, and these traits might
increase the amount of neural stimulation elicited from the female. Also, on the
basis of the response of females to supernormal and novel traits, it is clear that
preferences can exist that precede the expression of the trait. Once more, we do
not suggest that most traits are subject to directional preferences; preference for
average traits might be more common. We only emphasize that when there is
directional preference, there is some consistency in the direction.
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SENSORY BASIS OF DIRECTIONAL MATE PREFERENCES

Depending on the system, greater neural stimulation could manifest itself in
different ways—for example, greater firing rate of neurons, as suggested in the
studies of fritillary butterflies discussed below; stimulation of a greater number
of neurons, as Rowland (19894, 1989b) suggested for preferences in sticklebacks;
or the greater likelihood of eliciting a neural response from a feature detector, as
Capranica (1976) suggested as the cause of conspecific call preferences in frogs.

The relation between mate preference and rate of sensory stimulation was
exhibited clearly by Magnus’s (1958) study of male mate choice in the fritillary
butterfly. Females advertise to males by flapping their wings at a rate of 8—10
Hz. Magnus constructed a mechanical model to document the influence of flap-
ping rate on mate preference. Within the normal range, males preferred the higher
rate of flapping. Males also preferred supernormal rates up to 140 Hz, well above
the rate at which females could possibly flap their wings. Independently, Magnus
determined the flicker fusion rate for males; it was 140 Hz. Therefore, the males
preferred greater rates of flapping until the rate of sensory stimulation no longer
increased because males could no longer resolve individual wing movements.

Magnus’s results indicate the value of studying the sensory system in order to
understand how traits act on preferences. Studies of sensory filtering, in fact,
compose the major thrust of research in neuroethology (e.g., Lettvin et al. 1959;
Hubel and Wiesel 1962; Frishkopf et al. 1968; Ewert 1980; Wehner 1987; Pollack
and Cassady 1989). As evolutionary biologists, we attempt to understand organic
diversity, and, as we have just argued, female mate choice is responsible for
generating considerable diversity in male courtship traits. Because female mate
preferences are merely behavioral expressions of underlying sensory biases, we
should examine the sensory mechanisms that ultimately generate the selection
pressure on male traits. Although there have been many studies of the underlying
sensory basis for conspecific versus heterospecific call recognition in insects
(Huber 1990a, 1990b) and birds (Margoliash and Konishi 1985; Konishi 1989),
these studies usually have not investigated preference among conspecific signals.
However, we have begun to address this issue by examining frequency prefer-
ences in female frogs.

Capranica’s (1965, 1976) approach to bullfrog hearing initiated an important
series of studies whose ultimate aim was to understand how frogs extracted
species-recognition information from the advertisement call. Frog calls are rich
in potential spectral and temporal information, and both have been shown to be
crucial in species recognition and sexual selection (Capranica 1976; Wilczynski
and Capranica 1984; Fuzessery 1988; Gerhardt 1988; Rand 1988; Ryan 1988; Wal-
kowiak 1988; Zakon and Wilczynski 1988). Spectral cues are first processed in
the peripheral auditory system. This system acts as a matched filter that is biased
toward the spectral components of the advertisement call. Anurans have two
inner ear organs sensitive to airborne sound, the amphibian papilla (AP) and
basilar papilla (BP; Zakon and Wilczynski 1988). The AP contains a tonotopic
arrangement of hair cells coding low frequencies and midfrequencies from about
100 to 1,200 Hz (Feng et al. 1975; Lewis et al. 1982; Lewis and Lombard 1988).
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A much smaller BP codes a narrower range of higher frequencies. The BP recep-
tors appear to be tuned to approximately the same frequency in any individ-
ual (Capranica and Moffat 1983; Wilczynski and Capranica 1984; Wilczynski
et al. 1984).

For all species studied to date, there is a general concordance between the
spectral properties of the call and the tuning properties of the periphery. Some
frogs have calls with bimodal frequency distributions, and these match the tuning
of both the AP and BP (e.g., Hyla cinerea; Mudry and Capranica 1987). Others
have only a single emphasized frequency, and this matches the tuning of either
the AP (e.g., Physalaemus coloradorum; Ryan et al. 1990a) or the BP (e.g., Acris
crepitans; Ryan and Wilczynski 1988). This congruence is evident in across-
species comparisons, because neuroethological studies of call recognition in frogs °
have mostly concentrated on the problem of species recognition. Recently, we
have extended this approach to examining the sensory biases underlying intra-
specific mate choice (Ryan and Wilczynski 1988; Ryan et al. 1990a; Ryan and
Rand 1990).

As discussed above, in several species of frogs, females prefer calls with fre-
quencies lower than the population mean (table 1). In the tingara frog (Physalae-
mus pustulosus) females prefer lower-frequency chucks. The chuck is harmoni-
cally structured over a frequency range from about 200 to 3,000 Hz. More than
90% of the energy is above 1,500 Hz, and the mean dominant frequency is 2,550
Hz. This suggests the BP might be responsible for preference for lower-frequency
chucks. We examined the tuning of the peripheral auditory system and showed
that the most sensitive frequency of the BP is 2,130 Hz. Thus there is a slight
mismatch between the average tuning of the BP and the average dominant fre-
quency of the call (fig. 3). Computer simulations of the BP show that lower-
frequency calls elicit greater neural stimulation. These results are consistent with
the hypothesis that females prefer lower-frequency chucks because the sensory
system is tuned to frequencies lower than the average call (Ryan et al. 1990a).

We also have obtained similar results from the cricket frog (A. crepitans).
Ryan and Wilczynski (1988) examined call frequency, auditory tuning, and call
preferences in three populations of A. crepitans: Austin, Texas; Bastrop, Texas;
and Indianapolis, Indiana. We showed that females from the Austin population
prefer the lower-frequency calls of local males to the higher-frequency calls
of males from Bastrop; this is because the BP of the Austin females is tuned
closer to the local calls than to the foreign calls. Similarly, we found that fe-
males from Indiana prefer the lower-frequency calls of their own males to
the higher-frequency calls of Bastrop (Ryan et al., in press). However, Bas-
trop females prefer the lower-frequency calls from Austin to those of the higher
frequency (fig. 4).

The above results suggest that there is not always a preference for the local
call, but another pattern emerges. For each of the three populations (Austin,
Bastrop, and Indianapolis), females were given a choice between a call of 300 Hz
below the population mean and an average call and, in another test, a choice
between an average call and one with a frequency of 300 Hz above the mean.
Our results indicate that, whenever there is a preference, it is for the lower-
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FiG. 4.—The number of responses of Acris crepitans females to calls from local (intermedi-
ate frequencies on each graph) and foreign (lower or higher frequencies on each graph)
populations with different dominant frequencies.

frequency call; this included cases of preferences for local and foreign calls.
Also, in all of the six sets of phonotaxis experiments, more females approach the
lower-frequency calls (fig. 4). When we examined the mean tuning of the female’s
BP for these and other populations, we observed that the mean female tuning of
the BP is always below the mean dominant frequency of the advertisement call
for that population (fig. ).

Gerhardt and Doherty (1988) report similar results for the gray tree frog (Hyla
versicolor). In a series of phonotaxis experiments, they showed that the strongest
preference is for a call with a dominant frequency of 1,900 Hz, below the standard
call of 2,200 Hz. When this behavioral preference curve is compared to an audi-
tory tuning curve, there is good congruence. Again, this suggests that the prefer-
ence for calls with lower-than-average frequency derives from a slight mismatch
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Fic. 5.—The relation of the average tuning of the basilar papilla of both sexes and the
average dominant frequency of the male’s advertisement call for three populations of Acris
crepitans.

between the tuning of the auditory system and the average dominant frequency
of calls.

These results do not contradict the general conclusion of neuroethological stud-
ies of specific mate recognition in frogs. At the species level there is good congru-
ence between the tuning of the auditory system and the spectral properties of
the advertisement call. However, in at least these three species (P. pustulosus,
A. crepitans, and H. versicolor), the congruence is not perfect. It is biased to-
ward lower frequencies, and this bias appears to be responsible for female pref-
erences for lower-frequency calls.

These studies of the frequency preferences of female anurans show why, at the
mechanistic level, females might prefer lower-frequency calls; these calls are
more stimulating because of tuning biases in the auditory periphery. This is con-
sistent with our conclusions from the review of the literature.

Studies of sensory biases in and of themselves do not address the question of
how such biases evolved. However, they do contribute to our understanding of
preferences because they reveal what evolutionary changes at the neural level
must occur for preferences to evolve. In that sense, they reveal the neural target
of selection under a ‘‘good genes,”’ Fisherian ‘‘runaway,”” or ‘‘direct benefits”’
scenario for the evolution of preferences. These studies also raise the possibility
that there might be inherent constraints that result from the design of sensory
systems that give rise to certain biases. If so, these biases could determine the
direction of the evolution of traits and preferences under various sexual selection
hypotheses.
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EVOLUTION OF FEMALE MATE PREFERENCES

The most controversial aspect of sexual selection today is how female prefer-
ences and their underlying sensory biases come into being (Bradbury and Ander-
sson 1987; Kirkpatrick and Ryan 1991). There have been two widely debated
groups of hypotheses for the evolution of female mate preferences. First, natural
selection hypotheses suggest that preferences are under direct selection because
they enhance the female’s immediate reproductive success. This appears to be
the case when females receive tangible resources from the male (Kirkpatrick and
Ryan 1991). Other natural selection hypotheses are based on genetic quantity:
good genes hypotheses, such as the ‘‘handicap principle’’ (Zahavi 1975) and the
specific example of the parasite model (Hamilton and Zuk 1982), suggest that
females evolve preferences that result in their mating with males of higher genetic
quality. These preferences are favored because they increase the survival ability
of their offspring. Second, Fisher’s (1958) hypothesis of runaway sexual selection
suggests that the female preference is genetically correlated with the male trait
through linkage disequilibrium and that the preference evolves as a correlated
response to evolution of the male trait. In this model, the preference is under
indirect selection (see also Lande 1981; Kirkpatrick 1982; M. B. Andersson 1987).
None of these hypotheses are mutually exclusive (M. B. Andersson 1987).

A third hypothesis, ‘‘sensory exploitation’” (Ryan 199054), is also not mutually
exclusive with the above hypotheses and suggests that the signal value of the
display is more important than its iconic value, for example, as an indicator of
male health. This hypothesis, in various forms (Nottebohm 1972; Barlow 1977;
West-Eberhard 1979; Burley 1985; Endler and McLellan 1988; ten Cate and Bate-
son 1988; Ryan 1990b; Ryan and Rand 1990; Ryan et al. 1990a, Endler 1992),
suggests that females prefer male traits that elicit the greatest amount of stimula-
tion from the sensory system. In other words, selection favors male traits that
exploit sensory biases in females. These sensory biases may have evolved in
response to selection in other contexts. For example, Fleishman (1992) has shown
that the visual system of anoline lizards is exquisitely designed for prey detection
and that this design dictates the form of male displays that are most effective in
eliciting attention from females. Sensory biases also might exist for historical
reasons associated with mate choice. For example, the good genes hypothesis
would suggest that selection favors females whose sensory biases result in their
being attracted to more energetic displays that indicate healthier males. The sen-
sory exploitation hypothesis differs from the good genes hypothesis with regard
to the explanation of the evolution of traits: in the sensory exploitation theory,
the sensory biases already in place, regardless of the reason, explain the initial
evolution of the trait in the species under study, whereas the good genes theory
offers the explanation that good gene selection in the species under study causes
females to prefer certain traits. The sensory exploitation hypothesis does not
preclude other forces, such as good genes and runaway sexual selection, from
initially establishing the preexisting bias or from maintaining or further modifying
the preference and the trait.
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PATTERNS OF FEMALE MATE CHOICE

How does the generalization of preference for exaggerated traits and greater
sensory stimulation bear upon hypotheses for the evolution of female mating
preferences?

The good genes hypothesis predicts that the male display should be an indicator
of genes for health and vigor. Although there is not much direct evidence, it
appears likely that healthier males will be brighter and larger, and they will pro-
duce more intense calls and display at more rapid rates. Some recent studies of
parasites have shown that birds with brighter plumage also have fewer parasites
(e.g., Hillgarth 1990; Zuk et al. 1990). The data we review are consistent with
this expectation of the good genes hypothesis. With regard to our review of
tuning biases in frogs, the good genes hypothesis would suggest that female frogs
evolved tuning below the average call frequency because of the selective advan-
tage obtained from mating with larger males.

The sensory exploitation hypothesis predicts that females should prefer more
exaggerated male displays because of the display’s signal value alone. This type
of preference might be favored by selection because such displays have a greater
signal-noise ratio, and they not only are more stimulatory to females but might
also decrease search costs. Exaggerated displays have greater signal value be-
cause they elicit a stronger response from the female sensory system. Thus the
data are also consistent with the sensory exploitation hypothesis. Although this
hypothesis does not require the correlation between male health and exaggerated
displays, this correlation is to be expected purely for reasons of behavioral physi-
ology; more exaggerated displays require more energy, and healthier males are
able to marshal more energy to support activity above and beyond that needed
for maintenance.

The sensory exploitation hypothesis does not eliminate a role for selection
pressure on mate choice in the historical establishment of biases, but it suggests
that selection in other contexts can also cause the evolution of sensory biases.
This is suggested by our studies of the frog’s auditory periphery. In the Acris
crepitans populations we have studied, on the average, females are tuned below
the male’s call (fig. 5), and they are always tuned lower than the males are tuned.
The tuning of the BP is correlated with male body size; therefore, this sexual
dimorphism in tuning is to be expected (Zakon and Wilczynski 1988). Although
we have been discussing the fitness consequences of males communicating with
females, male reproductive success is also influenced by male-male vocal compe-
tition; males must communicate effectively with other males (Wells 1988). Thus
there might be two sexual selection optima for the call’s dominant frequency.
The female’s tuning defines one optimum for female attraction, and the male’s
tuning defines a different optimum for male competition. The dominant frequency
of the call might effect a compromise between these two optima. If so, females
will always be tuned to frequencies below the average call and thus prefer lower-
frequency calls and larger males. Another possibility is that the female’s sensory
system is under direct selection in contexts other than mate choice and that
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certain mate preferences are pleiotropic effects of this direct selection (Kirkpat-
rick and Ryan 1991). We have already discussed such a possibility in terms of
how the lizard’s eye evolves to detect fine patterns of motion in order to increase
foraging ability and how this evolution then has a pleiotropic effect on preference
for certain aspects of the male’s display (Fleishman 1992).

Fisher’s hypothesis of runaway sexual selection does not, by itself, predict the
evolution of more exaggerated traits (Fisher 1958; Lande 1981; Kirkpatrick 1982).
The direction of evolution is indeterminate, and therefore less exaggerated traits
should be as likely to evolve as more exaggerated traits. However, other pro-
cesses, such as selection for greater signal value or good genes, could bias the
direction of the runaway process toward more exaggeration. Therefore, the re-
sults of our review are also consistent with a runaway sexual selection process.

Although there is a fairly consistent pattern of female mate choice that can be
generalized across taxa and sensory modalities, this generalization does not allow
us to discriminate between competing hypotheses for the evolution of female
preferences. This has been a general problem in the sexual selection theory; in
most cases these hypotheses do not make mutually exclusive predictions (Kirk-
patrick and Ryan 1991).

SEXUAL SELECTION FOR SENSORY EXPLOITATION: PHYLOGENETIC SUPPORT

There is one situation in which we can discriminate among some of the compet-
ing hypotheses for the evolution of female mating preferences. Both the good
genes and the runaway sexual selection hypotheses implicate the male trait in the
evolution of the preference, either because the trait indicates better males and
the preference is favored by natural selection, or because the trait and the prefer-
ence are genetically correlated and the preference evolves in response to the
evolution of the trait.

The sensory exploitation hypothesis makes a unique testable prediction that
allows it to be discriminated from the hypotheses of good genes and runaway
sexual selection during a defined span of evolutionary history. The two latter
hypotheses predict the coevolution of the trait and the preference, and thus the
male trait is implicated in the evolution of the preference. In the sensory exploita-
tion hypothesis, the preference exists before the evolution of the trait (fig. 6).
Some support for this hypothesis comes from our comparative studies of mate
recognition in the Physalaemus pustulosus species group.

As we have discussed, P. pustulosus males produce a two-component call (fig.
1). The whine is necessary and sufficient for species recognition, and males add
chucks to their calls to increase their attractiveness to females. This species is a
member of a group that is composed of four species (Cannatella and Duellman
1984) and a genus of about 40 species (Lynch 1970). Only P. pustulosus and its
sister species, Physalaemus petersi, can add chucks to their whinelike call; this
suggests that the chuck first evolved in the common ancestor of these two spe-
cies (fig. 6; Ryan and Drewes 1990). When Physalaemus coloradorum females
were given a choice between the normal call of their males, which resembles a
whine, and this same call with chucks of P. pustulosus added, females preferred
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Fic. 6.—The phylogenetic relations of the Physalaemus pustulosus species group. Oscillo-
grams of calls for each species are shown, as well as the call from a representative of the
out-group (for scale, the P. pustulosus call is about 350 ms). Brackets indicate the chuck,
the male trait under consideration. 7, Male trait; P, female preference for chucks; +, pres-
ence; —, absence; —, hypothesized character transformation based on parsimony as-
sumption.

chucks even though their males have not evolved the ability to produce this call
(fig. 2). Therefore, it seems likely that the preference for calls with chucks ex-
isted in a common ancestor of all four species in the P. pustulosus species group.
However, the chuck evolved after the divergence of P. coloradorum from the
P. pustulosus—P. petersi species pair; thus the preference for chucks preceded
the evolution of the chuck (fig. 6; Ryan and Rand, in press).

The same case can be made for the frequency tuning of the BP that in
P. pustulosus gives rise to preference for calls with lower-frequency chucks. As
reviewed previously, frogs use the band-pass characteristics of the peripheral
auditory system for processing spectral information. Some species use both chan-
nels, whereas others use only either the AP or the BP. In the P. pustulosus
species group and its closest relatives, all species probably use only the AP
because most energy in the whinelike calls is below 1,200 Hz, well below those
frequencies to which the BP is sensitive. In P. coloradorum (Ryan et al. 1990a)
and P. petersi (W. Wilczynski, M. J. Ryan, and A. S. Rand, unpublished data)
the dominant frequency of the call is generally matched to the most sensitive
frequencies of the AP, yet these frogs still have a BP and all BPs are tuned. In
P. pustulosus, on the other hand, the dominant frequency of the whine matches
the tuning of the AP, and the dominant frequency of the chuck is generally
matched to the tuning of the BP (Ryan et al. 1990aq).

When we compared the peak sensitivity of the BPs of P. pustulosus and
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P. coloradorum, they were statistically identical (Ryan et al. 1990a). Therefore,
one cannot argue that P. pustulosus females evolved lower frequency tuning of
the BP in order to select larger mates. The tuning was present before the chuck
evolved. Therefore we can reject both good genes and runaway sexual selection
as hypotheses for the evolution of preferences for the chuck and for chucks with
lower frequencies in P. pustulosus.

Basolo (1990b) has demonstrated a similar phenomenon in her study of prefer-
ence for swords in two groups of fish in the genus Xiphophorus, swordtails,
which have swords, and platyfish, which lack swords. Swords are thought to have
evolved at the origin of the swordtail clade, after this group diverged from the
platyfish. However, female platyfish prefer conspecific males to which swords
have been attached to their normal swordless males.

At least in these cases, it is clear that males evolved traits to exploit preexisting
biases in the female sensory system. Coevolution of trait and preference, as
required by the good genes and runaway sexual selection hypotheses, does not
explain the presence of the sword and the preference for the sword in female
swordtails. However, it is possible that these alternative explanations could have
favored the preexisting preference for reasons unrelated to sword length (e.g.,
preference for large size in general) and also might have maintained or further
elaborated the female preference.
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