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■ Abstract Agriculture has evolved independently in three insect orders: once in
ants, once in termites, and seven times in ambrosia beetles. Although these insect
farmers are in some ways quite different from each other, in many more ways they
are remarkably similar, suggesting convergent evolution. All propagate their cultivars
as clonal monocultures within their nests and, in most cases, clonally across many
farmer generations as well. Long-term clonal monoculture presents special problems
for disease control, but insect farmers have evolved a combination of strategies to man-
age crop diseases: They (a) sequester their gardens from the environment; (b) monitor
gardens intensively, controlling pathogens early in disease outbreaks; (c) occasion-
ally access population-level reservoirs of genetically variable cultivars, even while
propagating clonal monocultures across many farmer generations; and (d ) manage, in
addition to the primary cultivars, an array of “auxiliary” microbes providing disease
suppression and other services. Rather than growing a single cultivar solely for nutri-
tion, insect farmers appear to cultivate, and possibly “artificially select” for, integrated
crop-microbe consortia. Indeed, crop domestication in the context of coevolving and
codomesticated microbial consortia may explain the 50-million year old agricultural
success of insect farmers.

1. INTRODUCTION

The cultivation of crops for nourishment has evolved only a few times in the
animal kingdom. The most prominent and unambiguous examples include the
fungus-growing ants, the fungus-growing termites, the ambrosia beetles and, of
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course, humans. For humans, who started the transition from an ancestral hunter-
gatherer existence to farming only about 10,000 years ago (Diamond 1997, Smith
1998), sustainable, high-yield agriculture has become critical for survival in a
global economy with projected food shortages, and diverse research programs are
currently devoted to the optimization of agricultural productivity in the context of
growing environmental challenges (Green et al. 2005). Agricultural progress has
been achieved by humans through a combination of insight, creative planning, and
a fair share of contingency and luck (Diamond 1997, Schultz et al. 2005, Smith
1998). However, humans have so far not examined nonhuman agricultural systems,
such as the fungus-growing insects, for possible insights to improve agricultural
strategies.

This lack of an applied interest in insect agriculture probably derives from a
general perception that human agricultural systems (based largely on plant cul-
tivation) function in a fundamentally different manner than insect systems (all
based on fungus cultivation). However, humans have learned much of practical
value through the close examination of adaptive features of other organisms (in-
cluding insects), and comparable problems such as crop diseases affect all farmers
regardless of their phylogenetic positions or those of their crops (plant, fungus,
or otherwise). Because of the universality of crop diseases in both human and
insect agriculture, it may be fruitful to examine the short-term and long-term solu-
tions that have evolved convergently in insect agriculture for possible application
to human agriculture (Denison et al. 2003). Such a synthesis is the goal of this
review.

1.1. Behavioral and Nutritional Elements
Defining Agriculture

Insect fungiculture and human farming share the defining features of agriculture
(see Table 1): (a) habitual planting (“inoculation”) of sessile (nonmobile) cul-
tivars in particular habitats or on particular substrates, including the seeding of
new gardens with crop propagules (seeds, cuttings, or inocula) that are selected
by the farmers from mature (“ripe”) gardens and transferred to novel gardens; (b)
cultivation aimed at the improvement of growth conditions for the crop (e.g., ma-
nuring; regulation of temperature, moisture, or humidity), or protection of the crop
against herbivores/fungivores, parasites, or diseases; (c) harvesting of the cultivar
for food; and (d ) obligate (in insects) or effectively obligate (in humans) nutri-
tional dependency on the crop. Obligate dependencies of the insect farmers can be
readily demonstrated by experimental removal of their cultivated crops, resulting
in reduced reproductive output, increased mortality, or even the certain death of
the cultivar-deprived insect (Francke-Grosmann 1967, Grassé 1959, Norris 1972,
Sands 1956, Weber 1972). Our definition of agriculture does not require conscious
intent in planting and harvesting. Conscious planning, learning, and teaching have
clearly accelerated the development of complex agriculture in humans, but pre-
sumably not in insects (Schultz et al. 2005).
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We restrict our review to ant, termite, and beetle fungiculturists. Cases analo-
gous to human animal husbandry, such as the tending by ants of hemipteran insects
(e.g., aphids, treehoppers; Hölldobler & Wilson 1990), are beyond the scope of this
review. We also exclude cases that fail to meet all four of the requirements of agri-
culture as defined above, including, e.g., the ant Lasius fuliginosus, which promotes
fungal growth in the walls of its nest, because the fungus is apparently not grown for
food but instead for strengthening the walls (Maschwitz & Hölldobler 1970) or for
antibiotic protection of the walls (Mueller 2002). On the same grounds, we exclude
a number of possible cases of incipient agriculture. For example, Littoria snails
may “protofarm” fungi by creating plant wounds that become infected with fungal
growth that is part of the snails’ diet, but the snails do not actively inoculate the
plant wounds or otherwise garden the fungi (Silliman et al. 2003). Many more such
protofarming species probably await discovery, particularly among invertebrates,
and all of the known insect agriculturists (fungus-growing ants, termites, and bee-
tles) probably originated from comparable protoagricultural ancestors (Mueller
et al. 2001, Schultz et al. 2005). Comparison of these protofarming insects with
“primitive” human agriculture exceeds the scope of this review.

1.2. A Coevolutionary Approach to
Understanding Agriculture

We will analyze agriculture as a type of strong coevolutionary interaction, defined
by the nutritional and behavioral criteria summarized above, in which natural
selection acts upon both farmers and crops as reciprocally interdependent lin-
eages (Futuyma & Slatkin 1983, Rindos 1984). Our coevolutionary approach to
agriculture considers not only the interactions between a specific farming insect
and a single cultivated crop, but also its interactions with other pathogenic and
mutualistic microbes that have recently been discovered in insect gardens. Like
the cultivars, some of these microbes are also managed by the insect farmers for
specific purposes (Figure 1). In other words, an insect garden is not a pure monocul-
ture, but a sequestered and engineered ecological community consisting of several
interacting microbes, some beneficial and others detrimental to the farmers. To
gain a comprehensive understanding of the principles of insect agriculture, it will
therefore be necessary to examine the nature of insect-microbe interactions in gar-
dens, the evolutionary origins of these interactions, and the convergent and diver-
gent evolutionary trajectories that culminated in the extant agricultural systems of
insects.

2. THE THREE INSECT-AGRICULTURE SYSTEMS

Behaviorally complex systems of insect agriculture are known from only three
groups of insects: ant, termites, and beetles.
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2.1. Ant Fungiculture

The fungus-growing ants are a monophyletic group of about 220 described and
many more undescribed species in the tribe Attini (subfamily Myrmicinae) (Price
et al. 2003, Schultz & Meier 1995). Attine ants occur only in the New World
(Argentina to the southern United States) and attain their greatest diversity in the
wet forests of equatorial South America, the region of their presumed evolutionary
origin (Mueller et al. 2001). Attine ants are obligate agriculturists; their cultivated
fungi are the sole source of food for the larvae and an important source of food for
the adults. Although adults are able to supplement their diets by feeding on plant
juices (Bass & Cherrett 1995, Murakami & Higashi 1997), the cultivated fungi
are nutritionally sufficient to support the ants even in the absence of additional
nutrients (Mueller 2002, Mueller et al. 2001). Garden fungi are transmitted verti-
cally across generations when daughter queens transport small pellets of natal-nest
mycelium within their infrabuccal pockets, pouches present in the mouthparts of
all ants (Fernández-Marı́n et al. 2004, Huber 1905, Mueller 2002). In the derived
leafcutter ants, the workers are divided into a remarkable range of differently sized
morphological castes, each specialized on a different task (Hart et al. 2002, Weber
1972) (Figure 2d).

Different attine ant lineages cultivate their fungi on different substrates. The
ancestral gardening substrate, still used by the so-called lower attines, consists of
flower parts, arthropod frass, seeds, wood fragments, or other similar plant debris,
whereas the leafcutting genera Atta and Acromyrmex primarily use freshly cut
leaves and flowers. Despite these distinct substrate specializations, all attine sys-
tems contain at least four symbionts: (a) the fungus-growing ants; (b) their fungal
cultivars (basidiomycetes in the mushroom families Lepiotaceae and Pterulaceae;
Mueller et al. 1998, Munkacsi et al. 2004); (c) mutualistic antibiotic-producing
actinomycete bacteria (family Pseudonocardiaceae; Currie et al. 1999b); and (d )
garden parasites in the ascomycete fungal genus Escovopsis (Currie et al. 1999a,
Currie et al. 2003b). Additional bacteria and yeasts also occur in attine gardens
and may function as mutualists, e.g., by secreting digestive enzymes or antibotics
(Carreiro et al. 1997, Craven et al. 1970, Santos et al. 2004).

2.2. Termite Fungiculture

Of the more than 2600 described termite species, about 330 species in the subfamily
Macrotermitinae cultivate a specialized fungus, genus Termitomyces, for food.
Nests are generally founded by a single pair of reproductives, the future queen and
king. They seal themselves permanently in a cell of hard clay (the so-called royal
chamber) where they rear the first brood of sterile workers. In most termite species,
a new colony acquires a fungal strain from wind-dispersed sexual Termitomyces
spores shortly after nest founding and begins construction of the first gardens (De
Fine Licht et al. 2005). These spores come from fruiting bodies (mushrooms)
that arise from mature termite colonies. The fruiting of the fungus appears to be
roughly synchronized to the period when the first foraging workers emerge from a
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new nest, a few months after the nest-founding stage. Termite gardens are grown
on dead plant material that is only partially decomposed, such as leaf litter, dead
grass, dead wood, or dry leaves.

Termite gardens are built from spore-containing fecal pellets in chambers that
the termites construct either inside a mound or dispersed in the soil. Fecal pellets are
added continuously to the top of the comb and fungal mycelium rapidly permeates
the new substrate (Figure 2e). After a few weeks, the fungus starts to produce veg-
etative nodules that are consumed by the termites. These nodules are a rich source
of nitrogen, sugars, and enzymes. The nodules are also covered with indigestible
asexual spores (conidia), so that consumption serves the additional function of
inoculating the feces with spores, which pass through the gut unharmed and are
then planted in new comb with the deposition of feces (Leuthold et al. 1989).
Mature comb is also consumed (Darlington 1994), but it is nutritionally inferior
to the nodules.

2.3. Beetle Fungiculture

Ambrosia beetles make up around 3400 of the 7500 species in the weevil subfam-
ily Scolytinae (the bark and ambrosia beetles, including the traditionally separate
Platypodinae; Farrell et al. 2001, Harrington 2005, Wood 1982). Most ambrosia
beetles construct tunnel systems (galleries; Figure 2f ) in woody tissues of trees
(typically in weakened or recently dead trees or, more rarely, in vigorous hosts),
although some species are specialized to colonize pith, large seeds, fruits, and leaf
petioles (Harrington 2005, Wood 1982). The term ambrosia refers to the fungi
cultivated by the beetles on gallery walls, upon which they feed as an exclusive, or
near exclusive, food source. The beetles are obligately dependent upon the fungi,
from which they acquire essential vitamins, amino acids, and sterols (Beaver 1989,
Kok et al. 1970).

The most advanced fungiculturists among the ambrosia beetles occur in the
Xyleborini, a large monophyletic tribe of about 1300 species (Farrell et al. 2001,
Jordal 2002). It is this group of ambrosia beetles that we primarily focus on in this
review. Although life histories among the Xyleborini vary considerably, most share
a number of fungicultural characteristics. There is a sexual division of labor in the
Xyleborini; only females perform gardening tasks, whereas males are short-lived
and flightless (Norris 1979). After mating, females disperse to new host substrate,
carrying the fungi in specialized pockets termed mycangia. Once within a new
host, founding females “plant” the fungi on the walls of the excavated tunnels,
lay eggs, and tend the resulting garden and brood (Norris 1979). In ways not fully
understood, they are able to control the growth of the fungal crop, as well as, to
a degree, the composition of its multiple fungal species (Beaver 1989, French &
Roeper 1972, Kingsolver & Norris 1977, Roeper et al. 1980). If the female dies, the
garden is quickly overrun by contaminating fungi and bacteria, which ultimately
results in the death of the brood (Borden 1988, Norris 1979).

The ambrosia gardens of xyleborine beetles are not pure monocultures as was
once believed, but are typically composed of an assemblage of mycelial fungi,
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yeasts, and bacteria (Batra 1966, Haanstadt & Norris 1985). These assemblages
were termed multi-species complexes by Norris (1965), who suggested that it is a
complex as a whole, rather than any one individual microbe, that allows the beetles
to exploit nutrient-poor substrates such as wood. However, most subsequent work
has revealed that one “primary” fungus always dominates in beetle gardens (Baker
1963, Batra 1966, Gebhardt et al. 2004, Kinuura 1995). Furthermore, the beetles
typically carry only the primary fungus in the mycangium (although secondary
fungi are sometimes also isolated from mycangia), and the cultivation efforts of
female beetles tend to favor the primary fungus, which imparts the greatest nu-
tritional benefit (Francke-Grosmann 1967, Gebhardt et al. 2004, Morelet 1998,
Norris 1979). Some auxiliary fungi also support beetle development, but survival
on the auxiliary fungi alone is often greatly reduced (Norris 1979). These obser-
vations implicate the primary fungus as the intended crop, whereas the secondary
fungi, yeasts, and bacteria may be contaminant “weeds” or may play additional
auxiliary roles in the gardens, paralleling the hypothesized roles of the auxiliary
bacteria and yeasts in attine gardens (see above).

3. EVOLUTIONARY ORIGINS OF INSECT AGRICULTURE

Phylogenetic analyses reveal nine independent origins of insect agriculture
(Figure 2; Table 2). In ants, fungal cultivation arose only once, probably 45–65 Mya
in the Amazon rainforest (Mueller et al. 2001; Schultz & Meier 1995). In termites,
fungiculture likewise had a single origin, approximately 24–34 Mya in the African
rainforest (Aanen et al. 2002; D.K. Aanen & P. Eggleton, submitted). In ambrosia
beetles, however, agriculture arose independently seven times between 20–60 Mya,
six times in various nonxyleborine lineages, and once in the ancestor of the Xyle-
borini about 30–40 Mya (Farrell et al. 2001). Whereas the common ancestors of
the macrotermitines and of the xyleborines each domesticated a single, specific
primary cultivar clade to which their descendants have adhered throughout subse-
quent evolution (Figure 2, Table 2), attine ants maintain associations with multiple
independently domesticated cultivar lineages (which are for the most part very
closely related; Mueller et al. 1998; Munkacsi et al. 2004; Table 2). Interestingly,
there are no known cases of reversal from agricultural to nonagricultural life in any
of the nine agricultural insect lineages (Figure 2a, 2b, and 2c), suggesting that the
transition to fungiculture is a drastic and possibly irreversible change that greatly
constrains subsequent evolution.

Two main models have been suggested for the independent evolutionary tran-
sitions to agriculture in insects, the “consumption-first” versus the “transmission-
first” models (Mueller et al. 2001). In the consumption-first model (the likely
model for the termites), an insect lineage initially begins to incorporate fungi into
its more generalist diet, then becomes a specialized fungivore, and finally evolves
adaptations for cultivating fungi. In the transmission-first model (the likely model
for the beetles), the insect lineage begins its association with a fungus by serving
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as a vector of that fungus, then begins to derive nutrition from it, and finally
becomes a fungus cultivator. In a third possibility, an insect-fungus association
evolves because the insects originally use fungi as a source of antibiotics, as for
example in the lower termite Reticulotermes speratus that derives antibiotic pro-
tection from fungal sclerotia mixed into egg piles (Matsuura et al. 2000). Lastly,
insect-associated fungi may have undergone even more complicated evolutionary
histories, originating from the exploitation by one insect lineage (e.g., the ances-
tor of attine ants) of a preexisting insect-fungus association (the fungi ancestrally
associating with beetles) when it encounters these insect-adapted fungi in a shared
nest environment (e.g., decaying wood; Sanchez-Peña 2005). This latter hypoth-
esis, however, is not supported by the phylogenetic relationships between beetle
and ant fungi and is inconsistent with the estimated dates of origin of these insect-
fungal associations (i.e., attine agriculture probably arose well before ambrosia
beetle agriculture; see Table 2).

For attine ants, it is unclear whether agriculture arose from a state of ancestral
fungivory, antibiotic acquisition, or fungal vectoring (Mueller et al. 2001). Termite
agriculture most likely originated via the consumption-first route, because many
nonfarming termite species are attracted to and feed on fungus-infested wood,
which suggests that the nonfarming ancestors of the farming termites may have
fed on fungi as well (Batra & Batra 1979, Rouland-Lefevre 2000). The nonfarming
ancestors of the fungus-growing beetles appear to have associated with fungi even
before the origin of fungiculture, because many of the more primitive nongarden-
ing scolytines act as fungal vectors without apparent dependence on their fungal
associates (Harrington 2005, Malloch & Blackwell 1993, Six 2003, Six & Klepzig
2004). This suggests non-nutritional dependencies on fungi that predate the origins
of fungiculture in the various ambrosia beetle lineages (Six 2003). However, many
nonambrosial scolytines carry fungi in mycangia and feed as larvae on ungardened
mycelium that colonizes host plants and feed as new adults on spore layers lining
pupal chambers (Ayres et al. 2000, Barras 1973, Six & Klepzig 2004, Six & Paine
1998; also A. Adams & D.L. Six, unpublished data), suggesting a stage of nutri-
tional dependency predating the origin of fungiculture. Thus, some of the seven
agricultural origins in beetles appear to have followed the transmission-first route,
whereas others followed the consumption-first route.

Insect agriculture is restricted to the cultivation of fungi rather than plants,
which predominate in human agriculture. Although it is true that some insects
are specialized on host plants that they protect from other herbivores (e.g., Pseu-
domyrmex ants protect acacia trees in exchange for shelter and nutritional benefits;
Janzen 1966, Hölldobler & Wilson 1990), none of these insect-plant mutualisms
possesses all four of the components of agriculture listed above. One could there-
fore ask what factors have predisposed insects to evolve fungal rather than plant
agriculture. Indeed, there are several advantages of fungal agriculture over plant
agriculture, and several characteristics of plants may even preclude their easy cul-
tivation. First, unlike fungi, plants typically have stringent light and space require-
ments, excluding them from cultivation in the subterranean or otherwise enclosed
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nests of insects. Such nesting habits may facilitate fungiculture by shielding fun-
gal crops from unwanted consumers (i.e., other fungivores) and wind-dispersed
diseases. Furthermore, unlike plants, which usually require regular pollination for
long-term cultivation, fungi can be maintained indefinitely in a nonsexual mycelial
state, yielding a more consistent food source. Thus, although seeds and plant ma-
terial can be readily harvested, fungi are likely more cultivatable, explaining the
predominance of fungal rather than plant agriculture among insects.

Ant, termite, and most beetle agriculturists are social. All ants and termites
are eusocial (characterized by reproductive division of labor, cooperative brood
care, and overlap of generations; Hölldobler & Wilson 1990). Only one ambrosia
beetle (Austroplatypus incompertus) is known to be eusocial (Kent & Simpson
1992); the remainder are subsocial, in which a single female cares for her brood,
or communal, in which several reproductive females cooperate in brood care and
gardening (Kirkendall et al. 1997). Sociality may have facilitated the evolution
of agriculture because of the inherent advantage to agriculture of division of la-
bor, which enables the partitioning of agricultural tasks and augments agricultural
efficiency (Hölldobler & Wilson 1990, Hart et al. 2002). In ant and termite farm-
ers, for example, agricultural tasks are partitioned in a conveyor-belt-like series
between different worker castes, each specialized on one main task: foraging; pro-
cessing and cleaning of substrate before incorporation into the garden; planting of
mycelium onto new substrate; monitoring and weeding of the garden; or disposal
of diseased or senescent garden (Bot et al. 2001a, Hart et al. 2002, Traniello &
Leuthold 2000). Task partitioning has so far not been investigated in the ambrosia
beetles because of the logistical difficulties of studying beetle behavior in their
concealed tunnels. Task partitioning likely facilitates great efficiency in defense
against nest and garden robbers (Adams et al. 2000a,b; LaPolla et al. 2002), in mon-
itoring gardens for diseases, and in modulating optimal environmental conditions
for crop growth.

4. AGRICULTURAL EVOLUTION AND ECOLOGY

A series of convergent and divergent features of agricultural evolution emerge
from a comparative analysis of ant, termite, and beetle fungiculture (summarized
in Tables 1–3).

4.1. Cultivar Transmission Between Farmer Generations

In attine ant and xyleborine beetle agriculture, fungal cultivars are transmitted
vertically by trophophoresy from parent to offspring generations (Fernández-Marı́n
et al. 2004, Francke-Grosmann 1967, Haanstad & Norris 1985, Huber 1905).
Female reproductive ants and beetles acquire inocula from their natal gardens,
carry these inocula with them in specialized pockets during dispersal flights early in
life, and use these inocula as starter cultures for their new gardens. Trophophoretic
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vertical transmission also occurs in two macrotermitine groups, except that in one
of these two groups the fungal cultivar is transmitted via the king (the single species
Macrotermes bellicosus), whereas in the other group (the genus Microtermes) the
fungus is transmitted via the queen. In the few cases where fungal transmission has
been studied in the remaining macrotermitines (Johnson 1981, Johnson et al. 1981,
Korb & Aanen 2003, Sieber 1983), these termites rely on horizontal acquisition
of fungal crops from the environment in each generation.

4.2. Higher-Level Specialization (Clade-Clade Congruence)
Between Farmers and Crops

Vertical transmission of cultivars leads to the expectation of clade-clade correspon-
dences and topological congruence between the phylogenies of insect farmers and
those of their cultivars. Indeed, in all insect farming systems, major groups of
farmers (large clades or paraphyletic grades, e.g., the lower attine ants) strictly
specialize on major groups of corresponding fungal cultivars (Figure 2). The ex-
pected farmer-cultivar congruence therefore does occur at higher (i.e., broad) phy-
logenetic levels, possibly because of ancient evolutionary codependencies (e.g.,
physiological/nutritional requirements of the farmers, cultivation requirements of
the fungi, etc.) that strictly preclude switches by farmers to cultivars outside of
their specialized major cultivar groups.

Phylogenetic patterns (Figure 2) indicate, however, that within these strictly
constrained major cultivar groups, insect-farmer species occasionally switch be-
tween fungal species or strains. This combination of lower-level, within-group
switching and higher-level major-group specialization in insect farmers would be
analogous, in humans, to defined clades of specialized wheat-farmers, rice-farmers,
potato-farmers, bean-farmers, etc., each of which is able to switch between varieties
within their area of specialization (e.g., between varieties of wheat and to closely
related species such as barley), but which cannot switch across major groups (e.g.,
from wheat to beans). Among insect farmers, switches to novel major cultivar
groups have been exceedingly rare evolutionary events (Villesen et al. 2004).

4.3. Lower-Level Specialization on Cultivars

Though low-level switching between cultivar species and strains within major
cultivar groups occurs occasionally over evolutionary time, over ecological spans
of time most insect farmer species associate with only a very narrow subgroup
of cultivars (species or strains). For example, every attine ant species surveyed
to date cultivates only a phylogenetically narrow set of cultivars (e.g., a single
species of fungus), implicating species specificity between ants and cultivars at
very recent levels of evolutionary diversification (Bot et al. 2001b, Green et al.
2002, Schultz et al. 2002). In ambrosia beetles, like ants, only one primary cul-
tivar is associated with a particular beetle species within a particular geographic
region (Gebhardt et al. 2004, Batra 1967). However, although most beetles are
associated with a species-specific, primary fungus across their entire geographic
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ranges, some beetle species associate with different primary cultivars in different
geographic regions (Baker 1963, von Arx & Hennebert 1965). Among macroter-
mitine species, there exists considerable variation in cultivar specialization: Some
species are limited to a single, unique cultivar, whereas other species cultivate a
great diversity of fungal cultivars, which they sometimes share with other, usu-
ally closely related, macrotermitine species (Katoh et al. 2002; D.K. Aanen &
P. Eggleton, submitted). The factors underlying variation in termite specializa-
tion are unknown, but different cultivars may serve different primary functions,
providing specific, termite-adapted enzymes in some cases (leading to termite-
cultivar specialization), while providing generalized food in other cases (permit-
ting exchange between termite species; D.K. Aanen, V.I. Ros, H.H. de Fine Licht,
C. Roulant-LeFévre, J. Mitchel, et al., in review).

4.4. Cultivar Sharing and Exchange Between Farmer Species

Even though each attine ant species is specialized on a single cultivar species, a
given cultivar species may be cultivated by several sympatric species of ants, and
these sympatric ant species may not necessarily be closely related to one another
(e.g., they may represent different ant genera) (Bot et al. 2001b, Green et al. 2002,
Villesen et al. 2004). Cultivar transfer between ant species may occur via direct
or indirect avenues. Direct avenues may include raiding of neighboring colonies
(Adams et al. 2000a, Rissing et al. 1989) or, in polygynous species, cofounding
of colonies by multiple queens that exchange cultivars or recombine them in the
cofounded garden. Indirect avenues may include cultivar escapes from gardens,
followed by a free-living (feral) existence and subsequent reincorporation into a
symbiosis when a different attine colony imports the free-living strain into its nest
(Mueller et al. 1998).

For ambrosia beetles, the available phylogenetic evidence points to cultivar
sharing between different sympatric beetle species (Farrell et al. 2001, Gebhardt
et al. 2004) but few investigations have addressed this question. Distantly related
ambrosia beetle species are sometimes associated with the same cultivar (Gebhardt
et al. 2004), implicating fungal exchange, either direct or indirect, as explained
above for the ants. Cultivar exchange between and within beetle species may occur
when different female beetles colonize the same tree and the fungal associates
cross-contaminate adjacent galleries.

In contrast to attine ants and ambrosia beetles that all transmit their cultivars
vertically between generations, most macrotermitine species acquire their fungi
horizontally each generation. This implies that new termite-cultivar combinations
arise each generation, which should facilitate cultivar exchange between species,
as well as between lineages of the same species. Cultivar surveys of sympatric
macrotermitine communities indeed indicate that cultivars are generally shared
between closely related species via interspecific cultivar exchanges (Aanen et al.
2002; but see the exceptions mentioned above in Section 4.3). Intra-specific cultivar
exchanges have so far not been investigated in macrotermitines.
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4.5. Propagation of Sexual Versus Asexual Cultivars and
Links to Free-Living Cultivar Populations

All vertically transmitted insect cultivars, including the cultivars of attine ants, am-
brosia beetles, and termites in the genus Microtermes and the species Macrotermes
bellicosus, seem to be asexually propagated by their insect farmers across multi-
ple farmer generations. In contrast, the horizontally transmitted termite cultivars
(propagated by all other macrotermitine genera) undergo regular meiosis and sex-
ual recombination (see above).

Evidence for cultivar asexuality in attine ants comes from DNA fingerprinting
studies that indicate that all gardens of a single leafcutter colony contain a single
cultivar clone (monoculture) (Kweskin 2003, Poulsen & Boomsma 2005; J. Scott
& U.G. Mueller, unpublished data); that identical cultivar clones occur in differ-
ent colonies of the same geographically widespread attine ant species (Bot et al.
2001b, Green et al. 2002, Mueller et al. 1996); and that different sympatric ant
species occasionally share genetically identical cultivar clones (see above; Bot et al.
2001b, Green et al. 2002, Mueller et al. 1998). Contrary to previous suggestions
(Chapela et al. 1994), however, attine cultivar clones are not ancient. Although at-
tine cultivars are clonally propagated across many ant generations (Mueller 2002),
this clonality is punctuated by occasional recombination events, involving either
sexual (meiosis, mating) or parasexual (e.g., mitotic recombination, exchange
of haploid nuclei) processes. Evidence for occasional recombination includes:
(a) fruiting structures (mushrooms), which are known for cultivars of nearly all
genera of attine ants, contradicting the expectation of loss of fruiting ability un-
der strict clonality spanning millions of years (Mueller 2002); (b) rates of allele
sequence divergence in attine cultivars that are similar to those of closely related,
sexually reproducing fungi (Mueller et al. 1998; S.A. Rehner, unpublished data);
and (c) cultivars of the lower attine ants that have close genetic links to free-living
fungal populations (Green et al. 2002, Mueller et al. 1998), suggesting that these
fungi are capable of moving in and out of the symbiosis, that cultivar lineages
may regularly interbreed with wild lineages, or both. Taken together, the genetic
and natural-history information suggest predominantly asexual cultivar propaga-
tion within ant nests and across many ant generations, punctuated by occasional
genetic recombination events.

As in attine ants, a single cultivar monoculture is grown in a single termite
colony (Aanen et al. 2002, Katoh et al. 2002). Within termite nests, the Termito-
myces cultivar is propagated asexually by inoculating fresh garden substrate with
asexual spores (Leuthold et al. 1989), and probably also by transplanting mycelium
from older to younger gardens. Although Termitomyces species have no known
free-living populations existing entirely independent of the termite farmers, they
have nonetheless retained the ancestral (presymbiotic) condition of regular sexual
reproduction, and most Termitomyces cultivars are spread from one termite nest to
another horizontally via sexual spores produced by fruiting bodies (mushrooms)
growing on the external surfaces of mature nests. The Termitomyces cultivar of the
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termite Macrotermes natalensis, for example, has an outcrossing mating system
(De Fine Licht et al. 2005). Asexual cultivar propagation spanning several termite
generations only occurs in those species with vertical uniparental propagation.
Phylogenetic patterns implicate occasional horizontal cultivar exchange between
nests of the same and different termite species (Aanen et al. 2002), but whether
such horizontal exchange is associated with cultivar sexual reproduction remains
unknown.

In xyleborine beetles, the primary fungi are strictly asexual (Jones & Blackwell
1998, Rollins et al. 2001), whereas the less specific, auxiliary fungi are often sexual
(Francke-Grosmann 1967). A preponderance of asexual reproduction in fungal
cultivars also occurs in the primary fungi of all other non-xyleborine ambrosia
beetles, whereas, again, the more incidental fungi are often sexual (Six 2003, Six
& Paine 1999), suggesting that this may have been the ancestral condition at the
origin of the xyleborine beetle-fungus symbiosis.

4.6. Coevolutionary Modifications

Farmer-cultivar specialization enhances the potential for coadaptation, in which
evolutionary modification in one of the partners causes a reciprocal coevolution-
ary modification in the other partner (Futuyma & Slatkin 1983). It is relatively
easy to identify evolutionary modifications in the farmer species, such as special-
ized morphological structures for the trophophoretic transport of cultivars by fe-
males during the dispersal flight (e.g., mycangia in the beetles, infrabuccal pocket
in the ants), modifications of mandibles and guts of beetle and ant larvae for
fungus-feeding (Browne 1961, Schultz & Meier 1995), or the suite of behavioral,
glandular, or physiological modifications that form the basis of insect farming.
Examples of evolutionary modifications in the cultivars have been more difficult
to identify, however, because the cultivated fungi are inherently more difficult to
study.

The clearest examples of cultivar modifications are the hyphal-tip swellings
(gongylidia) produced by the cultivars of the higher attines and the analogous
nodules produced by macrotermitine cultivars. Both gongylidia and nodules are
nutrient-rich structures designed for easy harvesting by the farmers, ingesting, and
feeding to the larvae or nymphs. Nutrient-rich structures are not known for beetle
gardens, although the ambrosia morphology of the beetle cultivars suggests evolu-
tionary modification designed specifically for efficient consumption and digestion
by the beetle larvae. Ambrosial growth consists of tightly packed conidiophores
with copious spores and is only formed in the presence of the beetles (French
& Roeper 1972). Ambrosia formation has not been reported from nonsymbiotic
fungus species. Interestingly, two of the major genera of fungi associated with
ambrosia beetles (Ambrosiella, Raffaelea) are each polyphyletic, and the multiple
lineages within each genus have converged on the same ambrosial morphology
(Blackwell & Jones 1997, Jones & Blackwell 1998), suggesting evolutionary con-
vergence due to selection. Other likely coevolutionary modifications that have
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yet to be investigated include predominantly asexual reproduction in the insect
cultivars while under cultivation and the cultivars’ capacity to survive storage in
the dispersal pockets of the beetles and ants, or the passage through the alimentary
canal of the termites.

4.7. Symbiont Choice and “Artificial Selection” of Cultivars

From an evolutionary perspective, insect agriculture represents a case of cooper-
ative interaction between farmer and cultivar lineages, each exploiting the other
for its own reproductive purposes (Herre et al. 1999, Mueller 2002). Such coop-
erative interactions are frequently unstable and can erode over evolutionary time,
for example, when mutant overexploiters arise (so-called cheater cultivars) and
invade a mutualism. A series of additional farmer-cultivar conflicts are predicted
that could destablilize the mutualism (Mueller 2002, Aanen & Boomsma 2005,
Schultz et al. 2005), but at least two evolutionary mechanisms preserve the coop-
erative nature of the farmer-cultivar association: First, partner feedback, inherent
in vertical cultivar transmission, is an automatic feedback mechanism in which an
uncooperative partner reduces the other partner’s fitness to the extent that it reduces
its own fitness as well; and, second, partner (symbiont) choice in which farmers
favor associations with productive cultivars and discriminate against inferior cul-
tivars in specific choice situations (e.g., a choice between cultivar strains that may
coexist in a garden or in proximate gardens, exercised either by workers during the
planting of new gardens or by reproductives when choosing a cultivar strain for
dispersal). In cases where the evolutionary rates differ between two cooperating
partners, partner choice is a particularly important mechanism (Sachs et al. 2004).
The slower-evolving partner (e.g., the insect farmer) is expected to exert the choice
between variants of the faster evolving partner (e.g., the fungal cultivar), and thus
the slower-evolving farmer imposes selection favoring beneficial symbiont vari-
ants (e.g., productive cultivars) and prevents the spread of nonbeneficial cultivar
mutants (e.g., degenerate or suboptimal cultivars; Mueller 2002, Sachs et al. 2004).
Symbiont choice has yet to be investigated for termite and beetle farmers, but ant
farmers are able to discern surprisingly fine genotypic differences between cultivars
(Mueller et al. 2004; also N.K. Advani & U.G. Mueller, submitted), suggesting that
cultivar diversity in ant gardens, arising, for example, through mutation in a garden
or through the import of novel strains, may evolve under an analog of “artificial
selection.”

5. ROLE OF DISEASE IN INSECT AGRICULTURE

“Weedy” fungi frequently invade the gardens of ants, termites, and beetles, and may
coexist at low or manageable levels along with the crop. If the gardening insects are
removed or if they abandon their nests, the garden is quickly overrun by these weeds
(Batra & Batra 1979, Norris 1979). One such group of weeds, wood-degrading
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fungi in the endophytic genus Xylaria, is found in most gardens of fungus-growing
ants and termites, probably because it is introduced with garden substrate (Fisher
et al. 1995; V.I. Ros, A.J. Debets, T. Læssøe, D.K. Aanen, submitted; N.M. Gerardo
& U.G. Mueller, personal observation). Though weeds like Xylaria do not directly
attack the cultivar, they compete with it for nutrients and thus decrease crop yield
(V.I. Ros, A.J. Debets, T. Læssøe, D.K. Aanen, submitted). Escovopsis species,
ascomycete fungi found in colonies of fungus-growing ants, are specialized para-
sites that subsist directly on the cultivars and reduce the nutrients available to the
ants (Currie 2001a, Currie et al. 2003b). Weed fungi and bacteria are also known
in termite and beetle agriculture, but have yet to be studied in detail (Six 2003; V.I.
Ros, A.J. Debets, T. Læssøe, D.K. Aanen, submitted; D.K. Aanen, unpublished
data).

Escovopsis infections reduce garden productivity, which in turn reduces ant
colony growth and the likelihood of colony survival (Currie 2001a, 2001b, Currie
et al. 1999a). Escovopsis is geographically widespread and taxonomically diverse.
The parasite has been isolated from colonies of every attine genus throughout their
geographic ranges, and particular Escovopsis lineages are specialized to para-
site particular cultivar lineages. This high degree of host specificity suggests a
long history of host-parasite coevolution in Escovopsis, in which the cultivars,
the ants, and their mutualistic bacteria have likely coadapted to defend against
Escovopsis attack and in which each Escovopsis species has become narrowly
specialized to overcome the defenses of some hosts but not others (Gerardo et al.
2004).

6. DISEASE AND MICROBIAL MANAGEMENT
STRATEGIES

In response to the persistent selection pressure imposed by weeds and pathogens,
fungus-farming insects have evolved an arsenal of strategies for preventing and
suppressing infection (Table 3).

6.1. Sequestration of Gardens

All insect agriculturists sequester and separate their gardens from the surrounding
environment, e.g., by growing their gardens in underground chambers or gal-
leries in wood, or by covering them with a protective mycelial veil in the case of
some Apterostigma ants (Villesen et al. 2004). Although sequestered nests are the
ancestral condition in fungus-growing ants, termites, and beetles, and although
sequestered nests may serve other agricultural functions such as the regulation of
temperature and humidity, sequestration no doubt also buffers the garden against
fungivores, wind-borne pathogens, and arthropod vectors of diseases (e.g., mites,
collembolans).
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6.2. Maintenance of Cultivar Genetic Variability

Although attine ants clonally propagate their cultivars across generations over short
evolutionary time spans, no attine cultivar has been found to be an ancient clone.
Instead, the evidence indicates that the lower attines occasionally acquire new culti-
vars from wild (free-living), sexually reproducing fungal populations and that both
lower and higher attines occasionally acquire new cultivars from the nests of other
attines. The cultivars of higher attines, which are not known to have free-living
populations (Mueller 2002), nonetheless retain the ability to fruit (Mueller 2002)
and demonstrate patterns of DNA-sequence diversity that suggest occasional ge-
netic recombination through self-mating (S.A. Rehner, personal communication)
or through true intercrossing between different cultivar strains (M. Bacci, personal
communication). Thus, whereas the crop employed by any attine ant colony at
any given time is a clonally propagated monoculture, the genetic variability and
resilience necessary for long-term disease management resides in the fungal pop-
ulaton external to the nest. As already noted, sexual reproduction is the norm in
the cultivars of those termites that reacquire their cultivars horizontally each gen-
eration, and sexual reproduction may also occur in the fungi of those termites that
transmit their cultivars vertically across generations. Whether the primary culti-
vars of the ambrosia beetles occasionally reproduce sexually remains unknown.
At least for the termites and ants, then, and possibly for the beetles as well, access
to a population-level reservoir of cultivar genetic variability is a consistent feature
of insect agriculture that may provide alternative crops for dealing with disease.

6.3. Intensive Monitoring of Gardens, Weeding,
and Herbicide Application

All insect agriculturists constantly inspect their gardens, and no part of the garden
is left untended for periods of time sufficient to allow the establishment and spread
of diseases and fungivores (Batra & Batra 1979, Currie & Stuart 2001). Insect
agriculturists, particularly the ants and termites, are able to invest in such intensive
monitoring because their societies possess a nonreproducing worker caste, a large
portion of which is dedicated to garden care. In the beetles, the relatively small size
of the garden allows for intensive monitoring by a single female or by a small family
of females. Intensive monitoring ensures that diseases are discovered and eradi-
cated in the early stages of infection before they are able to spread and cause signifi-
cant crop loss. Early detection is an effective defense against novel disease mutants
that might evolve greater virulence if left untreated, because in the early stages of
infection these strains can more readily be controlled with standard treatments.

Garden treatment in attine ants includes the use of secretions from their meta-
pleural and mandibular glands to clean substrate as it is brought into the nest,
probably removing some or most weeds and pathogens from the surface of the
substrate before it is added to the fungus garden (Maschwitz et al. 1970, Ortius-
Lechner et al. 2000). Although antibiotic-producing glands have not been studied
in fungus-growing termites, some secretions of nonfungus-growing termites have
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antibiotic properties (Rosengaus et al. 1998, 2004). Antimicrobial glands in am-
brosia beetles remain unknown and unstudied. In addition to glandular secretions,
attine ants have another antimicrobial defense. Some or all of their integuments are
covered with actinomycete bacteria. These bacteria are known to inhibit Escovop-
sis growth (Currie et al. 1999b), and experimental reduction of actinomycetes in
colonies increases Escovopsis infection (Currie et al. 2003a). Garden bacteria in
the genus Burkholderia (Santos et al. 2004) also provide antibiotics that provide
protection against the garden parasite Escovopsis and against entomopathogenic
diseases of the ants themselves. Termite gardens contain actinomycetes and other
bacteria (Batra & Batra 1979), and beetle gardens contain a great diversity of bac-
terial secondary symbionts; however, the exact roles of these bacterial associates
remain unknown.

6.4. Microbial Buffering

Beyond the known antibiotic-producing, disease-suppressing bacteria in attine
colonies (Currie 2001a, Currie et al. 1999b, Santos et al. 2004), other secondary
bacteria and fungi occur in insect gardens (Carreiro et al. 1997, Craven et al. 1970;
C. Wang & U.G. Mueller, unpublished data), but their roles remain largely un-
known. Although some of these secondary microbes may be neutral or detrimental
to garden health and productivity, others may provide disease-modulating effects
through competitive exclusion, antibiotic suppression of disease-causing microbes,
resistance induction, or other mechanisms of microbial interaction. Competitive
exclusion, disease suppression, and resistance induction have been demonstrated in
both experimental and natural microbial systems (Hood 2003, Paulitz & Bélanger
2001, Wille et al. 2001). Some secondary microbes may even facultatively switch
between beneficial and detrimental roles, depending on garden growth conditions,
seasonal factors, or interactions with the insects or other microbes. For exam-
ple, although the detrimental effects of Escovopsis are obvious in natural garden
outbreaks and in interactions with cultivars in vitro (Currie 2001a,b; Currie et al.
1999a; Gerardo et al. 2004), it remains an untested possibility that Escovopsis may
provide beneficial effects when present at low levels in the garden matrix.

Secondary microbes in termite gardens remain uninvestigated, but the possible
significance of a secondary microbial flora in beetle gardens has been recognized
for some time (Norris 1965). Norris (1965) suggested that it is the microbial com-
plex as a whole (filamentous fungi, yeasts, and bacteria), rather than the dominant
ambrosia fungus per se, that allows the beetles to exploit nutrient-poor substrates
such as wood. Norris did not speculate on any additional roles for the secondary
microbes, such as suppressing diseases, but such auxiliary roles deserve further
study.

6.5. Management of Crop-Associated Microbial Consortia

If, as recent evidence indicates, secondary microbes serve ancillary functions
in gardens by buffering against disease organisms or by producing antibiotics,
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enzymes, and metabolites, it is possible that insect farmers have evolved the ca-
pacity to manage these microbial consortia. Such microbial management strategies
by insect farmers could include the following three methods.

6.5.1. STERILIZATION OF SUBSTRATE BEFORE INCORPORATION INTO THE GARDEN

(ANTS, TERMITES) OR USE OF ESSENTIALLY STERILE SUBSTRATE FROM THE OUTSET

(BEETLES) In termites, the passage of substrate through the gut before incorpo-
ration into the garden probably eliminates many unwanted microbes and may
increase the abundance of desired microbes (Figure 1). In attine ants, the con-
siderable effort spent cleaning substrate surfaces appears to partially sterilize the
substrate (Weber 1972). In the case of the ambrosia beetles, gardening occurs in
a closed system because the beetles do not need to leave the nest to forage and
because galleries are excavated in what is essentially a sterile medium, the sap-
wood or heartwood of living or recently killed trees, which are generally free of
endophytic fungi and other microbes. This closed system greatly reduces the po-
tential for accidental introduction of unwanted microbes and likely facilitates the
management of desired microbes in beetle gardens.

6.5.2. SPATIALLY STRUCTURED GARDEN MATRIX Structuring of gardens allows in-
sect farmers to assess properties of particular, localized crop-microbe consortia.
Any unwanted mutant genotypes, arising locally under particular microbe-microbe
competitons, thus can be identified indirectly through the detection of their detri-
mental effects on the properties of the subgarden, and that subgarden piece can
then be excised. Conversely, novel microbial mutants with beneficial effects can
be identified indirectly by their beneficial effects on the subgarden, and preferen-
tially subcultured and propagated across the rest of the garden (Figure 1). Such
“symbiont-community choice” is possible only because of the fixed garden matrix,
enabling farmers to assess properties of local consortia.

6.5.3. CONTINUOUS CO-OCCURRENCE OF GARDENS OF ALL AGES IN CLOSE PROXI-

MITY, RANGING FROM “UNPLANTED” TO MATURE GARDENS Coexistence of gar-
dens at different developmental stages is inherent in the vertical structuring of attine
and termite gardens into younger subgardens at the top and older subgardens at the
bottom. A range of differently-aged gardens allows farmers to efficiently practice
one-way, selective transfer of only beneficial crop-microbe consortia from mature
to younger gardens. Age-structuring also delays the spread of mutant microbes
from older garden material to younger, more sterile gardens and thus prevents
deterioration of the symbiont-community.

6.6. Multipartner Coevolution and Coevolving
Antibiotic Defenses

One hypothetical advantage of secondary mutualistic microbes is that, unlike the
insect farmers, microbes can potentially evolve at the same rate as the coevolving
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garden pests, enabling mutualistic insect-microbe systems to respond rapidly to the
emergence of novel disease genotypes (Currie 2001a, Mueller & Gerardo 2002).
Although such rapid microbial antibiotic defenses would obviously confer clear
advantages, their evolutionary maintenance remains unclear. One possibility is
that any single farmer society may have access to a diverse array of microbes from
which it can select particular, desired types as needed. This scenario raises the
question of how the insect farmers could maintain such a diverse array in their
colonies in the face of both competition between microbes and the regular bottle-
necking of the entire microbial “library” that presumably occurs at the founding
of every new insect colony. Alternatively, the associated secondary microbes may
be inherently fast-mutating, so that novel beneficial genotypes can rapidly arise
to muster an appropriate defensive response. This scenario raises the question of
how the most beneficial genotypes are recognized by the insect farmers and cho-
sen for selective “amplification” against particular pathogens. The lack of clear
evolutionary mechanisms for maintaining functional associations with coevolv-
ing, mutualistic microbes is not trivial, and future research needs to assess not
only the diversity of microbial genotypes within single farmer colonies, but also
to identify the mechanisms underlying adaptive symbiont-choice selection of ben-
eficial, novel microbial genotypes. Future research also needs to address whether
the coevolution of several, mutualistically-aligned partners (i.e., a “multidefense
alliance” of ants, cultivar, and auxiliary microbes), each mustering its own defense,
provides for a more evolutionarily stable disease-management strategy compared
to a strategy in which the insect farmers act alone in a coevolutionary arms race
against particular pathogens.

7. PRINCIPLES OF INSECT AGRICULTURE:
LESSONS FOR HUMAN AGRICULTURE?

Perhaps the most striking feature of insect agriculture is the long-term cultivation
of clonal monocultures. Monoculture increases agricultural efficiency through an
economy of scale (Wolfe 1985), and clonality preserves the desirable properties of
the crop by eliminating sexual recombination, but these advantages come at two
costs: (a) increased vulnerability to the rapid spread of disease mutants (Barrett
1981, Shipton 1977, Mitchell et al. 2002, Mundt 2002, Peacock et al. 2001, Piper
et al. 1996, Wolfe 1985), and (b) decreased resistance to fast-evolving diseases due
to decreased genetic variability in the crop (Barrett 1981, Gustafson et al. 2003,
Hamilton et al. 1990, Jaenike 1978, Zhu et al. 2000). These economic trade-offs
(i.e., monoculture/clonality efficiency versus disease vulnerability) apply to both
human and insect farmers.

The insect farmers’ solution to the monoculture-disease problem appears to be
not a single, “magic bullet” strategy (e.g., sole reliance on pesticides), but rather a
combination of several strategies consisting of (a) crop sequestration, (b) intensive
monitoring of crops for diseases, (c) access to a population-level reservoir of crop
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genetic variability, and (d) management of disease-suppressant microbes associ-
ated with the crop (Table 3). Of these strategies, large-scale crop sequestration
is the least feasible in human agriculture because human crops need exposure to
sunlight and because greenhouse cultivation is costly (Paulitz & Bélanger 2001).
Intensive (e.g., daily) monitoring of every single crop plant for diseases may be
feasible for some crops (e.g., in greenhouse environments); however, hourly mon-
itoring of the kind implemented in insect agriculture seems cost-prohibitive for
human agriculture at large.

A more novel approach is to design human agricultural systems that more
efficiently take advantage of the microbial consortia that are known to play ben-
eficial roles in crop nutrient uptake and disease resistance (Morrissey et al. 2004,
Paulitz & Bélanger 2001, Wardle et al. 2004). Microbes of the rhizosphere (e.g.,
nitrogen-fixing bacteria and mycorrhizal fungi) have long been managed as crit-
ical associates of certain crops and trees (Finlay 2004, Johansson et al. 2004).
More recently, disease-suppressant bacteria have been discovered that live on
the root exudates of crops and produce antibiotics that protect the crop against
pathogens (Haas & Keel 2003, Mazzola 2004, Morrissey et al. 2004, Weller et al.
2002, Whipps 2001). Disease-suppressant effects on crop plants have also been
documented for phyllosphere microbes (Lindow & Brandl 2003) and endophytic
microbes (Narisawa et al. 2002, Sturz et al. 2000). Agricultural research on rhi-
zosphere, phyllosphere, and endophyte microbes of human crops is a very new
field, however, and many beneficial microbes remain to be discovered and put to
use (e.g., inoculation of crops with phyllosphere microbes to deter herbivores or
to suppress airborne diseases).

Two problems commonly encountered in human agricultural experiments with
beneficial microbial consortia are, first, that the composition of microbial species
is difficult to manage and stabilize (Garbeva et al. 2004, Mazzola 2004), and,
second, that beneficial microbes can rapidly evolve into detrimental ones (Alves
et al. 2003, Morrissey et al. 2002). The farming insects’ solution to these prob-
lems appears to consist of (a) selection on spatially limited microbial consortia
(i.e., high-resolution, spatial separation of evolutionary processes, preventing the
uncontrolled spread of microbes from inferior consortia); (b) propagation of crops
with fast generational turnovers, thus minimizing the time for the evolution of any
deleterious traits in the microbes; and (c) partial or complete sterilization of the
substrate prior to planting, thus minimizing the influx of microbial contaminants
into a largely closed agricultural system.

Perhaps it is from strategies such as these that humans have the most to learn
from insect farmers, certainly if disease-suppressant microbes are ever to be man-
aged in human agriculture (Morrissey et al. 2004). In developing these strategies,
agriculturists would need to keep in mind that, during the domestication process,
current human crops were not necessarily selected for capacities to interact with
auxiliary microbes, i.e., the alleles in the wild ancestors optimally mediating such
interactions may have been lost during the domestication process. Thus, a full
evaluation of the potential uses of auxiliary microbes in human agriculture may
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require the study of the microbial consortia associated with the wild populations
from which human-domesticated crops were originally derived. Such domestica-
tion within the context of coevolving and codomesticated microbial consortia may
well be the key element explaining the 50-million year old agricultural success of
the insect farmers.
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Huber J. 1905. Über die Koloniegründung bei
Atta sexdens. Biol. Cent. 25:606–19, 625–35

Jaenike J. 1978. A hypothesis to account for the

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
5.

36
:5

63
-5

95
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

T
ex

as
 -

 A
us

tin
 o

n 
11

/1
4/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.



20 Oct 2005 12:41 AR ANRV259-ES36-24.tex XMLPublishSM(2004/02/24) P1: OJO

592 MUELLER ET AL.

maintenance of sex within populations. Evol.
Theory 3:191–94

Janzen DH. 1966. Coevolution of mutualism
between ants and acacias in Central Amer-
ica. Evolution 20:249–75

Johansson JF, Paul LR, Finlay RD. 2004. Mi-
crobial interactions in the mycorrhizosphere
and their significance for sustainable agricul-
ture. FEMS Microbiol. Ecol. 48:1–13

Johnson RA. 1981. Colony development and es-
tablishment of the fungus comb in Microter-
mes sp. nr. Usambaricus (Isoptera, Macroter-
mitinae) from Nigeria. Insect. Soc. 28:3–12

Johnson RA, Thomas RJ, Wood TG, Swift MJ.
1981. The inoculation of the fungus comb in
newly founded colonies of the Macrotermiti-
nae (Isoptera). J. Nat. Hist. 15:751–56

Jones KG, Blackwell M. 1998. Phylogenetic
analysis of ambrosial species in the genus
Raffaelea based on 18S rDNA sequences.
Mycol. Res. 102:661–65

Jordal BH. 2002. Elongation factor 1 resolves
the monophyly of the haploid ambrosia bee-
tles Xyleborini (Coleoptera: Curculionidae).
Insect Mol. Biol. 11:453–65

Katoh H, Miura T, Maekawi K, Shinzato N,
Matsumoto T. 2002. Genetic variation of
symbiotic fungi cultivated by the macroter-
mitine termite Odontotermes formosanus
(Isoptera: Termitidae) in the Ryukyu Archi-
pelago. Mol. Ecol. 11:1565–72

Kent DS, Simpson JS. 1992. Eusociality
in the beetle Austroplatypus incomper-
tus (Coleoptera: Curculionidae). Naturwis-
senschaften 79:86–87

Kingsolver JG, Norris DM. 1977. External mor-
phology of Xyleborus ferrugineus (Fabr.)
(Coleoptera: Scolytidae) I. Head and protho-
rax of adult male and females. J. Morphol.
154:147–56

Kinuura H. 1995. Symbiotic fungi associated
with ambrosia beetles. Jpn. Agric. Res. Q.
29:57–63

Kirkendall LR, Kent DS, Raffa KF. 1997. Inter-
actions among males, females, and offspring
in bark and ambrosia beetles: the significance
of living in tunnels for the evolution of so-
cial behavior. In Evolution of Social Behav-

ior in Insects and Arachnids, ed. JC Choe, BJ
Crespi, pp. 181–215. Cambridge, UK: Cam-
bridge Univ. Press. 561 pp.

Kok LT, Norris DM, Chu HM. 1970. Sterol
metabolism as a basis for a mutualistic sym-
biosis. Nature 225:661–62

Korb J, Aanen DK. 2003. The evolution of uni-
parental transmission of fungal symbionts in
fungus-growing termites (Macrotermitinae).
Behav. Ecol. Sociobiol. 53:65–71

Kweskin M. 2003. Molecular and behavioral
ecology of fungus-growing ants and their
fungi. MA thesis. Univ. Tex., Austin. 79 pp.

LaPolla JS, Mueller UG, Seid M, Cover
SP. 2002. Predation by the army ant
Neivamyrmex rugulosus on the fungus-
growing ant Trachymyrmex arizonensis. In-
sect. Soc. 49:251–56

Leuthold RH, Badertscher S, Imboden H. 1989.
The inoculation of newly formed fungus
comb with Termitomyces in Macrotermes
colonies (Isoptera, Macrotermitinae). Insect.
Soc. 36:328–38

Lindow SE, Brandl MT. 2003. Microbiology of
the phyllosphere. Appl. Environ. Microbiol.
69:1875–83

Malloch D, Blackwell M. 1993. Dispersal bi-
ology of the ophiostomatoid fungi. In Cer-
atocystis and Ophiostoma: Taxonomy, Ecol-
ogy and Pathogenicity, ed. MJ Wingfield, KA
Seifert, J Webber, pp. 195–206. St. Paul: Am.
Phytopathol. Soc. 304 pp.

Maschwitz U, Hölldobler B. 1970. Der Kar-
tonbau bei Lasius fuliginosus Latr. (Hy-
menoptera: Formicidae). Z. Vgl. Physiol.
66:176–89

Maschwitz U, Koob K, Schildknecht H. 1970.
Ein Beitrag zur Funktion der Metatho-
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Figure 1 Comparison of agriculture in attine ants, xyleborine beetles, macrotermitine ter-
mites, and humans. The time series (left to right) highlight the roles of beneficial auxiliary
microbes (blue shading) that suppress diseases (black dots) or aid in buffering against con-
taminant microbes (orange shading). (a) Ant agriculture. Ants attempt to clean contam-
inant microbes from garden substrate (not shown) and remove garden diseases (black dots)
through active weeding (top ant). The ants (bottom ant) then plant a crop-microbe con-
sortium (crop plus beneficial auxiliary blue microbes) onto the prepared substrate, spread-
ing beneficial microbes through the garden matrix. (b) Beetle agriculture. Primary fun-
gus (crop) lining the tunnel grows intermixed with secondary microbes (blue shading) and
occasional contaminant microbes (orange dots). No disease microbes (black dots) are
indicated because they very rarely occur in young gardens near a tunnel head. The exact
roles of the secondary microbes in beetle fungiculture are still unknown. (c) Termite agri-
culture. Hypothetical passage of a mixture of crop spores, auxiliary microbes, and sub-
strate (ingested plant material) through the gut of a termite, followed by defecation of the
substrate-crop-microbe consortium in fecal pellets that the termite adds to new garden.
Other (external) modes of crop-microbe copropagation may exist in termite farmers, par-
alleling the planting of crop-microbe consortia in attine ants. Selective passage of
microbes through the alimentary canals of attine ants and ambrosia beetles is unknown,
but has never been investigated. No disease microbes (black dots) are indicated because
no specialized pathogens have yet been identified in the fungus-growing termite system.
(d) Human agriculture (wheat). A seed, fortuitously planted in soil enriched in antibiot-
ic-secreting rhizosphere bacteria (blue-shaded soil), grows into a vigorous, disease-
resilient crop plant (Weller et al. 2002). However, crops are often planted in microbially
suboptimal soil (orange-shaded soil), leading to higher disease loads (black dots) on such
plants. Traditional human planting schemes passage crops through a seed stage without
copropagating disease-suppressant rhizosphere microbes. Illustrations by Barrett Klein.
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Figure 2 Evolutionary histories of insect agriculture. (a–c) Comparison of the patterns of
evolutionary diversification in the insect farmers (left cladograms) and their cultivated
fungi (right cladograms). In the left cladograms, farmer lineages are black and nonfarmer
relatives are gray, whereas in the right cladograms, cultivated fungal lineages (cultivars) are
black and noncultivated feral fungal lineages are gray. Independent origins of agricultural
behavior are indicated for each farmer clade in the left cladograms, and independently
domesticated fungal lineages appear as separate cultivar lineages in the right cladograms.
(d) Garden of the fungus-growing ant Atta texana (photo by Greg Dimijian). The workers
are cleaning and shredding leaf cuttings before expanding new gardens through the addi-
tion of leaf material. (e) Garden of the fungus-growing termite Macrotermes bellicosus
(photo by Karen Machielsen). The fungus is grown on fecal pellets that are stacked into
lamellar walls of the fungus garden (comb). ( f ) Gallery of the ambrosia beetle
Trypodendron lineatum (photo by Susanne Kühnholz) with ambrosia fungus (black) lining
the main gallery and beetle brood developing in niches adjacent to the gallery. Galleries are
constantly patrolled by adult beetles (not shown). Figure adapted from Mueller & Gerardo
2002.
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