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First, we would like to thank Joe and Geert for a carefully written review paper on longi-

tudinal data. We would like to expand on several points discussed in this paper. Specifically,

we would like to expand on 1) the interpretation of covariate effects and use of identifying

restrictions with covariates in mixture models (Section 4.2.2) and 2) issues with sensitivity

analyses in parametric models for the full fix wording and in selection models in general

(Section 4.2.3).

1 Mixture Models

In the following, we focus on the setting of covariates that are collected at baseline with no

missingness.

1.1 Interpretation of covariate effects

In longitudinal studies, as discussed here, the main focus of inference is usually on the

marginal distribution, p(y). In mixture models, the full-data model p(y|x) is a mixture of

component distributions with regard to different missing patterns r, i.e.

p(y|x) =
∑
r∈R

p(y|x, r)p(r|x).

Similarly, E[Y |x] is
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E(Y |x) =
∑
r∈R

E(Y |x, r)p(r|x).

So, assessing the covariate effects on the marginal mean has to be done by averaging over

patterns and needs to consider (1) whether the mean is linear in covariates; (2) whether

marginal distribution of missingness depends on covariates, and (3) whether covariates effects

are time-invariant. In this discussion, we will focus on the first issue.

For mixture models with an identity link, averaged covariates effects for the full-data

distribution have a simple form as a weighted average over pattern-specific covariate effects

and have a straightforward interpretation (Fitzmaurice et al., 2001). As an example, consider

the full-data response Y = (Y1, . . . , Yn)′ are to be observed at time points {t1, . . . , tn} and

denote the baseline covariates by X. Assume drop out is monotone and independent of X

and let S be the dropout time with φs = P (S = ts) for s = 1, . . . , n and
∑n

s=1 φs = 1.

When the link function, denoted by g, is non-linear, and the within-pattern s (S = ts)

mean model is

g{E(Yij|X = xij)} = x′ijβ,

and we have in general

g(µj(x))− g(µj(x
′) 6= (x− x′)β(s)φ(s).

So it can be difficult to capture the covariate effects compactly (Fitzmaurice et al., 2001;

Wilkins and Fitzmaurice, 2006). Roy and Daniels (2008) proposed to specify marginalized

models and impose constraints on the conditional mean. This is in the spirit of earlier work

by Azzalini (1994) and Heagerty (1999). A simple version of the model in Roy and Daniels

is illustrated below.

First, the marginal mean is specified as

g{E(Yij|X = xij)} = x′ijβ.
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Second, a conditional model is specified to account for within-subject correlation and

dependencies between the response and missingness pattern. We assume Yij, conditional

on random effects bi and missingness pattern Si, are from exponential family and have

distribution

f(Yij|bi, Si,X) = exp{[Yijηij − ψ(ηij)]/φ+ h(Yij, φ)},

where

ηij = g(E(Yij|bi, Si = s,X = xij)) = ∆ij + bi + xijα
(s).

The conditional model has to be compatible with the marginal model. In particular, the

intercepts ∆ij are determined by the relationship

E(Yij|X) =
∑
s

φs

∫
E(Yij|bi, Si,X)p(bi)dbi

and are functions of other parameters including β in the model. Note that this is marginalized

over both missingness patterns and subject-specific random effects. Serial correlation within

pattern can be addressed by augmenting the conditional model with a Markov components

(Heagerty, 2002).

1.2 Identifying restrictions with covariates

Identifying restrictions can be problematic in pattern mixture models with baseline covariates

with time-invariant coefficients. We will focus on the available case missing value (ACMV)

restriction (Little, 1993; Molenberghs et al., 1998) here which corresponds to MAR. Missing

at random (MAR) is often taken as a starting point for analysis of incomplete data (Troxel

et al., 2004; Zhang and Heitjan, 2006).

To illustrate, consider Y = (Y1, Y2) being a bivariate normal response with missing data

only in Y2. The missing data indicator R equals 1 or 0 corresponding to Y2 being observed

or missing. Assume

R ∼ Bern(φ) and Y |R = r ∼ N(µ(r),Σ(r))
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where
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This restriction identified the full data response distribution.

When there are baseline covariates with time-invariant coefficients, we have that

µ(r) =

[
µ

(r)
1 +Xβ(r)

µ
(r)
2 +Xβ(r)

]
and Σ(r) =

[
σ

(r)
11 σ

(r)
12

σ
(r)
12 σ

(r)
22

]
for r = 0, 1, where x does not contain an intercept.

The MAR assumption requires that for all X and Y1,

µ
(0)
2 +Xβ(0) +

σ
(0)
21

σ
(0)
11

(Y1 − µ(0)
1 −Xβ(0)) = µ

(1)
2 +Xβ(1) +

σ
(1)
21

σ
(1)
11

(Y1 − µ(1)
1 −Xβ(1)).

By simple algebra, we can see that this restricts β(0) to be equal to β(1). Note that both

β(0) and β(1) are identified from the observed data. Therefore, the ACMV restricton/MAR

assumption causes over-identification and has impact on the model fit to the observed data.

This is against the principle of applying identifying restrictions (Little, 1994). Ways to

remedy this (and associated problems) are explored in Wang and Daniels (working paper).
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2 Issues with Sensitivity Analysis

Sensitivity analysis is critical in longitudinal analysis of incomplete data with informative

drop-out as stated in this paper. In the setting of missing data, the full-data model can be

factored into an extrapolation model and an observed data model,

p(y, r|ω) = p(ymis|yobs, r,ωE)p(yobs, r|ωI),

where ωE are parameters indexing the extrapolation model and ωI are parameters index-

ing the observed data model and are identifiable from observed data (Daniels and Hogan,

2008). Full-data model inference requires unverifiable assumptions about the extrapolation

model p(ymis|yobs, r,ωE). A sensitivity analysis explores the sensitivity of inferences of inter-

est about the full data response model to unverifiable assumptions about the extrapolation

model. This is typically done by varying sensitivity parameter, which we define next. Sup-

pose there exists a reparameterization ξ(ω) = (ξS, ξM) such that (1) ξs is a non-constant

function of ωE, (2) the observed likelihood L(ξS, ξM |yobs, r) is a constant as a function of

ξS and (3) given ξS fixed, L(ξS, ξM |yobs, r) is a non-constant function of ξM . A parame-

ter ξS that satisfies these three conditionals is a sensitivity parameter and can be used for

sensitivity analysis and/or for incorporation of prior information (Daniels and Hogan, 2008).

2.1 In parametric models

Unfortunately, fully parametric selection models and shared parameter models do not allow

sensitivity analysis as sensitivity parameters cannot be found (Daniels and Hogan, Chapter

8, 2008). Examining sensitivity to distributional assumptions, e.g., random effects, will

provide different fits to the observed data, (yobs, r). In such cases, a sensitivity analysis

cannot be done since varying the distributional assumptions does not provide equivalent

fits to the observed data (Daniels and Hogan, 2008). It then becomes a problem of model

selection. Next, we provide an example of the inability to find sensitivity parameters in a

simple parametric selection model for binary data.
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As an example, consider the situation when Y = (Y1, Y2) is a bivariate binary response

with missing data only in Y2. Let R = 1 if Y2 is observed and R = 0 otherwise.

Let ω
(r)
y1,y2 be P (Y1 = y1, Y2 = y2, R = r) and ω

(0)
y1+ be P (Y1 = y1, R = 0). A multinomial

parameterization of the full-data model of Y and R is shown in Table 1.

Table 1: A multinomial parameterization full-data model for Y

R Y1 Y2 p(y1, y2, r|ω)

0 0 0 ω
(0)
00

0 0 1 ω
(0)
01

0 1 0 ω
(0)
10

0 1 1 ω
(0)
11

1 0 0 ω
(1)
00

1 0 1 ω
(1)
01

1 1 0 ω
(1)
10

1 1 1 ω
(1)
11

In this example, the set of parameters

ωI = {ω(1)
00 , ω

(1)
01 , ω

(1)
10 , ω

(1)
11 , ω

(0)
0+, ω

(0)
1+}

are identified by observed data without any modeling assumption. When a selection model

is fully parametric, all its parameters can be identified by the observed data. To see this, we

specify a parametric model for the bivariate binary example:

logitP (Y1 = 1) = β0

logitP (Y2 = 1|Y1) = β0 + β1Y1

logitP (R2 = 1|Y1, Y2) = φ0 + τY2.

Note that we assume

P (Y2 = 1|Y1 = 0) = P (Y1 = 1) (1)

and

P (R2 = 1|Y1, Y2) = P (R2 = 1|Y2). (2)
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We will show that the full-data model is identified under the parametric assumptions by

showing all parameters, (β0, β1, φ0, τ) can be written as a function of ωI , the identified ω’s.

First, note that

β0 = logitP (Y1 = 1) = logit(ω
(1)
10 + ω

(1)
11 + ω

(0)
1+).

Also, by (1),

β0 = logitP (Y2 = 1|Y1 = 0) = logit
ω

(1)
01 + ω

(0)
01

ω
(1)
00 + ω

(1)
01 + ω

(0)
0+

.

This gives

ω
(0)
01 = (ω

(1)
10 + ω

(1)
11 + ω

(0)
1+)(ω

(1)
00 + ω

(1)
01 + ω

(0)
0+)− ω(1)

01 and ω
(0)
00 = ω

(0)
0+ − ω

(0)
01 . (3)

As a consequence, since τ has the interpretation that

τ = log

{
P (R2 = 1, Y2 = 1, Y1 = 0)

P (R2 = 0, Y2 = 1, Y1 = 0)
/
P (R2 = 1, Y2 = 0, Y1 = 0)

P (R2 = 0, Y2 = 0, Y1 = 0)

}
,

thus it is identified by

τ = log
ω

(1)
01 ω

(0)
00

ω
(1)
00 ω

(0)
01

,

where ω
(0)
00 and ω

(0)
01 are identified by (3).

Further, since τ can also be expressed as

τ = log

{
P (R2 = 1, Y2 = 1, Y1 = 1)

P (R2 = 0, Y2 = 1, Y1 = 1)
/
P (R2 = 1, Y2 = 0, Y1 = 1)

P (R2 = 0, Y2 = 0, Y1 = 1)

}
= log

ω
(1)
11 ω

(0)
10

ω
(1)
10 ω

(0)
11

,

hence we have that ω
(0)
11 and ω

(0)
10 are identified as

ω
(0)
11 = ω

(0)
1+

1

1 +
ω

(0)
00 ω

(1)
01 ω

(1)
10

ω
(0)
01 ω

(1)
00 ω

(1)
11

and ω
(0)
10 = ω

(0)
1+ − ω

(0)
11 .

Therefore, in this parametric selection model, the parameters ω
(0)
00 , ω

(0)
01 , ω

(0)
10 and ω

(0)
11 are all

identified (as opposed to their sums, ω
(0)
0+ and ω

(0)
1+).

Finally, we can show that

β1 = logitP (Y2 = 1|Y1 = 1)− β0 = logit
ω

(1)
11 + ω

(0)
11

ω
(1)
11 + ω

(1)
10 + ω

(0)
1+

− β0
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and

φ0 = logitP (R2 = 1|Y2 = 0) = logit
ω

(1)
00 + ω

(1)
10

ω
(0)
00 + ω

(0)
10 + ω

(1)
00 + ω

(1)
10

.

2.2 In Bayesian semiparametric selection models

The factorization of a selection model provides a transparent way to understand the missing

data mechanism. In Bayesian selection models, an intuitive prior specification assumes

independence between the parameters of the missing data mechanism (φ) and the full data

response (β)(Scharfstein et al., 2003) .

However, in a Bayesian model under this prior specification, sensitivity parameters in

a selection model, denoted by τ , can be (weakly) identified by the observed data, i.e.

p(τ |yobs, r) 6= pτ (τ), even though the observed data likelihood contains no information about

the sensitivity parameters (Daniels and Hogan, 2008). We outline how this occurs in the

following.

In general, a semi-parametric selection model might specify the full data response dis-

tribution nonparametrically (or saturated if a categorical response), p(y; β) with a missing

data mechanism given as as follows:

logitP (Rj = 1|Rj−1 = 0,Y ) = hj(Y j−1;φ) + qj(Y ; τ)

for j = 1, . . . , J , where hj is an arbitrary smooth function, and qj is a user specified function

that encodes assumptions about how the MDM depends on missing data and it parameters

are sensitivity parameters. Note that qj(Y ) = 0 implies MAR and qj(Y ) = qj(Yj) implies

non-future dependence.

To see the cause of the weak identification, let θ = {φ,β} and ωI be the identified

parameters. By re-parameterizing the model, we may find a mapping, indexed by τ , between

θ and ωI ,

ωI = ητ (θ).
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Due to the mapping, even a priori independence between τ and θ will yield a priori depen-

dence between τ and ωI , since

p(ωI , τ) = pθ
(
η−1
τ (ωI)

)
pτ (τ)

∣∣∣∣dη−1
τ (ωI)

dωI

∣∣∣∣ . (4)

The Jacobian introduces the dependence.

The posterior for the sensitivity parameters τ can be expressed as

p(τ |yobs, r) ∝
∫
p(yobs, r|ωI , τ)p(ωI , τ)dωI

=

∫
p(yobs, r|ωI)p(ωI |τ)pτ (τ)dωI

= pτ (τ)

∫
p(yobs, r|ωI)p(ωI |τ )dωI .

Thus from (4), p(τ |yobs, r) 6= pτ (τ).

As a concrete example, consider a bivariate binary response with missing data only in Y2

from the previous section. A saturated selection model can be specified as

logitP (Y1 = 1) = β0

logitP (Y2 = 1|Y1) = β1 + β2Y1

logit(R2 = 1|Y1, Y2) = φ0 + φ1Y1 + τY2

and θ = {β0, β1, β2, φ0, φ1}. MAR holds when τ = 0. Note τ is not identified by the observed

data. It can be shown that for any ∆τ , there exists ∆θ, such that

ητ (θ) = ητ+∆τ (θ + ∆θ),

i.e (τ,θ) and (τ + ∆τ ,θ + ∆θ) will yield the same law of observed data.

Let θ∗ = {eα0 , eα1 , eα2 , eφ0 , eφ1} and τ ∗ = eτ . We can derive that∣∣∣∣ dθ∗dωI

∣∣∣∣ ∝ τ ∗(ω
(0)
11 + ω

(1)
1+) + ω

(0)
10

(ω
(0)
10 + τ ∗ω

(0)
11 )(ω

(1)
0+ + ω

(1)
1+ + τ ∗ω

(0)
11 )

.

The a priori dependence of p(ωI |τ) is thus introduced by
∣∣∣ dθ∗

dωI

∣∣∣. This has been pointed out

in Scharfstein et al. (2003) and explored further in Wang et al. (working paper).

9



References

A. Azzalini. Logistic regression for autocorrelated data with application to repeated mea-

sures. Biometrika, 81(4):767–775, 1994.

M. J. Daniels and J. W. Hogan. Missing Data in Longitudinal Studies: Strategies for

Bayesian Modeling and Sensitivity Analysis. Chapman & Hall/CRC, 2008.

G.M. Fitzmaurice, N.M. Laird, and L. Shneyer. An Alternative Parameterization of the Gen-

eral Linear Mixture Model for Longitudinal Data with Non-ignorable Drop-outs. Statistics

in Medicine, 20(7):1009–1021, 2001.

P.J. Heagerty. Marginally Specified Logistic-Normal Models for Longitudinal Binary Data.

Biometrics, 55(3):688–698, 1999.

P.J. Heagerty. Marginalized Transition Models and Likelihood Inference for Longitudinal

Categorical Data. Biometrics, 58(2):342–351, 2002.

R.J.A. Little. Pattern-mixture models for multivariate incomplete data. Journal of the

American Statistical Association, 88(421):125–134, 1993.

R.J.A. Little. A class of pattern-mixture models for normal incomplete data. Biometrika,

81(3):471–483, 1994.

G. Molenberghs, B. Michiels, MG Kenward, and PJ Diggle. Monotone missing data and

pattern-mixture models. Statistica Neerlandica, 52(2):153–161, 1998.

J. Roy and M. J. Daniels. A general class of pattern mixture models for nonignorable dropout

with many possible dropout times. Biometrics, 64:538–545, 2008.

D.O. Scharfstein, M.J. Daniels, and J.M. Robins. Incorporating prior beliefs about selection

bias into the analysis of randomized trials with missing outcomes. Biostatistics, 4(4):495,

2003.

10



A.B. Troxel, G. Ma, and D.F. Heitjan. An Index of Local Sensitivity to Nonignorability.

Statistica Sinica, 14(4):1221–1238, 2004.

C. Wang and M. J. Daniels. A note on identifying restriction in normal mixture models with

and without covariates for incomplete data. working paper.

C. Wang, M. J. Daniels, and D. O. Scharfstein. Bayesian semiparametric selection model

with application to a breast cancer prevention trial. working paper.

K.J. Wilkins and G.M. Fitzmaurice. A Hybrid Model for Nonignorable Dropout in Longi-

tudinal Binary Responses. Biometrics, 62(1):168–176, 2006.

J. Zhang and D.F. Heitjan. A Simple Local Sensitivity Analysis Tool for Nonignorable

Coarsening: Application to Dependent Censoring. Biometrics, 62(4):1260–1268, 2006.

11


