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Summary

Many parameters and positive-definiteness are two major obstacles in estimating and modelling

a correlation matrix for longitudinal data. In addition, when longitudinal data is incomplete,

incorrectly modelling the correlation matrix often results in bias in estimating mean regression

parameters. In this paper, we introduce a flexible and parsimonious class of regression models

for a covariance matrix parameterized using marginal variances and partial autocorrelations. The

partial autocorrelations can freely vary in the interval(−1, 1) while maintaining positive defi-

niteness of the correlation matrix so the regression parameters in these models will have no con-

straints. We propose a class of priors for the regression coefficients and examine the importance

of correctly modeling the correlation structure on estimation of longitudinal (mean) trajectories

and the performance of the DIC in choosing the correct correlation model via simulations. The

regression approach is illustrated on data from a longitudinal clinical trial.

Key words: Markov Chain Monte Carlo; Generalized linear model; Uniform prior
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1 Introduction

Longitudinal data, measurements on the same subject over time, arise in many areas, from clin-

ical trials to environmental studies. In such studies, to draw valid inferences, the covariance

between repeated observations on the same individuals needs to be properly modelled. On top

of this, in incomplete longitudinal data, mis-modeling thecovariance matrix can result in bi-

ased estimates of fixed effect mean parameters (Little and Rubin, 2002; Daniels and Hogan

2008). Two major obstacles for modeling covariance matrices are 1) the number of parameters

and 2) positive-definiteness.

Many approaches have been proposed for estimating a covariance matrix more efficiently,

whether by shrinking eigenvalues to obtain more stability (Yang and Berger, 1994; Efron and

Morris, 1976) or reducing the dimension via structure (Leonard and Hsu, 1992; Chiu et al.,

1996; Pourahmadi, 1999; Pourahmadi 2000; Daniels and Zhao,2003). Some regression ap-

proaches to introduce structure and/or unit-specific covariates (Chiu et al., 1996; Hoff and Niu,

2012) can result in difficulty in interpreting regression coefficients due to complex (but uncon-

strained) parameterizations. This is not our focus here, but the parameterizations in Pourahmadi

(1999) and the one given here do not suffer from this issue. There has also been research on

shrinkage to introduce stability in structured ways (Daniels and Kass 1999, 2001; Daniels and

Pourahmadi 2002) or without structure (Wong et al. 2003; Liechty et al. 2004).

These approaches can often be thought of in terms of specific decompositions of a covariance

matrix. Our approach will focus on the variance/correlation decomposition, used recently by

Barnard, McCulloch and Meng (2000), which decomposes the covariance matrixΣ asΣ =

DRD, where R is correlation matrix and D is diagonal matrix of standard deviations. Our

approach here will rely on this decomposition and a further decomposition of the correlation

matrixR into partial autocorrelations which we review next.

Consider ap × p correlation matrixR with (j, j + k)th element, the marginal correlation
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ρjj+k ≡ Cor(Yj, Yj+k). The matrixR can be re-parameterized using partial autocorrelations,

πjj+k ≡ Cor(Yj, Yj+k|Yl, j < l < j + k). To provide an expression for the partial autocorre-

lations as a function of the marginal correlations, we first define some notation (similar to Joe

(2006)).

Let R(j,j+k) be thek + 1 × k + 1 submatrix ofR which takes elements from thejth row to

the (j + k)th row and thejth column to the(j + k)th column. Then we partitionR(j,j+k) as

follows,




1 r1(j, k) ρj, j+k

r
T
1 (j, k) R2(j, k) r

T
3 (j, k)

ρj+k, j r3(j, k) 1




,

wherer1(j, k) = (ρj, j+1,...,ρj, j+k−1), r3(j, k) = (ρj+k, j+1, ..., j+k,j+k−1), andR2(j, k) contains

the middlek − 1 rows and columns ofR(j,j+k).

The partial autocorrelations have the following form as a function of the marginal correla-

tions,





πj,j+1 = ρj,j+1

πj,j+k =
ρj,j+k−rjk

Bjk
2 ≤ k ≤ p− j

. (1)

whererjk = r1(j, k)R
−1
2 (j, k)rT3 (j, k) andB2

jk = [1−r1(j, k)R
−1
2 (j, k)rT1 (j, k)][1−r3(j, k)R

−1
2 (j, k)rT3 (j, k)].

The marginal correlations,ρj,j+k can also be written as a simple function of the partial autocor-

relations,

ρj,j+k = rjk + πj,j+kBjk.

One of the advantages of this parameterization is thatπjk can vary independently in(−1, 1)

while maintaining positive definiteness ofR, unlikeρjk (see, e.g., Joe 2006). Based on reparam-

eterizing the marginal correlations into partial autocorrelations, Daniels and Pourahmadi (2009)
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introduce a prior forR induced by independent uniform priors on the partial autocorrelations,

i.e.,p(π) = 2−p(p−1)/2

After reparameterizing the off-diagonal elements ofR = (ρjk) in terms of the partial au-

tocorrelations{πjk}, we transform them to the entire real line using Fisher’s z transformation.

Moving from the constrained marginal correlations to the unconstrained transformed partial au-

tocorrelations provides a link function framework similarto the theory of generalized linear

models in McCullagh and Nelder (1989). The models proposed here will extend recent models

from the literature for correlation matrices including themultivariate probit (Czado 2000) and

related models (Daniels and Normand 2006).

This article expands on previous work by describing how to doBayesian inference in the

proposed models, including an appropriate choice of priors. Under an improper prior on the

mean parametersand monotone (ignorable) missingness, we provide conditions under which

the posterior is proper. We also provide simulation resultsthat demonstrate the importance of

specifying the correct correlation structure under ignorable missingness and evaluate the ability

of the DIC to select the correct model in these situations.

This article is arranged as follows. In Section 2, we introduce regression models for the par-

tial autocorrelations and marginal variances. We derive and investigate priors for the regression

parameters for the partial autocorrelation and marginal variance parameters in Section 3. We

provide details on posterior computations in Section 4. Results of a simulation study to inves-

tigate correlation structure misspecification are given inSection 5. Application of the models

to a schizophrenia clinical trial is presented in Section 6.Section 7 provides conclusions and

extensions.
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2 Models for the covariance matrix

Let Yi : i = 1, . . . , n be ap × 1 vector of longitudinal responses measured (without loss of

generality) at times1, . . . , p with distribution,

Yi ∼ Np(x
T
i β,Σi), (2)

whereβ is a vector of (mean) regression parameters with dimensionpβ×1, xi is apβ×p covariate

matrix, andΣi = DiRiD
T
i . We build regression models forRi via the partial autocorrelations

andDi, via the marginal variances in the following subsections.

2.1 Partial autocorrelations

Consider the following regression model forπi,jk, thejk-th partial autocorrelation for subjecti,

z(πi,jk) = w⋆
i,jkγ, (3)

wherez(·) is Fisher’s z-transform,z(π) = 1
2
log 1+π

1−π
andw⋆

i,jk is a 1 × q vector of covariates

to model structure and subject-level covariates;γ is unconstrained in q-dimensional real space

R
q. Given that the partial autocorrelations are correlationsbetween longitudinal observations,

conditional on intermediate ones, we might expect higher order ones to be zero. For example,

we might specifyw⋆
i,jk = I(|k− j| = 1) corresponding to an AR(1) structure with all lag partial

autocorrelations bigger than one equal to zero. The design vector,w⋆T
i,jk = (1, |k − j|) implies

thatΠ̃, the corresponding partial autocorrelation matrix, whichhas 1’s on the main diagonal and

(j, k)−th elementπjk (for j, k 6= 1) has a Toeplitz form with the z-transform of the elements on

each subdiagonal having a linear relationship in lag. The design vector,w⋆T
i,jk = (I{|k − j| =

1}, I{|k − j| = 1}j, I{|k − j| > 1}, I{|k − j| > 1}|k − j|) implies that the vector ofπ’s has

nonstationary structure with the z-transform of the lag onecorrelations a linear function of time
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and a stationary form for the rest of the matrix, with the z-transform of the elements for each lag

(after the first one) having a linear relationship in lag. Forrelated structures for the parameters

of the modified Choleski decomposition, see Pourahmadi (1999) and Pourahmadi and Daniels

(2002) .

2.2 Marginal Variances

We assume the logarithms of the marginal standard deviations,σi,j (i.e., thejth diagonal element

of Di) follow the regression models,

log(σi,j) = Ai,jη, (4)

whereAi,j is a 1 × q0 vector of covariates to model structure and unit-level covariates. For

example,A(i,j) = (I(j = 1), I(j > 1)) induces a structure of equal variance except for time1;

A(i,j) = (1, j) corresponds to the marginal variances that are log linear intime. Verbyla (1993)

proposed models for the marginal variances (residual variances) in terms of unit level covariates

(i.e., heterogeneity) in the setting of independent responses.

3 Priors for γ

Standard diffuse priors forγ in (3), e.g., an improper uniform prior onRq or a diffuse normal

prior, result in most of the mass for the partial autocorrelations,πi,jk being put at−1 and+1.

This happens in many settings with diffuse priors on transformed spaces, e.g., coefficients in

logistic regression (see Agresti and Hitchcock, 2005). These are not sensible prior beliefs. In

the next two subsections, we will review a prior proposed forthe partial autocorrelations from

Daniels and Pourahmadi (2009) and propose alternative onesthat both avoid this behavior for

an unstructured vector ofπ’s. We then propose a way to use these priors, which are both within
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the class of independent transformed Beta priors, to construct priors forγ and point out their

connections to g-priors. We also construct a similar prior for η in (4).

3.1 Review of priors for unstructured partial autocorrelat ions

Independent uniform priors on the partial autocorrelations can be expressed as independent Beta

priors on the interval(−1, 1), Beta(−1,1)(a, b), with parametersa = 1 andb = 1. These priors

induce desirable behavior for longitudinal (ordered) databy shrinking higher lagmarginal corre-

lations toward zero (Daniels and Pourahmadi, 2009) and a priori favoring serial correlation often

seen in longitudinal data (Munoz et. al., 1992). The behavior can be understood by examining

the determinant of the Jacobian fromρ to π, J(ρ → π) (Joe, 2006),

J(ρ → π) =

p−1∏

k=1

(1− π2
k,k+1)

−(p−2)/2

p−2∏

k=2

p−k∏

j=1

(1− π2
j,j+k)

−(p−1−k)/2.

As lag (k) increases, more mass is placed toward zero. This isnot surprising since most priors

on R(ρ) do not use information on potential ordering of the responses and would induce this

prior form on partial correlations to obtain identical marginal priors for the marginal correlations

(Barnard et al., 2000). However, theBeta(−1,1)(1, 1) prior doesnot favor positive correlations as

we typically see in longitudinal data.

3.2 An alternative prior for unstructured partial autocorr elations

Here we introduce a prior on the partial autocorrelations that favors positive correlations over

negative correlations. We propose independent priors onπjk with pdf’s, p(πjk) =
1+πjk

2
, which

is aBeta(−1,1)(2, 1) distribution; we refer to these as triangular priors given their shape. The

implied marginal priors forρjk are given in Figure 1a. The priors have decreasing mass closeto

1 as lag (|j − k|) increases. This is consistent with serial correlation often seen in longitudinal
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data and places more mass onpositive correlations than theBeta(−1,1)(1, 1) priors.

In the following section, we will use these two priors as a starting point to construct a prior

for the regression coefficients,γ in (3). In the remaining, all Beta priors will be specified on the

interval(−1, 1), but we just denote them asBeta(a, b).

3.3 Proposed prior onγ

In the following, when it is not necessary we will drop the subscripts onπjk. We start by deriving

the distribution ofz(πjk) when theπjk follow independentBeta(1, 1) priors. For this prior onπ,

z(π) = z = 1
2
log 1+π

1−π
, with pdf,

f(z) =
2e2z

(1 + e2z)2
,

wherez ∈ (−∞,+∞). This is the pdf of a logistic distribution,z ∼ logistic(0, 1
2
) with variance

π/12. It is well known that the logistic distribution can be approximated with a t-distribution

(Albert and Chib 1992). However, the easy to use construction of the multivariate t-distribution

as a gamma mixture of normals has t-marginals but they are notindependent as we required

based on our original specification of independent Beta’s. As a result, we will use a normal

approximation to the logistic distribution, whose multivariate version does have independent

marginals,z ∼ N(0, π
12
); that is, the random vectorz ∼ N(0, π

12
IT×T ), whereT = p(p−1)

2
.

Figure 1b shows how well the normal prior approximates the original uniform prior on the

hypercube (i.e., the independent Beta(1,1) priors) in terms of the marginal correlations. The

upper triangular elements represent the marginal priors ofρjk from the original uniform prior

and the lower triangular elements represent the marginal priors ofρjk from the prior based on the

normal approximation. The approximate prior appears to behave sufficiently similarly.

Now, we show how this prior can be used to construct a prior forγ in (3). We first fo-

cus on the case ofz(πi,jk) = z(πjk) and for ease of notation, letzjk = z(πjk) and z =
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(z12, .., z1p, z23, ...z2p, ...zp−1p)
T . Consider the full rank linear transformationz = wγ, where

w =

(
w⋆ w⊥

)
.

w⋆ is a T × q (T ≥ q) full column rank matrix corresponding to the regression in(3). The

matrixw⊥ is aT × (T − q) full column rank matrix such that(w⋆)T × (w⊥) = 0q×(T−q) and

(w⊥)T × w⊥ = I(T−q)×(T−q).

Therefore

γ =




γ⋆

γ⊥


 =

(
w⋆ w⊥

)−1

z,

with

(
w⋆ w⊥

)−1

=




((w⋆)Tw⋆)−1(w⋆)T

(w⊥)T


 .

We defineE(z) = µ andV ar(z) = σ2 based on the multivariate normal prior onz. Under the

Beta(1,1) prior onπ, µ = 0 andσ2 = π/12; under the Beta(2,1) prior (triangular prior),µ = 1
2

andσ2 = 0.5722. The corresponding prior forγ is multivariate normal with mean and variance

given below,

E(γ) = µ




((w⋆)Tw⋆)−1(w⋆)T

(w⊥)T


 1T×1

and

V ar(γ) = σ2




((w⋆)Tw⋆)−1 0

0 I(T−q)×(T−q)


 .
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The resulting prior forγ⋆ is also multivariate normal with expectation,µ(w⋆Tw⋆)−1w⋆T1T×1

and variance,σ2(w⋆Tw⋆)−1. The dimension reduction fromz to γ⋆ results in the prior variance

being too small. To see this note that the variance ofith component ofz in z = wγ is

var(zi(γ)) = var(w(i,:)γ)

= σ2(w⋆
(i,:)((w

⋆)Tw⋆)−1(w⋆
(i,:))

T + w⊥

(i,:)(w
⊥

(i,:))
T ).

Theith component ofz = w⋆γ⋆ has variance

var(zi(γ⋆)) = var(w⋆
(i,:)γ

⋆)

= σ2(w⋆
(i,:)((w

⋆)Tw⋆)−1(w⋆
(i,:))

T ).

Clearly,var(zi(γ)) > var(zi(γ⋆)). It is easy to adjust for this by noting that the average variance

of z(πjk) = w⋆
jkγ

⋆, var(z) is

var(z) =
1

T

T∑

i=1

var(zi)

=
q

T
σ2,

whereσ2 is the desired variance. Hence we can inflatevar(γ⋆) by a factor ofT
q
. The resulting

prior for γ⋆ is

γ⋆ ∼ N(µ((w⋆)Tw⋆)−1(w⋆)T1T×1,
T

q
σ2((w⋆)Tw⋆)−1).

See the supplementary materials for additional details on the above derivations.
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3.4 Extension to unit-specific covariates

We can easily extend this prior to unit-specific covariates.Suppose, fori = 1, . . . , n,

z(πi,jk) = w⋆
i,jkγ.

Let w⋆
i be ap× q matrix such thatzi = w⋆

i γ. We first stackz1, ..., zn andw⋆
1, ...w

⋆
n together, i.e.,

z = (zT1 , z
T
2 , ..., z

T
n )

T , andw⋆ = (w⋆T
1 , w⋆T

2 , ..., w⋆T
n )T . So, we havez = w⋆γ andw⋆ is nT × q

full column rank matrix. Similar to the previous case, we obtain

γ ∼ N(µ(
n∑

i=1

w⋆T
i w⋆

i )
−1w⋆T

1nT×1,
nT

q
σ2(

n∑

i=1

w⋆T
i w⋆

i )
−1), (5)

which is our recommended prior in the general case.

3.5 Connection to g-priors

Our priors onγ have similar form to theg−priors introduced by Zellner (1986). However,

our derivation begins with a prior on an unconstrained parameter space as opposed to Zellner’s

construction of a prior based on the posterior distributionof imaginary datay0, y0 = xTβ +

ǫ whereǫ ∼ N(0, σ2
0In) (with independent priors onβ ∝ 1 andσ0 ∝ 1

σ0
). The Zellner prior for

β|σ0 has the formβ ∼ N(β̂0,
σ2
0

g
(xxT )−1), whereβ̂0 is the least squares estimate based on the

imaginary data and g is a penalty parameter; in practice, themean is typically set to zero so no

imaginary data is actually required. Our prior has a similarform but it is based on the projection

of z(πi) onw⋆
i with weights based on the original prior forπ on the unconstrained space (here

a hypercube). The ’weights’ based on the prior in (5) come in throughµ in the prior mean,

(
∑n

i=1w
⋆T
i w⋆

i )
−1w⋆Tµ1nT×1 andσ2 in the prior variance,σ2(w⋆Tw⋆)−1. As a result, with these

priors, we do not have to deal with the issue of the choice ofg (for some discussion, see George

and Foster (2000) and Clyde and George (2000)).
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3.6 Prior for η

The most commonly used prior on the marginal variancesσ2 is the inverse gamma prior, which

facilitates computations due to conditional conjugacy. Daniels (2006) used a uniform prior on

the transformed innovation (IV) parameters with or withoutstructure similar to the model (4) in

Section 2.2 for the marginal standard deviations. Barnard et al. (2000) discussed independent

normal priors on logarithmic transformedσ. In particular, they proposed the following prior

log(σi) ∼ N(ξ,Λ), (6)

with Λ diagonal. We will derive a prior forη similar to that forγ based on Barnard et al.’s prior

for the marginal standard deviations. The resulting prior is

η ∼ N(λ(

n∑

i=1

AT
i Ai)

−1AT
1np×1, τ

2np

q0
(

n∑

i=1

AT
i Ai)

−1)).

Note in the derivation, we have assumedξ = λ1p×1 andΛ = τ 2Ip×p in (6), whereλ andτ are

fixed a priori.

4 Posterior distribution and computations

The full data likelihood,L(η, β, γ|y) is proportional to
∑n

i=1 |Di(η)Ri(γ)Di(η)|
−

1

2 exp{−1
2
tr[Σn

i=1Ri(γ)
−1Di(η)

−1(Yi − xiβ)(Yi − xiβ)
TDi(η)

−1]}.
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We specify the following priors forβ, η, andγ,

β ∝ 1 (7)

η ∼ N(λ0(
n∑

i=1

AT
i Ai)

−1AT
1np×1, τ

2np

q0
(

n∑

i=1

AT
i Ai)

−1) (8)

γ ∼ N(µ(

n∑

i=1

w⋆T
i w⋆

i )
−1w⋆T

1nT×1,
nT

q
σ2(

n∑

i=1

w⋆T
i w⋆

i )
−1) (9)

where
∑n

i=1A
T
i Ai and

∑n
i=1w

⋆T
i w⋆

i are non-singular. In the setting of incomplete longitudinal

responses, under an assumption of ignorable dropout (monotone missingness), we only need to

specify the full data response model and the likelihood of interest is the observed data likelihood,

L(β, γ, η|yobs, x), where the observed data response isyobs (Daniels and Hogan 2008); the form

of the observed data likelihood is given in the supplementary materials.

Since we specify an improper prior onβ, we need to prove the posterior distribution of

(β, γ, η) is proper. In the next section, we provide a theorem which gives simple sufficient

conditions under which the posterior is proper. The supplementary materials contain details on

the MCMC algorithm to sample from the posterior distribution.

4.1 Posterior propriety

In the following theorem, we state conditions that are sufficient for the posterior to be proper.

First, we need to introduce some notation. Suppose full-dataYi : i = 1, . . . , n are independently

distributed random variables with distributionYi ∼ Np(x
T
i β,Σi), wherexi is apβ × p covariate

matrix,β is apβ×1 (mean) regression parameter vector,Σi = D
1

2

i (η)Ri(γ)D
1

2
T

i (η), andDi(η) =

diag(σ2
i(η)) with σ2

iη = (σ2
i1, σ

2
i2, ..., σ

2
ip) specified by (4) andRi(γ) specified by (1) and (3);

defineℑβ ,ℑγ,ℑη to be sample spaces ofβ, γ, η, respectively. Let(Qi1, ..., Qip)
T be a vector of

observed data indicators, whereQik = 1 if Yik is observed (0 otherwise). LetY ki
i = {Yij, j =

1, . . . , ki whereki : Qiki = 1, Qi,ki+1 = 0} be the vector of observed data (of dimensionki) for
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subjecti andSk = {i, Qiki = 1 andQiki+1 = 0, andki = k, where1 ≤ k ≤ p− 1; i = 1, ..n} be

the set of subjects with observed data of dimensionk.

Theorem 1:

We assume the observed data distribution for theith subject (i = 1, . . . , n) isY ki
i ∼ Nk(x

kiT
i β,Σki

i ),

wherexki
i = xi[:,1:ki] is apβ×ki submatrix ofxi andΣki

i = Σi[1:ki,1:ki] is theki×ki principal sub-

matrix ofΣi. We also assume the priors on the parameters are given by (7)-(9) and missingness

is monotone and ignorable. Then the posterior of(β, γ, η) will be proper under the following

three (easy to check) conditions:

1.
∑

i∈Sk
xki
i x

kiT
i is non-singular for allk ∈ {1, 2, . . . , p− 1}.

2.
∑

AiA
T
i is non-singular.

3.
∑

w⋆
iw

⋆T
i is non-singular.

The proof is given in the supplementary materials. Note thatthe three conditions are conditions

for the three design matrices in our model (for the mean, the variance, and the correlations,

respectively); the latter two guarantee that the priors (8)and (9) are proper.

5 Simulation

To assess the importance of the correlation structure on estimating the (mean) longitudinal tra-

jectories in incomplete data, we conducted a simulation study. The true model was (2) with

p = 6. For each individual, the rows of the mean design matrix werespecified as a second order

orthogonal polynomial. We setβ = (27,−2.3, 0.50)T . We considered three sample sizes (30,

100, and 400). For each scenario we simulated 200 data sets.

The true models for marginal variances and partial autocorrelation coefficients were given by

z(πjk) = γ1I(|k − j| = 1
⋂

j = 1) + γ2I(|k − j| = 2) + γ3I(|k − j| = 1
⋂

j > 1) (10)
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and

log σjj = η1I(j = 1) + η2I(j > 1),

with γ = (0.65, 0.21, 0.85)T , andη = (150, 200)T . The structure onπ represents a second order

model with the lag one partial autocorrelations constant except for time 1, the lag two partial

autocorrelations constant over time, and higher lag partial autocorrelations equal to zero. The

structure on the variances corresponds to a constant variance over time after time one.

After simulating the complete data, we induce ignorable missingness via the following miss-

ing data mechanism,

logit{P (Qik = 1|Qi,k−1 = 1, yobs)} = α1 + α2yk−1,

whereQjk = I{Yjk is observed} andα = (3.86,−0.05).

We fit four models to the simulated data. For each model, we usethe same true mean and

marginal variance models, but different partial autocorrelation models. Our objective is to eval-

uate the impact of mis-specifying the partial autocorrelation model on inference on the marginal

mean regression coefficients,β. Specifically, the models we compare are:

1) True structured model forπ given in (10)

2) Independence model,π = 0

3) AR(1) model:z(πjk) = γ1I{|k − j| = 1}

4) Unstructured model (no structure onπ)

For models 1, 3, and 4, we use a Beta(1,1) distribution in constructing the prior in (5); we

note that the simulation results were similar when using a Beta(2,1). For the prior onη, we set

(λ, τ 2) = (0, 100). For each model, we compute the DIC (Spiegelhalter et al., 2002) based on

the observed data likelihood (Wang and Daniels, 2011).

For each of the simulated datasets, we ran20, 000 iterations for each of the four models.

For each dataset, we compute the DIC for the four correlationmodels and rank them (1=best to
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4=worst) based on their fit (as measured by the DIC). To compare inference on the mean under

all four models, we computed the following two quantities: 1) Total MSE, sum of mean squared

error of the components ofβ and 2) Change from Baseline, change of estimated mean responses

from time one to time six. We also compare the mean trajectories graphically.

5.1 Results

The simulation results are given in Tables 1 and 2 and Figure 2. As the sample size increases,

the estimates forβ quickly approach the true value for the true structured correlation model,

more slowly for the unstructured correlation model and to the wrong values for the AR(1) and

independence correlation models (with the latter with considerable bias) (Table 1). The results

in Table 2 are similar with bias in the estimate of change frombaseline and larger MSE’s for the

estimates of theβ’s for the incorrect models. Graphically, the fitted trajectories can be seen in

Figure 2 and illustrate the bias in the fitted trajectory whenthe correlation structure is incorrect.

The DIC chose the true model with high probability, with thisprobability generally increasing

with sample size (see Table 3). For example, forn = 30, 100, 400, the true structured model is

chosen by the DIC with probabilities.66, .99, and.95, respectively. It is interesting to note that

the main competitor of the true model in the smaller sample sizes (30, 100) is the (parsimonious)

AR(1) structure, while for the larger sample size (400) it isthe unstructured model. This is the

reason that the probability of the true structured model decreases betweenn = 100 andn = 400.

For the larger sample sizes, AR(1) is no longer a reasonable competitor, but the unstructured is

(though it is only chosen with probability.06 for n = 400). And note, of course, the unstructured

model is correct, but it has more free parameters than needed.
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6 Data Example: Schizophrenia trial

The data were collected as part of a randomized, double-blind clinical trial for a ”new” phar-

macologic treatment of schizophrenia (Lapierre et al. 1990). The trial compared three doses of

the ”new” treatment (low, medium, high) to the standard doseof haloperidol, an effective an-

tipsychotic that had known side effects. At the time of the study, the trial was designed to find

the appropriate dosing level since the experimental therapy was thought to have similar antipsy-

chotic effectiveness with fewer side effects. Two hundred forty-five patients were enrolled and

randomized to one of the four treatment arms. The intended length of follow-up was 6 weeks,

with measures taken weekly expect for week 5. Schizophreniaseverity was assessed using the

Brief Psychiatric Rating Scale (BPRS) a sum of scores of 18 items that reflect behaviors, mode,

and feelings. The scores ranged from 0 to 108 with higher scores indicating higher severity.

To enter the study, the BPRS score had to be no less than 20. We will illustrate our approach

using only the medium dose arm. Of main inferential interestis the change in BPRS from the

beginning to the end of the study.

The dropout rate on the medium dose arm was high, with only 40 out of 61 (about66%)

participants having a measurement at week 7 (the sixth measurement time). Reasons for dropout

included adverse events (e.g., side effects), lack of treatment effect, and withdrawal for unspec-

ified reasons. The trajectories of completers vs. non-completers is shown in Figure 3a. Clearly

those dropping out were doing worse prior to dropping out (higher BPRS).

6.1 Models

Let the longitudinal vector of outcomes for subjecti beYi = (Yi1, ..., Yi6)
T , measured at weeks

t = (t1, . . . , t6) = (1, 2, 3, 4, 5, 7). We assumeYi follows (2) with mean.

E(Yij) = β0 + β1x
j
1 + β2x

j
2,
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wherexj
1 = (tj − t) andxj

2 = (tj − t)2 −
∑

6
k=1

(tk−t)3
∑

6
k=1

(tk−t)2
(tj − t) −

∑
6
k=1

(tk−t)2

6
, i.e., an orthogonal

quadratic polynomial. We assume missingness is ignorable.

We fit the partial autocorrelation models given below:

Independence Model:z(πjj+k) = 0, log(σj) = I(j = 1)η1 + I(j > 1)η2.

AR(1) Model:z(πjj+k) = I(k = 1)γ1, log(σj) = I(j = 1)η1 + I(j > 1)η2.

Unstructured Covariance Model:z(πjj+k) = γ
(+)
jj+k (with γ = (γ

(+)
12 , γ

(+)
13 , γ

(+)
p−1,p)), log(σj) = ηj .

Structured Model 1:

z(πjj+k) = I(k = 1 ∩ j < 2)γ1 + I(k = 1 ∩ j > 1)γ2 + I(k = 2)γ3,

log(σj) = I(j = 1)η1 + I(j > 1)η2.

Structured Model 2:

z(πjj+k) = I(k = 1 ∩ j < 2)γ1 + I(k = 1 ∩ j > 1)γ2 + I(k = 2 ∩ j < 3)γ3 + I(k = 2 ∩ j > 2)γ4 + I(k = 3)γ5 + I(k = 4)γ6 + I(k = 5)γ7,

log(σj) = I(j = 1)η1 + I(j > 1)η2.

Structured Model 1 is the same model as the one considered in the simulation. Stuctured Model

2 is more flexible than Structured Model 1 for the partial autocorrelations allowing nonstationary

lag one and lag two autocorrelations and stationary lag three, four and five (with no structural

zeros). The structure on the variances is the same as Structured Model 1. The marginal variance

structure for all the models and the partial autocorrelation structures for Structured Models 1 and

2 were chosen after examining the unstructured covariance matrix in Table 4.

We use priors specified in (7), (8), and (9) forβ, η, γ, respectively. For (9), we consider both

theBeta(1, 1) (uniform) andBeta(2, 1) (triangular) for the specification of(µ, σ2). For (8), we

setλ = 0 andτ 2 = 100.
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6.2 Results

For all models, we ran 200,000 iterations with minimal burn-in since the chains converged after a

few iterations. The plot of all fitted mean trajectories is given in Figure 3b (only shown under the

triangular prior). The mean BPRS initially decreased but started to go back up by week 5. This is

related to those dropping out doing more poorly than those staying in the study. Table 5 contains

the posterior mean ofβ, the change from baseline to week 7, their95% credible intervals, and

the DIC based on the observed data likelihood. This table shows that models under uniform and

triangular prior fit similarly. The changes from baseline inall models were negative with95%

credible interval excluding 0, showing that Medium-dose reduced the BPRS score significantly,

which agrees with earlier analysis done in Daniels and Hogan(2008). The changes from baseline

varied from−14 to−11 based on the covariance model chosen. According to the DIC, Structured

Model 2 with the triangular prior provided the best fit. The change from baseline in Structured

Model 2 was almost a full point different from the unstructured model.

7 Discussion

In this paper, we first extended the priors in Daniels and Pourahmadi (2009) for partial autocor-

relations for the unstructured case by introducing a set of (triangular) priors which favor positive

marginal correlations. Using Fisher’s z-transformation on the partial autocorrelations, we intro-

duced a regression framework to induce structure and/or unit-specific covariates in the correlation

matrix. Based on priors proposed for the partial autocorrelations in the non-regression setting,

we introduced a prior for the coefficients in the partial autocorrelation regressions (and for the

coefficients of the marginal variance regressions). We conducted simulations that illustrated the

importance of correct specification of the correlation structure in the setting of ignorable miss-

ingness in longitudinal data and show the ability of the DIC to choose the true correlation model.

We also fit the models to data from a longitudinal schizophrenia clinical trial.
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There are a variety of extensions to the modeling proposed here. Clearly, it can be difficult

to ‘find’ a good parametric model that imposes structure on the correlation matrix. Thus ex-

tending approaches developed under different parameterizations (Smith and Kohn, 2002; Wong,

Carter, and Kohn, 2003) to our setting is an important extension. Correlation matrices (instead

of covariance matrices) arise commonly in models for longitudinal data modeled using Gaussian

copulas (Nelsen, 1999); efficient computations using the partial autocorrelation in these settings

will be a challenging problem due to the lack of conjugacy. However, the partial autocorrelation

models provide an opportunity for flexible dependence in longitudinal categorical data via multi-

variate probit models. To offer some robustness to a selected model for the correlation structure,

an alternative would be to shrink the partial autocorrelations to the structure using independent

Beta priors as has been done previously using normal priors on other parameterizations of a

covariance matrix (Daniels and Kass, 2001; Daniels and Pourahmadi, 2002). Finally, we are

considering extensions to irregular longitudinal data using a partial autocorrelationfunction and

to time-dependent covariates.
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Sample Size 30 Sample Size 100 Sample Size 400
Unstr True AR(1) Indep. Unstr True AR(1) Indep. Unstr True AR(1) Indep.
26.5 26.9 26.7 25.3 26.7 26.9 26.6 25.3 26.9 27.0 26.7 25.4
-2.1 -2.0 -2.1 -2.5 -2.0 -2.0 -2.1 -2.5 -2.0 -2.0 -2.1 -2.5
0.52 0.51 0.50 0.58 0.51 0.51 0.50 0.58 0.50 0.50 0.49 0.57

Table 1: Posterior means ofβ: The values in first row, second row, and third row correspondto poste-
rior means ofβ1, β2, andβ3, respectively. The true value forβ is (27.0,−2.0, 0.50). ’Unstr’, ’True’,
’AR(1)’, and ’Indep.’ represent unstructured model, true model, AR(1) model, and independence model,
respectively.

Total MSE Change from Baseline
Unstr True AR(1) Indep. Unstr True AR(1) Indep.
6.9 6.5 6.6 10.1 12.6 12.0 12.7 15.1
1.8 1.7 2.0 4.8 12.2 12.0 12.7 14.9
0.42 0.41 0.52 3.4 12.1 12.0 12.8 15.0

Table 2: Summary measures from the simulation: The values in rows correspond to sample size 30,
100, and 400, respectively. ’Unstr’, ’True’, ’AR(1)’, and ’Indep.’ represent unstructured model, true
model, AR(1) model, and independence model, respectively.’Total MSE’ and ’Change from Baseline’
correspond to the mean square errors ofβ and the change of the mean responses from the beginning to the
end of study (True change is 12.0), respectively.

Sample Size 30 Sample Size 100 Sample Size 400
AR(1) Ind True Unstr AR(1) Ind True Unstr AR(1) Ind True Unstr
0.35 .00 0.66 .00 .01 .00 .99 .00 .00 .00 .95 .06
0.66 .00 .35 .00 .73 .00 .01 .26 .00 .00 .06 .95
.00 .15 .00 .85 .26 .00 .00 .74 1.00 .00 .00 .00
.00 .85 .00 .15 .00 1.00 .00 .00 .00 1.00 .00 .00

Table 3: Percentage of times each model is chosen as best (row 1), second best (row 2), third best (row
3), and worst (row 4). ’AR(1)’, ’Indep’, ’True’, and ’Unstr’correspond to the true model, AR(1) model,
independence model, and the unstructured model, respectively.

126.25 0.6578 -0.0738 0.0804 -0.0253 -0.5230
0.7889 210.35 0.8543 -0.0593 -0.3328 0.0292
-0.0740 1.2718 224.42 0.8559 0.2648 0.4375
0.0806 -0.0594 1.2779 240.84 0.8961 0.3506
-0.0253 -0.3460 0.2713 1.4522 221.98 0.8433
-0.5805 0.0292 0.4692 0.3661 1.2325 243.08

Table 4: MLE of variances (on main diagonal), partial autocorrelations (in upper triangle), and Fisher’s
z-transformation of partial autocorrelations (lower triangle).
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(β0, β1, β2) Changes from Baseline (95% CI) DIC
Independent (25.6, -2.35, 0.68) -14.1 (-18.7, -9.4) 1924.6
Unstructured (26.9, -2.03, 0.62) -12.2 (-16.3, -7.9) 1663.0

AR(1) (Uniform) (27.5, -1.97, 0.69) -11.8 (-15.8, -7.9) 1681.3
AR(1) (Triangular) (27.5, -1.97, 0.69) -11.8 (-15.7, -7.9) 1680.6

Structured Model 1(Uniform) (27.9, -1.80, 0.58) -10.8 (-14.6, -7.0) 1669.6
Structured Model 1(Triangular)(27.9, -1.81, 0.58) -10.8 (-14.7, -7.0) 1670.4
Structured Model 2(Uniform) (27.9, -1.89, 0.54) -11.3 (-15.3, -7.3) 1660.4

Structured Model 2(Triangular)(27.9, -1.89, 0.55) -11.3 (-15.4, -7.3) 1658.1

Table 5: Posterior summaries of the models for the schizophrenia trial.
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Figure 1: Marginal priors for the marginal correlations induced by (a) the triangular Prior and (b) the
Uniform prior. In (b), the upper triangles are the marginal priors on theρ’s induced by the original priors;
the lower triangles are the marginal priors onρ’s after the normal approximation.

1 2 3 4 5 6 7
18

20

22

24

26

28

30

32

34

36

Time

R
es

po
ns

e 
C

ur
ve

 

 
True curve
True model
AR1 model
Independent model
Unstructured model

(a) Fitted Trajectories with sample size 30
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(b) Fitted Trajectories with sample size 100
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(c) Fitted Trajectories with sample size 400

Figure 2: Posterior mean of the trajectories for the Unstructured model, True model, AR(1) model, and
Independence model with sample size 30, 100, and 400
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(a) Trajectories of Completers vs. Non-completers
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Figure 3: Trajectories of the observed data and posterior mean of the trajectories for the models consid-
ered.
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