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Summary

Many parameters and positive-definiteness are two majdadles in estimating and modelling

a correlation matrix for longitudinal data. In addition, @hlongitudinal data is incomplete,

incorrectly modelling the correlation matrix often resul bias in estimating mean regression

parameters. In this paper, we introduce a flexible and parsions class of regression models

for a covariance matrix parameterized using marginal maga and partial autocorrelations. The

partial autocorrelations can freely vary in the inter¢all, 1) while maintaining positive defi-

niteness of the correlation matrix so the regression paea these models will have no con-

straints. We propose a class of priors for the regressiofficieats and examine the importance

of correctly modeling the correlation structure on estiorabf longitudinal (mean) trajectories

and the performance of the DIC in choosing the correct caticel model via simulations. The

regression approach is illustrated on data from a longitidilinical trial.
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1 Introduction

Longitudinal data, measurements on the same subject over &irise in many areas, from clin-
ical trials to environmental studies. In such studies, t@ndwvalid inferences, the covariance
between repeated observations on the same individuals nedx properly modelled. On top
of this, in incomplete longitudinal data, mis-modeling #t@variance matrix can result in bi-
ased estimates of fixed effect mean parameters (Little arlnR@2002; Daniels and Hogan
2008). Two major obstacles for modeling covariance matrare 1) the number of parameters
and 2) positive-definiteness.

Many approaches have been proposed for estimating a cogariaatrix more efficiently,
whether by shrinking eigenvalues to obtain more stabilgng and Berger, 1994; Efron and
Morris, 1976) or reducing the dimension via structure (Lagohand Hsu, 1992; Chiu et al.,
1996; Pourahmadi, 1999; Pourahmadi 2000; Daniels and Z2@@3). Some regression ap-
proaches to introduce structure and/or unit-specific ¢ates (Chiu et al., 1996; Hoff and Niu,
2012) can result in difficulty in interpreting regressioreffcients due to complex (but uncon-
strained) parameterizations. This is not our focus heretheuparameterizations in Pourahmadi
(1999) and the one given here do not suffer from this issueer&’has also been research on
shrinkage to introduce stability in structured ways (Dnand Kass 1999, 2001; Daniels and
Pourahmadi 2002) or without structure (Wong et al. 2003¢chig et al. 2004).

These approaches can often be thought of in terms of speetdfangpositions of a covariance
matrix. Our approach will focus on the variance/correlatiiecomposition, used recently by
Barnard, McCulloch and Meng (2000), which decomposes tlvar@nce matrixX as> =
DRD, where R is correlation matrix and D is diagonal matrix ofnstard deviations. Our
approach here will rely on this decomposition and a furthessamnposition of the correlation
matrix R into partial autocorrelations which we review next.

Consider g x p correlation matrixR with (7, j + k)th element, the marginal correlation



pii+x = Cor(Y;,Y;4x). The matrixR can be re-parameterized using partial autocorrelations,
T4k = Cor(Y;, YiklY1,j < 1 < j+ k). To provide an expression for the partial autocorre-
lations as a function of the marginal correlations, we fiefircle some notation (similar to Joe
(2006)).

Let RUJTF) pe thek + 1 x k + 1 submatrix of R which takes elements from theh row to
the (j + k)th row and thejth column to the(j + k)th column. Then we partitioR7+*) as

follows,

1 ri(j, k) Pj, j+k
I'{(j, k) RZ(jv k) rg(ja k) )
pi+k,j  T3(d, k) 1

wherer(j, k) = (pj, j+1,...05, j+k=1)s 73(J, k) = (Djsk, j+1, ..., j+k.j+k—1), @Nd Ry(j, k) contains
the middlek — 1 rows and columns oV ++),

The partial autocorrelations have the following form as racfion of the marginal correla-
tions,

Tjj+1 = Pjj+1
- : (1)
Tijek = gt 2<k<p—j

wherer;;, = 1 (7. k) Ry (. k)rd (7, k) andB%, = [1—r1(j, k) By (7. k)rd (7, k)] [L—r3(j. k) Ry (. K)rE (7. ).
The marginal correlationg, ;1 can also be written as a simple function of the partial autoco
relations,

Pjj+k = Tjk + Tjj+kBjk.

One of the advantages of this parameterization is thaican vary independently if—1,1)
while maintaining positive definiteness Bf unlike p,;, (see, e.g., Joe 2006). Based on reparam-

eterizing the marginal correlations into partial autoetations, Daniels and Pourahmadi (2009)



introduce a prior forR induced by independent uniform priors on the partial autedations,
i.e.,p(m) = 27pP=1)/2

After reparameterizing the off-diagonal elementsidbt= (p;;) in terms of the partial au-
tocorrelations{r ;. }, we transform them to the entire real line using Fisher'sangformation.
Moving from the constrained marginal correlations to theamstrained transformed partial au-
tocorrelations provides a link function framework simitarthe theory of generalized linear
models in McCullagh and Nelder (1989). The models proposed Wwill extend recent models
from the literature for correlation matrices including tmeltivariate probit (Czado 2000) and
related models (Daniels and Normand 2006).

This article expands on previous work by describing how tdBdgesian inference in the
proposed models, including an appropriate choice of priddader an improper prior on the
mean parameterand monotone (ignorable) missingness, we provide conditiardeu which
the posterior is proper. We also provide simulation redihliéé demonstrate the importance of
specifying the correct correlation structure under ightaanissingness and evaluate the ability
of the DIC to select the correct model in these situations.

This article is arranged as follows. In Section 2, we intrmategression models for the par-
tial autocorrelations and marginal variances. We derivkiavestigate priors for the regression
parameters for the partial autocorrelation and marginahmae parameters in Section 3. We
provide details on posterior computations in Section 4.uRe®f a simulation study to inves-
tigate correlation structure misspecification are givesaction 5. Application of the models
to a schizophrenia clinical trial is presented in SectiorS@ction 7 provides conclusions and

extensions.



2 Models for the covariance matrix

LetY; : « = 1,...,n be ap x 1 vector of longitudinal responses measured (without loss of

generality) at timeg, . . ., p with distribution,

wheref is a vector of (mean) regression parameters with dimensien, z; is apg x p covariate
matrix, and®; = D;R;DI. We build regression models fdt; via the partial autocorrelations

andD;, via the marginal variances in the following subsections.

2.1 Partial autocorrelations

Consider the following regression model far;;, the jk-th partial autocorrelation for subjeit

Z<7Ti,jk) = wz'*,jk% (3)

wherez(-) is Fisher's z-transform;(r) = ;log 1*X andw}, is al x ¢ vector of covariates
to model structure and subject-level covariate$s unconstrained in g-dimensional real space
R?. Given that the partial autocorrelations are correlatibesveen longitudinal observations,
conditional on intermediate ones, we might expect highdeioones to be zero. For example,
we might specifyw; ;, = I(|k — j| = 1) corresponding to an AR(1) structure with all lag partial
autocorrelations bigger than one equal to zero. The desigtoyw;”, = (1, |k — j|) implies
thatll, the corresponding partial autocorrelation matrix, whiels 1's on the main diagonal and
(7, k)—th elementr;;, (for j, k # 1) has a Toeplitz form with the z-transform of the elements on
each subdiagonal having a linear relationship in lag. Treggevectorw;?, = (I{|k — j| =

1} K|k — g = 1}, I{|k — j| > 1}, I{|k — 7| > 1}|k — j|) implies that the vector of’s has

nonstationary structure with the z-transform of the lag ooieelations a linear function of time
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and a stationary form for the rest of the matrix, with theansform of the elements for each lag
(after the first one) having a linear relationship in lag. Felated structures for the parameters
of the modified Choleski decomposition, see PourahmadiqL88d Pourahmadi and Daniels

(2002) .

2.2 Marginal Variances

We assume the logarithms of the marginal standard devatign(i.e., thejth diagonal element

of D;) follow the regression models,

IOg(Uz‘,j) = Ai,jnv (4)

where 4, ; is al x gy vector of covariates to model structure and unit-level caves. For
example,A; ;) = (I(j = 1),1(j > 1)) induces a structure of equal variance except for time
Aqjy = (1,7) corresponds to the marginal variances that are log linetaimie. Verbyla (1993)
proposed models for the marginal variances (residual vees) in terms of unit level covariates

(i.e., heterogeneity) in the setting of independent respsn

3 Priors for ~

Standard diffuse priors foy in (3), e.g., an improper uniform prior dR? or a diffuse normal
prior, result in most of the mass for the partial autocotrefs, ; ;;, being put at-1 and+1.
This happens in many settings with diffuse priors on tramséx spaces, e.g., coefficients in
logistic regression (see Agresti and Hitchcock, 2005).sEhae not sensible prior beliefs. In
the next two subsections, we will review a prior proposedtifier partial autocorrelations from
Daniels and Pourahmadi (2009) and propose alternativetbaéd®oth avoid this behavior for

an unstructured vector afs. We then propose a way to use these priors, which are bakinwi



the class of independent transformed Beta priors, to aactspiriors fory and point out their

connections to g-priors. We also construct a similar promfin (4).

3.1 Review of priors for unstructured partial autocorrelations

Independent uniform priors on the partial autocorrelaioan be expressed as independent Beta
priors on the interval—1, 1), Beta(—1,1y(a, b), with parametera = 1 andb = 1. These priors
induce desirable behavior for longitudinal (ordered) dgtahrinking higher lagnarginal corre-
lations toward zero (Daniels and Pourahmadi, 2009) andoai ieivoring serial correlation often
seen in longitudinal data (Munoz et. al., 1992). The behasém be understood by examining

the determinant of the Jacobian frgnto 7, J(p — 7) (Joe, 2006),

p—1 p—2p—Fk
J(p—>7r):H(1—7er —(r= 2/2HH 1—7r”+k (p_l_k)/2.
k=1 k=2 j=1

As lag (K) increases, more mass is placed toward zero. Thistisurprising since most priors
on R(p) do not use information on potential ordering of the respsre® would induce this
prior form on partial correlations to obtain identical miagg priors for the marginal correlations
(Barnard et al., 2000). However, tii#ta 1 1y(1, 1) prior doesnot favor positive correlations as

we typically see in longitudinal data.

3.2 An alternative prior for unstructured partial autocorr elations

Here we introduce a prior on the partial autocorrelatiorad favors positive correlations over

1+7T]k

negative correlations. We propose independent priors;pwith pdf's, p(m;;) = , which

is a Beta(_1,1)(2, 1) distribution; we refer to these as triangular priors giveeitt shape. The
implied marginal priors fop,, are given in Figure 1a. The priors have decreasing massttiose

1 as lag [j — k|) increases. This is consistent with serial correlatioemgeen in longitudinal



data and places more massmmsitive correlationsthan theBeta(_, 1y(1, 1) priors.
In the following section, we will use these two priors as atstg point to construct a prior
for the regression coefficients,in (3). In the remaining, all Beta priors will be specified tret

interval (—1, 1), but we just denote them dseta(a, b).

3.3 Proposed prior onvy

In the following, when it is not necessary we will drop the sapts onr;;,. We start by deriving
the distribution of:(7;;,) when ther;; follow independenBeta(1, 1) priors. For this prior orr,

z2(m) =2z = %log }J_F—Z with pdf,
2e2
f(z) = m,
wherez € (—oo, +00). This is the pdf of a logistic distribution, ~ logistic(0, 1) with variance
m/12. It is well known that the logistic distribution can be apypiroated with a t-distribution
(Albert and Chib 1992). However, the easy to use constraafdhe multivariate t-distribution
as a gamma mixture of normals has t-marginals but they aréndependent as we required
based on our original specification of independent Beta’s. aAesult, we will use a normal

approximation to the logistic distribution, whose multize version does have independent

marginals: ~ N (0, 753); that is, the random vectar~ N (0, 5 Irxr), whereT = p(”;l).

Figure 1b shows how well the normal prior approximates theimeal uniform prior on the
hypercube (i.e., the independent Beta(1,1) priors) in $eofthe marginal correlations. The
upper triangular elements represent the marginal priogs;ofrom the original uniform prior
and the lower triangular elements represent the margiraisoof p;;, from the prior based on the
normal approximation. The approximate prior appears t@belsufficiently similarly.

Now, we show how this prior can be used to construct a priorfam (3). We first fo-

cus on the case of(m; ;) = z(m;;) and for ease of notation, let, = z(m;;,) andz =



(212, -+, 21p, 223, - 22ps --Zp—1p) | . CoONsider the full rank linear transformatien= w-, where

w:(w* wl).

w*isaTl x q (T > q) full column rank matrix corresponding to the regressior{3h The
matrix w* is a7 x (1" — ¢) full column rank matrix such thatw*)” x (w*) = 0,xr—q and
(wH)T x w = Ir—gx(r—g)-

Therefore

with

We defineE(z) = p andVar(z) = % based on the multivariate normal prior enUnder the
Beta(1,1) prior onr, 1 = 0 ando? = 7/12; under the Beta(2,1) prior (triangular priof),= %

ando? = 0.5722. The corresponding prior foy is multivariate normal with mean and variance

given below,
((w*)T,w*)—l(w*)T
E(,}/) = WK 171
(wh)”
and
'LU* T,w* —1 0
Var(y) = o° ((w?) )
0 Iir—gq)x(1—q)



The resulting prior fory* is also multivariate normal with expectatignu*? w*) ~tw*? 17,
and varianceg? (w*Tw*)~!. The dimension reduction fromto ~* results in the prior variance

being too small. To see this note that the variancgtoEomponent ot in z = w~ is

var(zity)) = var(wg.yy)

= o (w( (W) w*) 7 (wi) "+ wigy (wi,)").
Theith component ot = w*~* has variance

var(zi) = var(wi ")

= (i (") ") (wf )

Clearly,var(z)) > var(z,+)). Itis easy to adjust for this by noting that the average veaea

of z(mj1) = wjy*, var(z) is

T

Z var(z;)

i=1

var(z) =

2
)

g

Nl |-

wheres? is the desired variance. Hence we can inflate(~*) by a factor of%. The resulting

prior for v* is

7 e NG ) ) L, (@) ) ),

See the supplementary materials for additional detailfiermbove derivations.
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3.4 Extension to unit-specific covariates

We can easily extend this prior to unit-specific covariaggpose, foi = 1,...,n,

2(Tijr) = Wi -

Letw} be ap x ¢ matrix such that; = w}~. We first stack, ..., z, andwy, ...w} together, i.e.,
z= (220 . 20T andw* = (wil, w3t ..., wiT)T. So, we have = w*y andw* isnT x ¢

full column rank matrix. Similar to the previous case, weant

n

g * *\—1 nT * *\ —
Yo~ N(,LL(Z ’(UZ-T’(UZ-) lw TlnTXI, 702(2 wiTwi> 1)7 (5)
i=1 =1

which is our recommended prior in the general case.

3.5 Connection to g-priors

Our priors on+y have similar form to they—priors introduced by Zellner (1986). However,
our derivation begins with a prior on an unconstrained patamspace as opposed to Zellner's
construction of a prior based on the posterior distributbimaginary datay,, yo = 275 +

e Wwheree ~ N(0,021,,) (with independent priors ofi oc 1 andoy o Uio). The Zellner prior for
B|oo has the forms ~ N (3, "—gg(xxT)—l), wheref, is the least squares estimate based on the
imaginary data and g is a penalty parameter; in practicemtban is typically set to zero so no
imaginary data is actually required. Our prior has a sinfdam but it is based on the projection
of z(m;) onw; with weights based on the original prior feron the unconstrained space (here
a hypercube). The 'weights’ based on the prior in (5) comehmough in the prior mean,
o wiTwr) ' w T ul,r; ando? in the prior varianceg? (w*w*)~. As a result, with these
priors, we do not have to deal with the issue of the choicg (@r some discussion, see George

and Foster (2000) and Clyde and George (2000)).
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3.6 Prior for n

The most commonly used prior on the marginal varianceis the inverse gamma prior, which
facilitates computations due to conditional conjugacyniBis (2006) used a uniform prior on
the transformed innovation (IV) parameters with or withstticture similar to the model (4) in
Section 2.2 for the marginal standard deviations. Barnaed. 2000) discussed independent

normal priors on logarithmic transformed In particular, they proposed the following prior

log(ai) ~ N(gv A)v (6)

with A diagonal. We will derive a prior fon similar to that fory based on Barnard et al.’s prior

for the marginal standard deviations. The resulting psor i

n n n
0~ N ATA) A L, T2q—f(z AT A)™Y).

i=1 i=1

Note in the derivation, we have assuntee: \1,,; andA = 721, in (6), whereX andr are

fixed a priori.

4 Posterior distribution and computations

The full data likelihood L(n, 3, v]y) is proportional to

S D) Ri(7)Di(n)| 72 exp{—Ltr[¥7 Ri(y) "' Di(n) "' (Y; — :8)(Yi — 2:8)" Di(n) ]}
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We specify the following priors fof, n, and-~,

g oo 1 (7)

~ NS ATA) AT, 0, 22 (ST AT A 8
n ( 0(; i Ai) 1T (; )7) (8)
v~ N Zw*T * 1w*T1nT><17_O' Zw*T * (9)

where} " | AT A; and} " | wiTw} are non-singular. In the setting of incomplete longitutiina
responses, under an assumption of ignorable dropout (mo@ohissingness), we only need to
specify the full data response model and the likelihood terigst is the observed data likelihood,
L(B,7,n|yes, x), Wwhere the observed data responsg,js (Daniels and Hogan 2008); the form
of the observed data likelihood is given in the supplemegntzaterials.

Since we specify an improper prior gfy we need to prove the posterior distribution of
(8,7v,n) is proper. In the next section, we provide a theorem whiclegisimple sufficient
conditions under which the posterior is proper. The supplaEary materials contain details on

the MCMC algorithm to sample from the posterior distribatio

4.1 Posterior propriety

In the following theorem, we state conditions that are sigffitfor the posterior to be proper.
First, we need to introduce some notation. Suppose full-dati: = 1, ..., n are independently
distributed random variables with distributiéh ~ N, (2! 3,3;), wherez; is aps x p covariate
matrix, 3 is apg x 1 (mean) regression parameter veckr= D% (n)Ri(q)Di%T(n), andD;(n) =
diag(of, ) with o = (0%, 0%, ...,07,) specified by (4) and;(y) specified by (1) and (3);
defineS;, S, S, to be sample spaces 6f~, 7, respectively. LetQii, ..., Qi,)" be a vector of
observed data indicators, whefg, = 1 if Y;, is observed (0 otherwise). Lé@’“’i ={Y,,j =

1,...,k;wherek; : Qi, = 1,Q;x,+1 = 0} be the vector of observed data (of dimensignfor
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subjecti andSy, = {i, Qix, = 1 andQ;x,-1 = 0, andk; = k, wherel <k <p—1;i=1,..n} be
the set of subjects with observed data of dimengion

Theorem 1:

We assume the observed data distribution foitheubject{ = 1, ...,n)is Y} ~ Ny (z¥" 3, k),
wherez} = z;. 1.4, is aps x k; submatrix ofr; andXl = 1.4, 1.4, iS thek; x k; principal sub-
matrix of ;. We also assume the priors on the parameters are given K§9)(@npd missingness
is monotone and ignorable. Then the posteriof@fy, ) will be proper under the following

three (easy to check) conditions:
1Y s vt is non-singular for alk € {1,2,....p — 1}.
2. > A; AT is non-singular.
3. Y wrw;T is non-singular.

The proof is given in the supplementary materials. Notettiathree conditions are conditions
for the three design matrices in our model (for the mean, #réamnce, and the correlations,

respectively); the latter two guarantee that the priorsa(®) (9) are proper.

5 Simulation

To assess the importance of the correlation structure omatstg the (mean) longitudinal tra-
jectories in incomplete data, we conducted a simulatiodysturhe true model was (2) with
p = 6. For each individual, the rows of the mean design matrix vepexified as a second order
orthogonal polynomial. We set = (27, —2.3,0.50)7. We considered three sample sizes (30,
100, and 400). For each scenario we simulated 200 data sets.

The true models for marginal variances and partial autetation coefficients were given by

i) = Ik = jl =1 Vi =D +nl(k—jl=2) +wl(k—jl=1()i>1) (10)
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and

logoj; =mlI(j=1)+nl(j>1),

with v = (0.65,0.21,0.85)7, andn = (150, 200)”. The structure om represents a second order
model with the lag one partial autocorrelations constaeepkfor time 1, the lag two partial
autocorrelations constant over time, and higher lag patitocorrelations equal to zero. The
structure on the variances corresponds to a constant ear@arer time after time one.

After simulating the complete data, we induce ignorablesmigness via the following miss-

ing data mechanism,

logit{ P(Qir = 1|Qik—1 = 1,Yops) } = a1 + a2yp_1,

whereQ),;, = I{Y} is observedl anda = (3.86, —0.05).

We fit four models to the simulated data. For each model, wahessame true mean and
marginal variance models, but different partial autodatien models. Our objective is to eval-
uate the impact of mis-specifying the partial autocorretatnodel on inference on the marginal
mean regression coefficients, Specifically, the models we compare are:
1) True structured model for given in (10)
2) Independence modet,= 0
3) AR(1) model:z(mjx) = i I{|k — j| = 1}
4) Unstructured model (no structure oh
For models 1, 3, and 4, we use a Beta(1,1) distribution in tcocsng the prior in (5); we
note that the simulation results were similar when using@@el). For the prior om, we set
(A, 7%) = (0,100). For each model, we compute the DIC (Spiegelhalter et a2pbased on
the observed data likelihood (Wang and Daniels, 2011).

For each of the simulated datasets, we 2an000 iterations for each of the four models.

For each dataset, we compute the DIC for the four correlatiodels and rank them (1=best to

15



4=worst) based on their fit (as measured by the DIC). To coepderence on the mean under
all four models, we computed the following two quantitieyTatal MSE, sum of mean squared
error of the components gf and 2) Change from Baseline, change of estimated mean r&spon

from time one to time six. We also compare the mean trajextaraphically.

5.1 Results

The simulation results are given in Tables 1 and 2 and Figuiss2the sample size increases,
the estimates fop quickly approach the true value for the true structuredetation model,
more slowly for the unstructured correlation model and ®hong values for the AR(1) and
independence correlation models (with the latter with aerable bias) (Table 1). The results
in Table 2 are similar with bias in the estimate of change fb@aseline and larger MSE's for the
estimates of the’s for the incorrect models. Graphically, the fitted traggats can be seen in
Figure 2 and illustrate the bias in the fitted trajectory wtiencorrelation structure is incorrect.
The DIC chose the true model with high probability, with thisbability generally increasing
with sample size (see Table 3). For example,foe 30, 100, 400, the true structured model is
chosen by the DIC with probabilitieg6, .99, and.95, respectively. It is interesting to note that
the main competitor of the true model in the smaller sampless{30, 100) is the (parsimonious)
AR(1) structure, while for the larger sample size (400) ithis unstructured model. This is the
reason that the probability of the true structured modeteses between= 100 andn = 400.
For the larger sample sizes, AR(1) is no longer a reasonainhgetitor, but the unstructured is
(though it is only chosen with probabilitg6 for n = 400). And note, of course, the unstructured

model is correct, but it has more free parameters than needed
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6 Data Example: Schizophrenia trial

The data were collected as part of a randomized, doubletilinical trial for a "new” phar-
macologic treatment of schizophrenia (Lapierre et al. J990e trial compared three doses of
the "new” treatment (low, medium, high) to the standard dofskaloperidol, an effective an-
tipsychotic that had known side effects. At the time of thedgt the trial was designed to find
the appropriate dosing level since the experimental tlyangs thought to have similar antipsy-
chotic effectiveness with fewer side effects. Two hund@dyffive patients were enrolled and
randomized to one of the four treatment arms. The intendegtheof follow-up was 6 weeks,
with measures taken weekly expect for week 5. Schizophmsuarity was assessed using the
Brief Psychiatric Rating Scale (BPRS) a sum of scores ofdi@stthat reflect behaviors, mode,
and feelings. The scores ranged from 0 to 108 with higherescomdicating higher severity.
To enter the study, the BPRS score had to be no less than 20. iWkusatrate our approach
using only the medium dose arm. Of main inferential intereshe change in BPRS from the
beginning to the end of the study.

The dropout rate on the medium dose arm was high, with onlyut@®b61 (about66%)
participants having a measurement at week 7 (the sixth merasumt time). Reasons for dropout
included adverse events (e.g., side effects), lack ofrireat effect, and withdrawal for unspec-
ified reasons. The trajectories of completers vs. non-cetef is shown in Figure 3a. Clearly

those dropping out were doing worse prior to dropping owgl{er BPRS).

6.1 Models

Let the longitudinal vector of outcomes for subjette Y; = (Vj1, ..., Yis)”, measured at weeks

t=(t1,...,ts) = (1,2,3,4,5,7). We assumé’; follows (2) with mean.

E(Y;;) = Po+ 51${ + ﬁﬂ%’
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. B _ . - _ 26: (t _E)B
wherez] = (t; — %) anda} = (¢; — 1)? — S e

guadratic polynomial. We assume missingness is ignorable.

_ 6 I .
(t; — ) — =28 o an orthogonal

We fit the partial autocorrelation models given below:
Independence Modek(r;,.x) = 0,log(o;) = 1(j = 1)m + 1(5 > 1)ns.
AR(1) Model: z(r;;.4) = I(k = 1)1, log(o;) = 1(j = V)i + 1(j > 1.
Unstructured Covariance Model(r;; 1) = %(jlk (withy = (WS), WS)a %éf)lvp)), log(o;) = n;.

Structured Model 1:

Amjjee) = Ik =107 <2)m+ Ik =107 > 1)y + I(k=2)7s,

log(o;) =1(j = 1)m +1(j > 1)n,.
Structured Model 2:

(k) =1k =1Nj <y +I(k=1Nj> Dy +I(k=2Nj <3)ys+1(k=2Nj>2)ys + I(k=3)ys + [(k=4)vs + I(k =5)77,

log(o;) =1(j = )m + 1(j > 1)n2.

Structured Model 1 is the same model as the one considerid sirhulation. Stuctured Model
2 is more flexible than Structured Model 1 for the partial @oteelations allowing nonstationary
lag one and lag two autocorrelations and stationary lagetifour and five (with no structural
zeros). The structure on the variances is the same as Strddtlodel 1. The marginal variance
structure for all the models and the partial autocorretesiouctures for Structured Models 1 and
2 were chosen after examining the unstructured covariamtexin Table 4.

We use priors specified in (7), (8), and (9) fary, v, respectively. For (9), we consider both
the Beta(1,1) (uniform) andBeta(2, 1) (triangular) for the specification df:, o%). For (8), we
setA = 0 andr? = 100.
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6.2 Results

For all models, we ran 200,000 iterations with minimal burisince the chains converged after a
few iterations. The plot of all fitted mean trajectories igayi in Figure 3b (only shown under the
triangular prior). The mean BPRS initially decreased batstl to go back up by week 5. This is
related to those dropping out doing more poorly than thasgrsg in the study. Table 5 contains
the posterior mean of, the change from baseline to week 7, th#if% credible intervals, and
the DIC based on the observed data likelihood. This table/stioat models under uniform and
triangular prior fit similarly. The changes from baselinealhmodels were negative witht%
credible interval excluding 0, showing that Medium-dostueed the BPRS score significantly,
which agrees with earlier analysis done in Daniels and H¢2@@8). The changes from baseline
varied from—14to —11 based on the covariance model chosen. According to the Di@;t8red
Model 2 with the triangular prior provided the best fit. Theange from baseline in Structured

Model 2 was almost a full point different from the unstruetimodel.

7 Discussion

In this paper, we first extended the priors in Daniels and &wuadi (2009) for partial autocor-

relations for the unstructured case by introducing a setiaingular) priors which favor positive

marginal correlations. Using Fisher’s z-transformatiortioe partial autocorrelations, we intro-
duced aregression framework to induce structure and/ospeicific covariates in the correlation
matrix. Based on priors proposed for the partial autocati@hs in the non-regression setting,
we introduced a prior for the coefficients in the partial @otoelation regressions (and for the
coefficients of the marginal variance regressions). We gotadl simulations that illustrated the
importance of correct specification of the correlation uee in the setting of ignorable miss-
ingness in longitudinal data and show the ability of the DdChoose the true correlation model.

We also fit the models to data from a longitudinal schizopiarehnical trial.
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There are a variety of extensions to the modeling proposes t@&early, it can be difficult
to ‘find’ a good parametric model that imposes structure @ndbrrelation matrix. Thus ex-
tending approaches developed under different paramatiens (Smith and Kohn, 2002; Wong,
Carter, and Kohn, 2003) to our setting is an important exbensCorrelation matrices (instead
of covariance matrices) arise commonly in models for landjital data modeled using Gaussian
copulas (Nelsen, 1999); efficient computations using tieégd@utocorrelation in these settings
will be a challenging problem due to the lack of conjugacywideer, the partial autocorrelation
models provide an opportunity for flexible dependence igitudinal categorical data via multi-
variate probit models. To offer some robustness to a selectalel for the correlation structure,
an alternative would be to shrink the partial autocorrel&ito the structure using independent
Beta priors as has been done previously using normal priorstieer parameterizations of a
covariance matrix (Daniels and Kass, 2001; Daniels anddPooadi, 2002). Finally, we are
considering extensions to irregular longitudinal datangs partial autocorrelatioiunction and

to time-dependent covariates.
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Sample Size 30 Sample Size 100 Sample Size 400
Unstr True AR(1) Indep| Unstr True AR(1) Indep| Unstr True AR(1) Indep.
26,5 26.9 26.7 253|26.7 269 266 253|269 27.0 26.7 254
21 20 -21 25 |-20 -20 -21 25 |20 -20 -21 -2.5
052 051 050 058051 051 050 058|050 050 049 0.57

Table 1: Posterior means of: The values in first row, second row, and third row correspingoste-
rior means off;, B2, and (s, respectively. The true value fgr is (27.0, —2.0,0.50). 'Unstr’, 'True’,
'AR(1)’, and 'Indep.’ represent unstructured model, truedal, AR(1) model, and independence model,
respectively.

Total MSE Change from Baseline
Unstr True AR(1) Indep| Unstr True AR(1) Indep.
6.9 6.5 6.6 10.1 | 126 120 12.7 15.1
1.8 1.7 20 48 |12.2 12.0 127 149
042 041 052 34 |121 120 128 150

Table 2: Summary measures from the simulation: The values in rowsespond to sample size 30,
100, and 400, respectively. ’'Unstr’, 'True’, 'AR(1)’, andndep.” represent unstructured model, true
model, AR(1) model, and independence model, respectivébtal MSE’ and 'Change from Baseline’
correspond to the mean square error§ ahd the change of the mean responses from the beginning to the
end of study (True change is 12.0), respectively.

Sample Size 30 Sample Size 100 Sample Size 400
AR(1) Ind True Unstrf AR(1) Ind True Unstrf AR(1) Ind True Unstr
035 .00 0.66 .00 |.01 .00 .99 .00 |.00 .00 95 .06
066 .00 .35 .00 |.73 .00 .01 .26 |.00 .00 .06 .95
.00 A5 .00 .85 | .26 .00 .00 .74 |1.00 .00 .00 .00
.00 .85 .00 .15 |.00 1.00 .00 .00 |.0O 1.00 .00 .00

Table 3: Percentage of times each model is chosen as best (row 1jydsbest (row 2), third best (row
3), and worst (row 4). 'AR(1)’, 'Indep’, 'True’, and 'Unstrtorrespond to the true model, AR(1) model,
independence model, and the unstructured model, resplgctiv

126.25| 0.6578 | -0.0738| 0.0804 | -0.0253| -0.5230
0.7889| 210.35| 0.8543| -0.0593| -0.3328| 0.0292
-0.0740| 1.2718| 224.42 | 0.8559| 0.2648| 0.4375
0.0806 | -0.0594| 1.2779| 240.84| 0.8961 | 0.3506
-0.0253| -0.3460| 0.2713| 1.4522 | 221.98| 0.8433
-0.5805| 0.0292 | 0.4692 | 0.3661 | 1.2325| 243.08

Table 4. MLE of variances (on main diagonal), partial autocorrelasi (in upper triangle), and Fisher’s
z-transformation of partial autocorrelations (lowertigée).
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(Bo, B1, B2) Changes from Baselin®3% CI) | DIC

Independent (25.6, -2.35, 0.68 -14.1 (-18.7,-9.4) 1924.6
Unstructured (26.9, -2.03, 0.62 -12.2 (-16.3, -7.9) 1663.0

AR(1) (Uniform) (27.5,-1.97, 0.69 -11.8 (-15.8, -7.9) 1681.3
AR(1) (Triangular) (27.5,-1.97,0.69 -11.8 (-15.7, -7.9) 1680.6
Structured Model 1(Uniform)| (27.9, -1.80, 0.58 -10.8 (-14.6, -7.0) 1669.6
Structured Model 1(Triangular)(27.9, -1.81, 0.58 -10.8 (-14.7, -7.0) 1670.4
Structured Model 2(Uniform)| (27.9, -1.89, 0.54 -11.3 (-15.3, -7.3) 1660.4
Structured Model 2(Triangular) (27.9, -1.89, 0.55 -11.3 (-15.4, -7.3) 1658.1

Table 5: Posterior summaries of the models for the schizophrerah tri
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(@) Triangular Prior (b) uUniform Prior

Figure 1: Marginal priors for the marginal correlations induced by tfee triangular Prior and (b) the
Uniform prior. In (b), the upper triangles are the margindbrs on thep’s induced by the original priors;
the lower triangles are the marginal priors @s after the normal approximation.
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Figure 2: Posterior mean of the trajectories for the Unstructuredethotue model, AR(1) model, and
Independence model with sample size 30, 100, and 400
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Figure 3: Trajectories of the observed data and posterior mean ofdfextories for the models consid-
ered.
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