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Abstract

Using validation sets for outcomes can greatly improve the estimation of vaccine efficacy
(VE) in the field (Halloran and Longini 2001; Halloran et al. 2003). Most statistical methods
for using validation sets rely on the assumption that outcomes on those with no cultures are
missing at random. However, often the validation sets will not be chosen at random. For ex-
ample, confirmational cultures are often done on people with influenza-like illness as part of
routine influenza surveillance. VE estimates based on such non-MAR validation sets could be
biased. Here we propose frequentist and Bayesian approaches for estimating vaccine efficacy
in the presence of validation bias. Our work builds on the ideas of Rotnitzky et al. (1998,
2001), Scharfstein et al. (1999, 2003) and Robins et al. (2000). Our methods require expert
opinion about the nature of the validation selection bias. In a re-analysis of an influenza
vaccine study we found, using the beliefs of a flu expert, that within any plausible range of
selection bias the VE estimate based on the validation sets is much higher than the point
estimate using just the nonspecific case definition. Our approach is generally applicable to
studies with missing binary outcomes with categorical covariates.

Keywords: Bayesian, Expert Opinion, Vaccine Efficacy, Identifiability, Influenza, Missing
data, Selection Model



1 Introduction

Many statistical methods have been developed to deal with estimating the causal effects of
randomized treatments when outcomes are missing on some participants. Most methods rely on
the non-identifiable assumption that the outcome of interest is missing at random (MAR) (Little
and Rubin, 2002). If the outcome is not MAR, then effect estimates could be subject to selection
bias. Rotnitzky et al. (1998, 2001), Scharfstein et al. (1999) , and Robins et al. (2000) developed a
frequentist selection model that displays the sensitivity analysis over a plausible range of selection
parameters. Scharfstein et al. (2003) developed a Bayesian approach that allows the formal
incorporation of prior beliefs about the degree of the selection bias to obtain the full posterior
distribution, a single summary of the sensitivity analysis. Others, for example Little (1994) and
Daniels and Hogan (2000), have developed pattern mixture models for sensitivity analyses. Some
other approaches include the work of Baker, Ko, and Graubard (2003), Molenberghs, Kenward
and Goetghebeur (2001), Verbeke et al. (2001), and Vansteelandt et al. (2006).

A particular case of missing data occurs if the outcome of interest is difficult or expensive
to ascertain, so that a surrogate outcome may be used instead. The outcome of interest may
be measured on some of the study participants in a subset called a validation sample, while the
surrogate is measured on all participants. In this situation, statistical missing data methods are
available to use the outcomes of interest in the validation sample to correct the bias based on the
nonspecific case definition alone (Pepe et al. 1994). Halloran and Longini (2001), Halloran et al.
(2003) and Chu and Halloran (2004) have demonstrated the potential use of these methods for
estimating vaccine efficacy on the example of an influenza vaccine. In a randomized study with a
planned random sample selected for the validation set, MAR would be a reasonable assumption.
However, in many situations, the selected sample may be a convenience sample, so that MAR
is unlikely to hold. Halloran et al. (2003) presented a simple model to explore the sensitivity
of the vaccine efficacy estimates to the magnitude of the departure from the MAR assumption.

However, their approach was ad-hoc and did not give confidence bounds on their estimators.

Here, we formulate a class of selection models, indexed by interpretable parameters, to eval-
uate the sensitivity to selection bias when using validation sets to estimate vaccine efficacy.
Frequentist and Bayesian approaches to inference will be presented. In developing and applying
our methodology to the re-analysis of the influenza vaccine study, we worked closely with a sci-
entific expert. Our approach is generally applicable to missing binary outcomes with categorical

covariates.



Table 1: Study data for influenza epidemic season 2000-2001 (from Halloran et al. 2003).

MAARI MAARI Number Fraction

Age Vaccine MAARI  propor- cases positive cultures Fraction
(years) Status Children cases tion cultured cultures positive cultured
1.5-4 CAIV-T 537 389 0.72 16 0 0 0.041
None 1844 1665 0.90 86 24 0.28 0.052
5-9 CAIV-T 807 316 0.39 17 2 0.12 0.054
None 2232 1156 0.52 118 53 0.45 0.102
10-18  CAIV-T 937 219 0.23 19 3 0.16 0.087
None 5249 1421 0.27 123 56 0.46 0.087
Total  CAIV-T 2281 924 0.41 52 5 0.10 0.056
None 9325 4242 0.45 327 133 0.41 0.077

2 Influenza Vaccine Study

A field study of a trivalent, cold-adapted, influenza virus vaccine (CAIV-T) was conducted in
Temple-Belton, Texas, and surrounding areas during the 2000-01 influenza season. The field
study was part of a larger community-based, non-randomized, open-label field study conducted
from 1998-2001 (Piedra et al. 2001; Gaglani et al. 2004). In Temple-Belton, eligible healthy
children and adolescents aged 18 months through 18 years were offered CAIV-T vaccine through
the Scott & White (S & W) Clinics from 1998-2001. The analysis includes children who were S &
W Health Plan (SWHP) members, and is concerned with the CAIV-T vaccinations administered
in the influenza season 2000-01. Children received a single dose of CAIV-T each year that they
enrolled. The primary clinical outcome was a non-specific case definition called medically-
attended acute respiratory infection (MAARI), which included all ICD-9-CM diagnoses codes
(Codes 381-383, 460-487) for upper and lower respiratory tract infections, otitis media and
sinusitis. Any individual presenting with history of fever and any respiratory illness at S &
W Clinics was eligible to have a throat swab (or nasal wash in young infants) for influenza
virus culture. The decision to obtain specimens was made irrespective of whether a patient had
received CAIV-T. The specific case definition is culture-confirmed influenza. Table 1 contains
the data. The overall fraction of MAARI cases sampled was a little higher in the unvaccinated

than in the vaccinated groups (p = 0.03).

Halloran et al. (2003) analyzed the data by adapting the mean score method for validation



sets (Pepe et al. 1994) with the goal of evaluating the protective vaccine efficacy of CAIV-T
vaccination in healthy children during the influenza season 2000-01. Chu and Halloran (2004)
developed a Bayesian method. The overall vaccine effectiveness estimate based on the nonspecific
case definition was 0.18 (95% CI: 0.11,0.24). The overall efficacy estimates incorporating the
surveillance cultures using the mean score method was 0.79 (95% CI:0.51,0.91) and the Bayesian
method was 0.74 (95% HPD: 0.50,0.88). In this situation, using the surveillance cultures as a
validation set resulted in a four-fold increase in estimates, much closer to the efficacy estimate
of 0.93 (95% CI: 0.88,0.97) obtained in a double blind randomized controlled trial (Belshe et al.
1998).

In the influenza vaccine study in Texas, no surveillance cultures were positive in the age group
1.5-4 years. In Halloran et al. (2003), a continuity correction of 0.5 was added to the number of
cultured samples and the number positive in that age group in the mean score analysis. For this
age group, their estimate of vaccine efficacy using the mean score method was 0.91 (95% CI:
-.24,.99). The Bayesian method of Chu and Halloran (2004) yielded an estimate of 1.00 (95%
HPD: 0.52,1.00). So, the Bayesian method provided a much tighter measure of uncertainty than

the mean score method with the continuity correction.

The results of Halloran et al. (2003) and Chu and Halloran (2004) are valid only if the culture-
confirmed influenza status is MAR. In consulting with influenza experts, we learned that this
assumption can easily be violated in this study if physicians tend to select children whom they
believe to have influenza for culturing. Our goal is to develop frequentist and Bayesian methods
for sensitivity analyses for these and similar data. Further, we develop a fully Bayesian procedure

that formally incorporates expert beliefs about the culturing mechanism.

3 Notation and Data Structure

In the vaccine field study, let n be the total number of participants, and ng and n; the number of
vaccinated and non-vaccinated participants, respectively. Let Z denote the vaccination indicator,
taking on the value 1 if a participant is vaccinated and 0 if not vaccinated. Let A(0) and A(1)
denote the indicator of MAARI (1: yes; 0: no), for a participant if she had been, possibly contrary
to fact, unvaccinated or vaccinated, respectively. The observed MAARI outcome A = A(Z)
is observed for every participant. Let Y (0) and Y (1) denote influenza status (1: positive;
0: negative) for a participant if she had been, possibly contrary to fact, unvaccinated and
vaccinated, respectively. Only one of these outcomes can be potentially observed. In this
study, influenza status is biologically confirmed by a culture. In the validation sub-study, a
possibly non-random sample of the participants are biologically confirmed, so that influenza

status, Y = Y (Z) is known for a subset of the participants. Let R be the validation indicator,



where R = 1 if sampled for validation and R = 0, otherwise. Sampling for validation only occurs
for those with A = 1. Let X denote age category (0: 1.5-4 years; 1: 5-9 years; 2: 10-18 years)

measured at the time of study entry.

With this notation, the observed data for an individual are O = (Z, X, A, R, Y : A= R =1).

We assume we observe n i.i.d. copies, O ={O; :i=1,...,n}.

Throughout, probabilities P, indexed by subgroup subscripts indicate restriction to the as-
sociated subpopulation. For example, for events A and B, P, [A] = P[A|Z = 2,Z = z] and
P..[A|B] = P[A|B,Z = z, X = z|.

4 Vaccine Efficacy

The scientific goal is to use the observed data to estimate the causal effect of vaccination on the
outcome Y, within age levels as well as overall. Specifically, we want to estimate age-specific

vaccine efficacy

P
VEs,=1- P”“‘

and overall vaccine efficacy

2 p— j—
VEg=1- xﬂﬂﬂn—?mx_

x
¥2 o PalY(0) = 1JP[X = 2]
To identify V Eg,, it is sufficient to identify P,[Y(z) = 1] for z = 0,1. For VEg, we must
identify P,[Y(z) = 1] for all z and z, and the marginal distribution of X. While the marginal
distribution is identified from the observed data without additional assumptions, the conditional

probabilites P,[Y (z) = 1] will require non-identifiable assumptions.

5 Two Structural Assumptions

Before proceeding further, we will make two structural assumptions to facilitate identification
of P,[Y(z)=1].

Assumption 1: Z is independent of {A(0), A(1),Y(0),Y (1)} given X.

This assumption states that vaccination status is independent of the potential outcomes
{A(0),A(1),Y(0),Y (1)}, given age (X). That is, within levels of age, vaccination is randomized.
Our expert felt that this assumption was reasonable, since there is no reason to believe that the

decision to vaccinate was based on anything related to the potential outcomes.

Assumption 2: A(z) = 0 implies Y (z) = 0.



We make this assumption because the study design called for passive case ascertainment. Asa
result, the data structure is such that no participants who do not appear in the clinic are cultured
for confirmation of influenza infection. The above assumption states that if a participant, under
vaccination status z, does not have MA ARI, then she does not have medically-attended influenza.
The interest is in efficacy against medically-attended, culture-confirmed influenza, not influenza

infection.

6 Identification of P,[Y(z) = 1]

With these assumptions, we can write

Px[Y(z) = 1] = Pz,x[Y(z) - 1] (1)
= P.,lY =1] (2)
= iPZJ[Y:1|A:1,R:T]Pz,x[A:1,R:T]. (3)

r=0

Equation (1) follows from randomization within levels of X; (2) uses the fact that Y = Y (Z); and
(3) follows from an application of the law of conditional probability and our second assumption
above. Note that, for all z, x, r, P,;[Y = 1|A = 1,R = 1] and P,,[A = 1,R = r], are
identifiable but P, ,[Y = 1|A = 1, R = 0] are not. Thus, identification of P,[Y(z) = 1] will

require identification of these latter probabilities.

The most common assumption employed to identify these probabilities is that of missing
at random (MAR) (Little and Rubin 2002). MAR states that R is independent of Y given
(Z,A, X). This implies that, for all z, z, P, ;Y =1|[A=1,R=0] =P, [Y =1|A=1,R=1].
As a result, P,[Y(z) = 1] becomes identifiable. Since the assumption of MAR is untestable and
is considered questionable by our scientific expert, it is useful to perform a sensitivity analysis

to outcomes that are missing not at random (MNAR).

7 Frequentist Sensitivity Analysis
7.1 Model Specification

Scharfstein et al. (1999, 2003) and Robins et al. (2000) introduced a sensitivity analysis method-
ology in which a class of models (including MAR) are posited, each yielding identification of
P..[Y =1|A =1,R = 0]. They recommended that inferences about the estimands of interest

be presented over a range of posited models, considered plausible by subject-matter experts. In



particular, they assumed a pattern-mixture model of the form:

Py —1jA=1,R—0) = Tza =HA=1 R = 1explazs) (4)

Czx

where
Cog =P, z]Y =0A=1,R=1]+P,,[Y =1|A=1,R =1]exp(a..),

and o , is a specified non-identifiable constant to be varied in the sensitivity analyis. Setting
o, = 0 is equivalent to MAR. Note that plugging the right hand side of (4) into the right hand
side of (3) yields identification of P,[Y (z) = 1]. Specifically,

PY(2)=1] = P,V =1A=1R=1]x

{PW[A:LR:1]+“I’(WP”[A:1,R: ]} (5)

9
Czx

It is possible to rewrite Model (4) as the following selection model:

loglt Pz@[R = 0|A = 1,Y - y] = hz,w + Oz 2Y, (6)

where
Bog =1 ’ : 7
: Og{chz,x[R—HA—l]} (7)

For subjects with Z = 2z, X = x and MAARI, «, , is interpreted as the log odds ratio of being
unvalidated for diseased vs. undiseased subjects. So, «,, positive or negative indicates that

diseased subjects have lower or higher odds of being validated, respectively.

When eliciting plausible ranges for «. ;, our expert found it easier to think about selection
bias on a relative risk as opposed to an odds ratio scale. Specifically, he felt more comfortable
expressing opinions about the relative risk of being validated given that a MAARI participant
has influenza, compared with having another influenza-like illness. As a result, we re-formulated

the above models in terms of the relative risk selection bias parameters

P R=1A=1Y =1]

Pra = P JR=1A=1Y =0

(8)

We can re-parametrize Model (6) in terms of [, ;. Letting n, , = P, ;[R=1|A=1,Y = 0],

we can show that there is a one-to-one mapping between (h; 4, @ ») and (1, 4, 8.,2). Specifically,

Nex = (1+eXP(hz,w))_1

1+ exp(hzq)
ﬂz,x =
1+ exp(hsg + 0z z)




or

hew = log(1—mns2) —log(n:z)
Crx = log(ﬁ;; - nz,x) - 1Og(1 - nz,x)-

Because of this one-to-one relationship, specification of 3, , will lead to identification of P,[Y (z) =

1] via the following formula:

P..[Y =1|A=1,R=1]P, ;[A = 1]
BeaP:z]Y =0A=1,R=1]+P.,[Y =1|A=1,R=1]
PZ=2,X=2,A=1,R=1Y=1|P[Z=2X=2,A=1]/P[Z =2, X = 1]
BeaPlZ =2, X=2,A=1,R=1Y =0/+PZ=2X=2,A=1,R=1Y =1]

(9)

7.2 Estimation and inference

The frequentist non-parametric estimator of P,[Y (z) = 1] can be found by replacing the proba-
bilities P in (9) by their empiricals P. Then

PlZ=2,X=2,A=1,R=1Y =1|P[Z=2X =2,A=1]/P[Z = 2, X = z]

T BeuPlZ=2,X=2,A=1L,R=1,Y =0+ P[Z=2,X=2,A=1,R=1Y = 1]
(10)

The right hand side of the above equation reduces to the results with the mean score method

P.[Y(2) = 1]

when 3., =1, for all z and .

We can then estimate V Eg, by

. By =1
e PV (0)=1]
and VE¢ b
o e 1 Sl PV~ UP(X ]
§ 2 PV (0) = 1JP[X = a]

In Section A of supplementary material (http://www.biostatistics.oxfordjournals.org), we
derive the large sample based confidence intervals for V Eg, and V Eg. The sensitivity analysis
proceeds by varying the (3, , over plausible ranges. When a stratum has a relatively small number
of validation cultures and small number of positive cultures, as in our influenza example, these
large sample confidence intervals may not perform well. When there are no positive cultures,
one can use the continuity correction approach of Halloran et al. (2003). In the next section, we

show how to compute Bayesian credible intervals which should perform better in this setting.



8 Bayesian inference

Scharfstein et al. (2003) developed a Bayesian methodology that allows full posterior inference
about the estimands of interest, by assuming informative prior distributions on the selection
bias parameters on the odds ratio scale. Their work did not allow for covariates and assumed
independent priors across treatment groups. Our goal is to extend their work to the relative
risk parametrization of selection bias, discrete covariates and dependence of the priors for the

relative risk parameters across treatment groups.

To Slmphfy notation, we let Bz = (ﬂz,07ﬂz,17/82,2),7 ﬁ = (/867/3,1)7 n, = (nz,Oanz,lanz,Q),7
n = (776777/1)/7 Pzax = Pz,x[y = 1’14 = 1]7 p, = (pz,(]apz,lapz,2)/a b = (p6,p’1), ¢z,m,a = PZ[A =
CL,X = i’], ¢z = (¢z,0,07 ¢Z,0,1> ¢Z,1,07 ¢z,1,1y ¢Z,2,0> ¢Z,2,1)/7 and ¢ = (¢6a ¢,1)/ With this notation,

(bz,x,l

Fel¥(z) =] = Pl = 1) = prager— 7,

and

L Pre 9L Yo G0
Ve = L e S g e
VES _ o1 Zi:[} {pl,x¢l,x,l (Zl:o Z};:O ¢z,x,a> / (Z}lzo ¢1,:(:,a) } . (12)
2525:0 {pO,w¢0,m,1 (Zi:o chz:(] ¢z,m,a> / (Z(lzzo ¢O,z,a})

(11)

In the prior specification for 3, we provide two options: (1) Bayesian analogue of the frequen-
tist sensitivity analysis and (2) fully Bayesian analysis. For option (1), we specify point-mass
priors on 3 and estimate the posterior distributions of the estimands of interest, over a range
of 3. This approach is comparable to the frequentist sensitivity analysis described above, but
does not rely on large sample approximations. For option (2), we specify a non-degenerate prior
distribution on 3, elicited from a subject-matter expert. This approach has the advantage of
providing a single summary of the posterior inference about the estimands, which naturally

incorporates the uncertainty due to selection bias.

8.1 Prior Specification for (3',7,p/, ¢')

In our specification of the joint prior distribution on (3',7',p’,@')’, we make the following

assumptions:

e ¢ is independent of (3',1,p').

® ¢, is independent of ¢y.
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p is independent of (3',7n')".

The components of p are independent.

The components of 3 may be correlated.

Given 3, 4, 1., is independent of {f1_, 2/, N1—, 0 : @' # x}.

B, and 7, , are only related through 3, ,’s restriction on the support of 7, .

Thus, the prior distribution of (3,7, p’, ')’ can be written as

1 2

71—(67"772)7 ¢) - W(B) H H W(pz,x)ﬂ(nz,x|/Bz,x)7r(¢z)7 (13)

z=02=0

We further assume that

e 7(A3) is an informative prior on a compact subset of RS. For the fully Bayesian analysis of
the vaccine trial, we assume an informative multivariate normal prior on the log 3 scale.

The details of the informative priors are described in Section 9.1.
e 7(p. ) is a uniform prior on [0, 1].

e 7(1)z2|0:,2) is a uniform prior on [0, min(ﬁ;i, 1)]. Specifically,

T(Nz,2]8z2) = max{fzz, 1} (12,2 < min{1,1/5:2})
where I(A) denotes the indicator of the event A.

e 7(¢,) is a non-informative prior on the set

2 1
{(éf)z,o,o, G201 D210 Dz1,15 022,00 0221) 10 < Paga S L, YD Grga = 1} .

=0 a=0
Assume the combinations of (z,a) have k = 1,..., K categories with n,; subjects in each
category. The prior on ¢, is specified as a Dirichlet, D(1,---,1). This represents a prior
sample of K, the number of categories of (x,a). We could make this less informative by
replacing the 1’s with 1/K.

8.2 Sampling from the posterior distribution

To sample from the posterior, we constructed a Gibbs sampling algorithm with data augmen-
tation (Tanner and Wong, 1987) and slice sampling (Damien et al. 1999). Section B of the sup-
plementary material (http://www.biostatistics.oxfordjournals.org) provides a full description of

the algorithm.
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9 Data Analysis

9.1 Informative priors

For Bayesian inference, we specify informative priors for the selection bias relative risk param-
eters, 3, by age group and vaccination status. We asked an influenza expert the following
question: If a physician were doing surveillance cultures during an influenza season, what is the
probability that he would select the children who actually had true influenza over the children
who just had nonspecific respiratory symptoms to culture? He responded that this was very hard
to answer. One “would be more likely to be correct in the unvaccinated,” because unvaccinated
children presenting with true influenza would have more typical, severe disease than the vac-
cinated children. One would be “less likely to be correct in young children under five years,”
because children under five years experience many other severe respiratory diseases that could
be mistaken for influenza, while older children are already immune to such diseases. He added
that the degree of selection bias would also “depend on the rules for collection, for example, a

certain number per week or with specific symptoms.”

Another influenza expert had similar views. He provided us with his best guess for each of
the univariate relative risk selection bias parameters 3, , defined in (8) and his belief about the
interval that would likely contain 90% of the prior distribution for each 3, ;. He also provided us
with the degree of correlation of the selection bias by age group and vaccine status. Correlations
could also be elicited graphically (Shardell 2005). Although 7(3) is an informative prior on a
compact subset of RS, the expert did not have different prior beliefs about the selection bias in
the 5-9 and 10-18 year age groups. Thus we present the prior distributions for these two age

groups as one group in Table 2.

For our analysis, we plugged the elicitations into a multivariate Normal prior on the log 3
scale as follows. We transformed the elicited best guesses for each 3, , and 90% range to the
log (3, . scale. Using gqnorm in Splus, we found the univariate Normal(mean, sd) distributions
that best approximated the elicited priors on the log scale. In the unvaccinated 5-18 year olds,
the elicitation was quite consistent with a Normal distribution. In the other three groups,
adjustments were necessary as shown in Table 2. The expert felt comfortable with the changes
in elicited and proposed priors in light of the uncertainty about the selection bias. Table 2
contains the log transformed elicited priors, the slightly adjusted univariate Normal priors with
their 90% interval on the log [, ., scale, and the corresponding best guess and ranges on the
relative risk, (3, ;, scale. The corresponding univariate distributions that we used for the log 3. ..
for the unvaccinated 1.5 —4 year old and older children are Normal(0.69, 0.43) and Normal(1.10,
0.25), and for the vaccinated 1.5 — 4 year olds and older children are Normal(0.18,0.57) and
Normal(0.53, 0.32).
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Table 2: Best guess and 90% range for the informative prior distributions on the selection bias
parameter 3 and log 3

Age B (relative risk) scale log 3 scale

group Unvaccinated Vaccinated Unvaccinated Vaccinated
best 90% best 90% best 90% best 90%

(years) guess  range guess  range guess range guess range

1.5 -4 elicited 2.00 1.00,3.50 1.20  1.00,2.50 0.69 0.00, 1.25 0.18  0.00,0.92
used 2.00 1.00,4.00 1.20  0.58,2.50 0.69 0.00, 1.39 0.18 —0.55,0.92

5—18 elicited 3.00 2.00,4.50 1.60 1.00,3.50 1.10  0.69,1.50 0.47  0.00, 1.25
used 3.00 2.0,4.50 1.70  1.00,2.89 1.10  0.69,1.50 0.53  0.00, 1.06

The expert believed that the correlation in selection bias among the strata would be high.
He suggested a correlation as high as 0.90. The corresponding covariance matrices for w(3) were
constructed from the marginal univariate Normal distributions and the correlations. We also

performed the analysis assuming zero correlation.

All programs were written in R. The MCMC algorithm was run for 500,000 iterations with
100,000 discarded as burn-in.

9.2 Results

Figures 1 and 2 display results of the frequentist sensitivity analysis. These figures present
results by age-stratum. The selection bias parameters were varied over the 90% ranges elecited
from the expert. It was not feasible to present parsimoniously the overall results because the
selection bias parameters were too high-dimensional. This is a key drawback of the frequentist

sensitivity analysis methodology.

Figure 1 shows the estimated probabilities (and 95% confidence intervals) for influenza in
the vaccinated and unvaccinated groups, for each age stratum, as a function of 3, ;. Figure 2
shows the point estimates and lower 95% confidence bounds for the age-group-specific efficacy.
The black diamonds indicate the results at the best guess of the expert. Within these ranges
and within each age group, the vaccine efficacy estimates based on the validation sets are higher
than the point estimates based on the non-specific definition, which were 0.2, 0.25, and 0.14 for
the age groups 1.5-4, 5-9, and 10-18, respectively. The lower confidence bounds indicate the

degree of variability.

The prior and posterior distributions for the relative risks of selection 3, ;’s by vaccination
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Table 3: Results of Bayesian and frequentist sensitivity analyses using surveilance cultures
assuming NMAR and MAR. For the Bayesian analyses, the posterior means (95% credible
intervals) for vaccine efficacy are reported, for the frequentist analyses, the point estimates
(95% confidence intervals). The estimates using just the nonspecific MAARI case definition are
included for comparison.

Age Group
Analysis 1.5-4 years 5-9 years 10-18 years Overall
Bayesian:
informative 7(3) 0.80 (0.23,1.00) 0.65 (0.13,0.93)  0.51 (—0.12,0.88) 0.65 (0.35,0.86)
7(3) fixed at best guess 0.77 (0.11,0.99) 0.63 (0.10,0.93)  0.50 (—0.12,0.86) 0.64 (0.32,0.85)
7(B) fixed at 1 (MAR) 0.84 (0.41,0.90) 0.73 (0.40,0.94) 0.64 (0.26,0.89)  0.73 (0.53,0.88)
Frequentist:
0 fixed at best guess 0.88 (—0.97,0.99) 0.74 (—0.05,0.88) 0.61 (—0.25,0.88) 0.73 (0.34,0.89)
g fixed at 1 (MAR) 0.91 (—0.34,0.99)  0.80 (0.26,0.95) 0.70 (0.13,0.90)  0.79 (0.52,0.91)
MAARI alone: 0.20 (0.14,0.25) 0.25 (0.15,0.34) 0.14 (0.01,0.26)  0.18 (0.11,0.24)

status and age-group are the same, since there is no information in the data about the degree of
selection bias (figure not shown). Figure 3 shows the Bayesian posterior distribution of the age-
group-specific efficacy and overall efficacy using the informative prior distributions from Table
2, assuming a correlation of 0.9. The mode is 1.00 in the age group 1.5-4 years, since there
are no positive cultures in the vaccinated group in that age-group. The results assuming a zero

correlation were nearly identical (not shown).

Table 3 compares the summaries of the Bayesian posterior distributions and of the frequentist
estimates and 95% confidence intervals. The assumption of MAR results in an overestimate of
the vaccine efficacy compared with the selection bias relative risk assumptions elicited from the
expert. Consistent with Chu and Halloran (2004), the Bayesian posterior means are somewhat
lower than the frequentist estimates. In general, the Bayesian credible intervals are tighter than
the frequentist confidence intervals. This is especially true for the age-group 1.5 to 4 years,

where the validation sample is small and there are no positive cultures.

It is interesting to note that the Bayesian analysis using an informative prior for 3 had a
narrower credible interval than the analysis with 3 fixed at its best guess, i.e., a degenerate
prior (see the first two rows of Table 3). At first glance, this former interval would be expected
to be wider. However, the posterior results are a weighted average of posteriors with fixed 3,

of which some have larger and some have smaller variation than the posterior at the best guess.
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Thus, it is plausible to get a smaller width for the overall posterior credible interval than that
fixed at the best guess. Similar phenomena have been previously documented in Gustafson and

Greenland (2005) in the context of adjusting for misclassification of exposure.

10 Discussion

In this paper we have developed both frequentist and Bayesian methods for analyzing missing
binary outcomes that are thought to be informatively (i.e., related to the unobserved outome)
missing. Our relative risk parametrization of selection bias, incorporation for discrete covari-
ates, and prior dependence of the selection bias across treatment groups extends earlier work
(Scharfstein et al. 2003), which used the log odds ratio parametrization without covariates.
We elicited informative age group and vaccination status prior distributions from an influenza
expert. Bayesian inference with informative priors on the selection bias parameters provides a
useful and parsimonious way of drawing inference about vaccine efficacy that incorporates expert
uncertainty about the missing data mechanism. In addition, the Bayesian approach provides

better small sample inference.

The frequentist or Bayesian sensitivity analysis approach provides much more detail than
the single summary from the fully Bayesian analysis. As a consequence, when the dimension of
the selection parameters is greater than 3 or 4, it is harder to visualize, While the advantage
of the Bayesian sensitivity analysis is the finite sample performance, it is computationally very
intensive. The frequentist sensitivity analysis is computationally more feasible and will perform

well when the sample sizes are large.

We used our proposed methods to re-analyze an influenza vaccine field study. We did a formal
sensitivity analysis to evaluate the effects of preferential selection of children with nonspecific
illness for obtaining surveillance cultures to confirm true influenza. Our analysis showed that
under plausible ranges of selection bias, the vaccine efficacy estimates, though lower than when
assuming MAR, are substantially higher than those based on the nonspecific influenza-like illness
definition alone. Our methods will be generally useful in future vaccine field studies, or other

similar studies, in which confirmatory biological specimens are not MAR.

For our development in this paper, we made the assumption that any person who does not
present with non-specific influenza-like illness also does not have medically-attended influenza
illness. Implicitly we assumed a degenerate prior at zero for the P, ,[Y = 1|A = 0]. In many
vaccine field studies, cases are ascertained on symptoms, then possibly confirmed biologically.
Those participants without symptoms are generally not confirmed biologically. In the study

analyzed here, ascertainment was passive through clinic visits, so our efficacy measure was for
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medically-attended influenza illness. Ascertainment on symptoms could also be active, say,
through regular phone calls to the home. Our methods could be used for studies with an
active ascertainment method without further extension, whereby A(z) = 1 would denote being
symptomatic by whatever case definition was used for that study, and the interpretation of

vaccine efficacy would be for symptomatic influenza.

It is straightforward to extend our method to the situation that infection is confirmed,
perhaps serologically, in a sample of people who did not have non-specific illness, A(z) = 0. In
this case, we would not need Assumption 2. The scientific question then would be to estimate
efficacy against infection, not medically attended disease, as in this paper. There would be
additional selection bias parameters in that situation. However, if a study were well enough
planned to sample asymptomatic participants, it would be hoped that the sampling would be

planned and random, so that selection bias would not play a role.

Our informative priors for the selection bias parameters were assumed to be multivariate
Normal on the log 3 scale. Prior distributions could also be constructed less parametrically
using the information elicited from the experts. When using our methods to analyze future
studies, the providers making the decision from whom to obtain biological specimens could be

directly asked their prior beliefs about selection bias.

In ongoing research, we are extending the Bayesian methods to incorporate higher-dimensional

covariates. We are also working on methods for longitudinal and time-to-event outcomes.
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Figure Captions

1. Frequentist sensitivity analysis of P, ,[Y = 1]. Shown are the estimated probabilities (and
95% confidence intervals) for influenza in the vaccinated and unvaccinated groups, for each
age stratum, as a function of the relative risk selection bias parameter 3, ., varied over

the 90% ranges elicited from the expert.

2. Frequentist sensitivity analysis of point estimates and lower 95% confidence bounds for the
age-group-specific vaccine efficacy as a function of the relative risk selection bias parameters
B1,2 (vaccinated) and (. (unvaccinated) varied over the 90% ranges elicited from the
expert. Black diamonds indicate the results at the best guess of the expert. Black lines

with numbers indicate the contours.

3. Posterior distributions of the overall vaccine efficacy and by age-group using the informa-

tive prior distributions.

List of Tables

1. Study data for influenza epidemic season 2000-2001 (from Halloran et al. 2003).

2. Best guess and 90% range for the informative prior distributions on the selection bias

parameter 3 and log 3

3. Results of Bayesian and frequentist sensitivity analyses using surveilance cultures assuming
NMAR and MAR.
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