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Appendix 1: Derivation of Theoretical Properties

This appendix contains proof for the properties presented in Section 5.

A1.1 Sparsity Grouping Prior

The proofs for properties 1.–3. can be found in the Appendix of Dunson et al. (2008).

4.

Pr(φmj = φm′j) = Pr(φmj = φm′j 6= 0) + Pr(φmj = φm′j = 0)

= E

{∑
h

πmjhπm′jhδξjh(R\0)

}
+ E

{∑
h

πmjhδξjh(0)×
∑
i

πm′jiδξji(0)

}

= E

{∑
h

πmjhπm′jhδξjh(R\0)

}
+ E

{∑
h

πmjhπm′jhδξjh(0)

}

+2E

{∑
h

∞∑
i=h+1

πmjhπm′jiδξjh(0)δξji(0)

}

= E

{∑
h

πmjhπm′jhδξjh(R)

}
+ 2E

{∑
h

∞∑
i=h+1

πmjhπm′jiδξjh(0)δξji(0)

}

= E

{∑
h

πmjhπm′jh

}
+ 2ε2E

{∑
h

∞∑
i=h+1

πmjhπm′ji

}
= (I) + 2ε2(II),
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where expressions (I) and (II) are calculated below.

(I) = E

{∑
h

UmhUm′hX
2
jh

∏
l<h

(
1− UmlXjl − Um′lXjl + UmlUm′lX

2
jl

)}
=

∑
h

EUmhEUm′hEX2
jh

∏
l<h

(
1− 2EUmlEXjl + EUmlEUm′lEX2

jl

)
=

∑
h

2

(1 + α)2(1 + β)(2 + β)

[
1− 2

(1 + α)(1 + β)
+

2

(1 + α)2(1 + β)(2 + β)

]h−1
=

2

(1 + α)2(1 + β)(2 + β)

[
2

(1 + α)(1 + β)
− 2

(1 + α)2(1 + β)(2 + β)

]−1
=

1

(1 + α)(2 + β)− 1
.

(II) = E

{∑
h

∞∑
i=h+1

UmhXjh (1− Um′hXjh)
∏
l<h

(1− UmlXjl) (1− Um′lXjl)Um′iXji

×
i−1∏

l=h+1

(1− Um′lXjl)

}

=
∑
h

∞∑
i=h+1

[
EUmhEXjh − EUmhEUm′hEX2

jh

]
EUm′iEXji

×
∏
l<h

[
1− 2EUmlEXjl + EUmlEUm′lEX2

jl

] i−1∏
l=h+1

(1− EUm′lEXjl)

=
∑
h

∞∑
i=h+1

[
1

(1 + α)(1 + β)
− 2

(1 + α)2(1 + β)(2 + β)

]
1

(1 + α)(1 + β)

×
[
1− 2

(1 + α)(1 + β)
+

2

(1 + α)2(1 + β)(2 + β)

]h−1 [
1− 1

(1 + α)(1 + β)

]i−h−1
=

∑
h

1

(1 + α)(1 + β)

[
1− 2

(1 + α)(2 + β)

]

×
[
1− 2

(1 + α)(1 + β)
+

2

(1 + α)2(1 + β)(2 + β)

]h−1
=

1

(1 + α)(1 + β)

[
1− 2

(1 + α)(2 + β)

] [
2

(1 + α)(1 + β)
− 2

(1 + α)2(1 + β)(2 + β)

]−1
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=
1

2

[
1− 1

(1 + α)(2 + β)− 1

]
.

Using (I) and (II), we have

Pr(φmj = φm′j) = (I) + 2ε2(II) = ε2 +
1− ε2

(1 + α)(2 + β)− 1
.

5. To compute the correlation, we first obtain the expected value of the product of the distribu-

tions.

E (Fmj(A)Fmj′(A)) = E

{∑
h

πmjhπmj′hδξjh(A)δξj′h(A)

}

+2E

{∑
h

∞∑
i=h+1

πmjhπmj′iδξjh(A)δξj′i(A)

}

= Ψ(A)2 E

{∑
h

πmjhπmj′h

}
+ 2Ψ(A)2 E

{∑
h

∞∑
i=h+1

πmjhπmj′i

}
= Ψ(A)2 (III) + 2Ψ(A)2 (IV),

where (III) and (IV) follow.

(III) = E

{∑
h

U2
mhXjhXj′h

∏
l<h

(
1− UmlXjl − UmlXj′l + U2

mlXjlXj′l

)}
=

∑
h

EU2
mhEXjhEXj′h

∏
l<h

(
1− 2EUmlEXjl + EU2

mlEXjlEXj′l

)
=

∑
h

2

(1 + α)(2 + α)(1 + β)2

[
1− 2

(1 + α)(1 + β)
+

2

(1 + α)(2 + α)(1 + β)2

]h−1
=

2

(1 + α)(2 + α)(1 + β)2

[
2

(1 + α)(1 + β)
− 2

(1 + α)(2 + α)(1 + β)2

]−1
=

1

(2 + α)(1 + β)− 1
.
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(IV) = E

{∑
h

∞∑
i=h+1

UmhXjh (1− UmhXj′h)
∏
l<h

(1− UmlXjl) (1− UmlXj′l)UmiXj′i

×
i−1∏

l=h+1

(1− UmlXj′l)

}

=
∑
h

∞∑
i=h+1

[
EUmhEXjh − EU2

mhEXjhEXj′h

]
EUmiEXj′i

×
∏
l<h

[
1− 2EUmlEXjl + EU2

mlEXjlEXj′l

] i−1∏
l=h+1

(1− EUm′lEXjl)

=
∑
h

∞∑
i=h+1

[
1

(1 + α)(1 + β)
− 2

(1 + α)(2 + α)(1 + β)2

]
1

(1 + α)(1 + β)

×
[
1− 2

(1 + α)(1 + β)
+

2

((1 + α)(2 + α)(1 + β)2

]h−1 [
1− 1

(1 + α)(1 + β)

]i−h−1
=

∑
h

1

(1 + α)(1 + β)

[
1− 2

(1 + α)(2 + β)

]

×
[
1− 2

(1 + α)(1 + β)
+

2

(1 + α)(2 + α)(1 + β)2

]h−1
=

1

(1 + α)(1 + β)

[
1− 2

(1 + α)(2 + β)

] [
2

(1 + α)(1 + β)
− 2

(1 + α)(2 + α)(1 + β)2

]−1
=

1

2

[
1− 1

(2 + α)(1 + β)− 1

]
.

Thus,

E (Fmj(A)Fmj′(A)) = Ψ(A)2 (III) + 2Ψ(A)2 (IV) = Ψ(A)2 = EFmj(A) EFmj′(A),

and Fmj(A) and Fmj′(A) are uncorrelated.

The proof of Cov(Fmj(A)Fmj′(A)) proceeds similarly; see expressions (V) and (VI) from

Appendix A1.2.

6. Pr(φmj = φmj′) = Pr(φmj = φmj′ 6= 0) + Pr(φmj = φmj′ = 0) = 0 + εqεq′ .
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A1.2 Lag-block Sparsity Grouping Prior

Properties 1.–4. follow as in Appendix A1.1.

5. Let q = q(j) = q(j′). Making use of the previously derived formulas (III) and (IV),

E (Fmj(A)Fmj′(A)) = E

{∑
h

πmjhπmj′hδξqh(A)

}
+ 2E

{∑
h

∞∑
i=h+1

πmjhπmj′iδξqh(A)δξq′i(A)

}

= Ψ(A) E

{∑
h

πmjhπmj′h

}
+ 2Ψ(A)2 E

{∑
h

∞∑
i=h+1

πmjhπmj′i

}
= Ψ(A) (III) + 2Ψ(A)2 (IV)

=
1

(2 + α)(1 + β)− 1
Ψ(A) [1−Ψ(A)] + Ψ(A)2,

which gives the correlation stated.

If q = q(j) 6= q′ = q(j′), then

E (Fmj(A)Fmj′(A)) = E

{∑
h

πmjhπmj′hδξqh(A)δξq′h(A)

}

+2E

{∑
h

∞∑
i=h+1

πmjhπmj′iδξqh(A)δξq′i(A)

}
= Ψ(A)2 (III) + 2Ψ(A)2 (IV) = Ψ(A)2.

6. Let q = q(j) = q(j′).

Pr(φmj = φmj′) = Pr(φmj = φmj′ 6= 0) + Pr(φmj = φmj′ = 0)

= E

{∑
h

πmjhπmj′hδξqh(R\0)

}
+ E

{∑
h

πmjhδξqh(0)×
∑
i

πmj′iδξqi(0)

}

= E

{∑
h

πmjhπmj′hδξqh(R)

}
+ 2E

{∑
h

∞∑
i=h+1

πmjhπmj′iδξqh(0)δξqi(0)

}

= (III) + 2ε2(IV) = ε2q +
1− ε2q

(2 + α)(1 + β)− 1
.

If q = q(j) 6= q′ = q(j′),

Pr(φmj = φmj′) = Pr(φmj = φmj′ 6= 0) + Pr(φmj = φmj′ = 0) = 0 + εqεq′ .
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7. Let q = q(j) = q(j′). Then,

E (Fmj(A)Fm′j′(A)) = E

{∑
h

πmjhπm′j′hδξqh(A)

}
+ 2E

{∑
h

∞∑
i=h+1

πmjhπm′j′iδξqh(A)δξqi(A)

}

= Ψ(A) E

{∑
h

πmjhπm′j′h

}
+ 2Ψ(A)2 E

{∑
h

∞∑
i=h+1

πmjhπm′j′i

}
= Ψ(A) (V) + 2Ψ(A)2 (VI),

where

(V) = E

{∑
h

UmhUm′hXjhXj′h

∏
l<h

(1− UmlXjl − UmlXj′l + UmlUm′lXjlXj′l)

}

=
∑
h

1

(1 + α)2(1 + β)2

[
1− 2

(1 + α)(1 + β)
+

1

(1 + α)2(1 + β)2

]h−1
=

1

(1 + α)2(1 + β)2

[
2

(1 + α)(1 + β)
− 1

(1 + α)2(1 + β)2

]−1
=

1

2(1 + α)(1 + β)− 1

and

(VI) = E

{∑
h

∞∑
i=h+1

UmhXjh (1− Um′hXj′h)
∏
l<h

(1− UmlXjl) (1− Um′lXj′l)Um′iXj′i

×
i−1∏

l=h+1

(1− Um′lXj′l)

}

=
∑
h

∞∑
i=h+1

1

(1 + α)2(1 + β)2

[
1− 1

(1 + α)(1 + β)

] [
1− 1

(1 + α)(1 + β)

]i−h−1
×
[
1− 2

(1 + α)(1 + β)
+

1

(1 + α)2(1 + β)2

]h−1
=

∑
h

1

(1 + α)(1 + β)

[
1− 1

(1 + α)(1 + β)

] [
1− 2

(1 + α)(1 + β)
+

1

(1 + α)2(1 + β)2

]h−1
=

1

(1 + α)(1 + β)

[
1− 1

(1 + α)(1 + β)

] [
2

(1 + α)(1 + β)
− 1

(1 + α)2(1 + β)2

]−1
=

1

2

[
1− 1

2(1 + α)(1 + β)− 1

]
.
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Using expressions (V) and (VI), we obtain the stated correlation in Property 7.

For q = q(j) 6= q′ = q(j′).

E (Fmj(A)Fm′j′(A)) = E

{∑
h

πmjhπm′j′hδξqh(A)δξq′h(A)

}

+2E

{∑
h

∞∑
i=h+1

πmjhπm′j′iδξqh(A)δξq′i(A)

}

= Ψ(A)2 E

{∑
h

πmjhπm′j′h

}
+ 2Ψ(A)2 E

{∑
h

∞∑
i=h+1

πmjhπm′j′i

}
= Ψ(A)2 (V) + 2Ψ(A)2 (VI) = Ψ(A)2.

8. Let q = q(j) = q(j′).

Pr(φmj = φm′j′) = Pr(φmj = φm′j′ 6= 0) + Pr(φmj = φm′j′ = 0)

= E

{∑
h

πmjhπm′j′hδξqh(R\0)

}
+ E

{∑
h

πmjhδξqh(0)×
∑
i

πm′j′iδξqi(0)

}

= E

{∑
h

πmjhπm′j′hδξqh(R)

}
+ 2E

{∑
h

∞∑
i=h+1

πmjhπm′j′iδξqh(0)δξqi(0)

}

= (V) + 2ε2(VI) = ε2q +
1− ε2q

2(1 + α)(1 + β)− 1
.

If q = q(j) 6= q′ = q(j′),

Pr(φmj = φm′j′) = Pr(φmj = φm′j′ 6= 0) + Pr(φmj = φm′j′ = 0) = 0 + εqεq′ .

A1.3 Innovation Variance Properties

Properties 1.–4. follow as in Dunson et al. (2008).

5. For a common value of α and β, the distributions of Umh and Wmh, as well as Xjh and Zjh,

are the same. Hence, the set {τmjh} will be distributed the same as the set {πmjh}, and we

may continue to use the expressions (I)–(VI) to obtain expectations of the IV stick-breaking
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weights.

E (Gmj(A)Gmj′(A)) = E

{∑
h

τmjhτmj′hδηjh(A)δηj′h(A)

}

+2E

{∑
h

∞∑
i=h+1

τmjhτmj′iδηjh(A)δηj′i(A)

}

= E
{
δηjh(A)δηj′h(A)

}
E

{∑
h

τmjhτmj′h

}

+2
(
Eδηjh(A)

)
(Eδηj′h(A)) E

{∑
h

∞∑
i=h+1

τmjhτmj′i

}
= E

{
δηjh(A)δηj′h(A)

}
(III) + 2

(
Eδηjh(A)

)
(Eδηj′h(A)) (IV)

=
1

(2 + α)(1 + β)− 1

[
E
{
δωj1(logA)δωj′1(logA)

}
−Eδωj1(logA) Eδωj′1(logA)

]
+ Eδωj1(logA) Eδωj′1(logA)

=
1

(2 + α)(1 + β)− 1
Cov

(
δωj1(logA), δωj′1(logA)

)
+ Φ(logA)2

=
1

(2 + α)(1 + β)− 1
Cov (I{ωj1 ∈ logA}, I{ωj′1 ∈ logA}) + Φ(logA)2.

Applying Var{δωj1(logA)} = Φ(logA)(1 − Φ(logA)) and properties 1. and 2. gives the

final result.

6. The proof of property 6. follows the same as above, except one uses expressions (V) and

(VI) in place of (III) and (IV).

7. Follows from the observation that ωjh 6= ωj′h′ almost surely as a consequence of the multi-

variate normal distribution with a non-degenerate correlation.

Appendix 2: MCMC Details

As mentioned in Section 6.2, we introduce several latent variables to facilitate the MCMC simula-

tion from the distributions Fmj(·) and Gmj(·) in equations (2) and (4), following the algorithm of
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Dunson et al. (2008). We will draw the random variables Rmj and Amj from multinomial distribu-

tions with respective probabilities of {πmjh}h and {τmjh}h. To this end, first consider the following

four sets of binary dummy variables, for all m, j, h:

umjh ∼ Bern(Umh), m = 1, . . . ,M, j = 1, . . . , J, h = 1, . . . , Hφ;

xmjh ∼ Bern(Xjh), m = 1, . . . ,M, j = 1, . . . , J, h = 1, . . . , Hφ;

wmjh ∼ Bern(Wmh), m = 1, . . . ,M, j = 1, . . . , p, h = 1, . . . , Hγ;

zmjh ∼ Bern(Zjh), m = 1, . . . ,M, j = 1, . . . , p, h = 1, . . . , Hγ.

Now define Rmj = min {h : 1 = umjh = xmjh} and Amj = min {h : 1 = wmjh = zmjh}. These

Rmj’s and Amj’s are distributed according to the appropriate multinomial distributions. We let

Rmj designate which ξjh to choose as φmj , and likewise, Amj gives the ηjh to select as γmj . Hence,

Φ is determined by {Rmj} and {ξjh} and Γ by {Amj} and {ηjh}. Thus, after sampling the values

of {Rmj}, {ξjh}, {Amj}, and {ηjh}, the values of Φ and Γ are determined.

Now we calculate the conditional distributions that we will need for our Gibbs sampler for each

of the grouping priors. Notationally, we denote the conditional distribution for a random variable,

say C, conditional on the remaining random variables by C|−.

A2.1 Posterior Computations for Sparsity/InvGamma Grouping Prior

1. Conditional for ξjh for j = 1, . . . , J and h = 1, . . . , Hφ:

It is important to recall the definition of the GARP parameters. For instance, the first pa-

rameter φm1 is the regression coefficient for ymi1 onto ymi2 with innovation variance γm1.

Likewise, φm2 and φm3 are the coefficients of ymi1 and ymi2 for modeling ymi3 with variance

γm2. For fixed j, we let x∗mi denote the component of ymi that corresponds to the j th GARP

parameter regressor, e.g. x∗mi = ymi1 for j = 1, 2 and x∗mi = ymi2 for j = 3. Similarly, we

let γ∗m denote the relevant innovation variance. For j = 1, γ∗m = γm1, and for j =2 and 3,
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γ∗m = γm2. Finally, we define e∗mi to be the residual for the regression equation, excluding

the contribution of x∗mi. That is, for j = 1, e∗mi = ymi2, for j = 2, e∗mi = ymi3 − φm3ymi2,

and for j = 3, e∗mi = ymi3 − φm2ymi1. In general the ∗-variables are defined in the natural

way for each j so that e∗mi ∼ N(φmjx
∗
mi, γ

∗
m). Having established the necessary notation, we

see that the contribution to the distribution of the Ymi’s from φmj is proportional to

exp

{
− 1

2γ∗m

nm∑
i=1

(e∗mi − φmjx∗mi)
2

}
.

However, we do not draw the φmj’s but ξjh. The contribution from Y about ξjh is

exp

 ∑
m:Rmj=h

−1

2γ∗m

nm∑
i=1

(e∗mi − ξjhx∗mi)2
 . (6)

This summation over m such that Rmj = h means that we are only including the samples

whose jth GARP parameter is drawn from cluster h. From this observation, we have that

the conditional distribution of ξjh is

π(ξjh|−) ∝ exp

 ∑
m:Rmj=h

−1

2γ∗m

nm∑
i=1

(e∗mi − ξjhx∗mi)2


×
(
εq(j)δ0(ξjh) + (1− εq(j))(2πσ2)−

1
2 exp

{
−
ξ2jh
2σ2

})
∝ εq(j)δ0(ξjh) + (1− εq(j))

σ∗

σ
exp

{
(µ∗)2

2σ2∗

}
N(µ∗, σ2∗), (7)

where

µ∗ = σ2∗
∑

m:Rmj=h

nm∑
i=1

e∗mix
∗
mi

γ∗m
and σ2∗ =

 1

σ2
+

∑
m:Rmj=h

nm∑
i=1

(x∗mi)
2

γ∗m

−1 . (8)

Thus, to sample from this conditional, we set ξjh to zero with probability

εq(j)

εq(j) + (1− εq(j))σ
∗

σ
exp

{
(µ∗)2

2σ2∗

} ,
and draw from the specified N(µ∗, σ2∗) distribution otherwise. Note that if there are no

groups with Rmj = h then µ∗ = 0 and σ2∗ = σ2, and so (7) simplifies to the original prior

for ξjh given by (3).
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2. Conditional for {Rmj}, {umjh}, and {xmjh}:

First, we draw Rmj from the marginal over {umjh, xmjh}h of the conditional distribution of

the three. Define γ∗m, e
∗
mi, x

∗
mi as in step 1. Then we have

P (Rmj = h| − \{umjh, xmjh}h) ∝ πmjh × exp

{
− 1

2γ∗m

nm∑
i=1

(e∗mi − ξjhx∗mi)2
}
. (9)

Hence, we draw Rmj from the multinomial distribution with probabilities from (9), nor-

malized to sum to one. Given the value of Rmj , we can draw the set {umjh, xmjh}h to

require that Rmj is the first occasion where both umjh and xmjh are one. For h > Rmj draw

umjh ∼ Bern(Umh) and xmjh ∼ Bern(Xjh), and when h = Rmj , 1 = umjh = xmjh. For

h < Rmj , then we jointly draw umjh and xmjh in accordance to the following probabilities

P (umjh = 0, xmjh = 0) = (1− Umh)(1−Xjh)/(1− UmhXjh),

P (umjh = 1, xmjh = 0) = Umh(1−Xjh)/(1− UmhXjh),

P (umjh = 0, xmjh = 1) = (1− Umh)Xjh/(1− UmhXjh).

3. Conditional for Umh and Xjh:

Given the values of the umjh’s and the other variables, the conditional for Umh for h < Hφ is

Umh ∼ Beta

(
1 +

J∑
j=1

umjh, αφ +
J∑
j=1

(1− umjh)

)
.

Likewise, for h < Hφ,

Xjh ∼ Beta

(
1 +

M∑
m=1

xmjh, βφ +
M∑
m=1

(1− xmjh)

)
.

UmHφ and XjHφ are drawn from distribution degenerate at 1.

One should recognize that this is slightly different from the specification of Dunson et al.

(2008). This is because the authors only define umjh and xmjh forRmj ≥ h, and so the above

conditional has shape parameters determined by summing over j (or m) where Rmj ≥ h.

We choose to include latent variable for each combination of m, j, h for clarity, but one may

follow Dunson et al.’s choice as well.
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4. Conditional for εq, q = 1, . . . , p− 1:

By placing a Beta(αq, βq) prior on εq, the conditional for εq is

εq|− ∼ Beta

αq +
∑

j:q(j)=q

Hφ∑
h=1

δ0(ξjh), βq +
∑

j:q(j)=q

Hφ∑
h=1

(1− δ0(ξjh))

 ,

where the sum over j : q(j) = q is simply the sum over the j corresponding to the lag-q

GARPs. It is necessary to specify the values of αq and βq. We recommend using αq = βq = 1

for all q, which gives a Unif(0,1) prior for each εq. Alternatively, one could choose the values

of αq and βq to more aggressively shrink εq for lower lags toward zero and εq for higher lags

toward one.

5. Conditional for ηjh for j = 1, . . . , J and h = 1, . . . , Hγ:

Let ẽmi be the residual obtained from the difference of ymij and the previous components of

ymi multiplied by the appropriate GARP. For instance, when j = 1 ẽmi = ymi1, and for j = 2

ẽmi = ymi2 − φm1ymi1, and so on. Note that this is a different definition of these ẽ-residuals

from the e∗-residuals used in the ξjh step. For each value of j, this yields ẽmi ∼ N(0, γmj).

The contribution to the likelihood from Ymi ∼ N (0,Σ(Φm,Γm)) is proportional to

η
− 1

2
jh exp

{
− ẽ2mi

2ηjh

}
δh(Amj).

Hence, the conditional for each ηjh is

ηjh|− ∼ InvGamma

λ1 +
1

2

∑
m:Amj=h

nm, λ2 +
1

2

∑
m:Amj=h

nm∑
i=1

ẽ2mi

 .

6. Conditional for {Amj}, {wmjh}, and {zmjh}:

To draw Amj we will proceed similarly to step 2 by looking at the conditional marginally

over {wmjh, zmjh}h.

P (Amj = h| − \{wmjh, zmjh}h) ∝ τmjh × η
− 1

2
nm

jh exp

{
− 1

2ηjh

nm∑
i=1

ẽ2mi

}
. (10)
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Hence, we drawAmj from the multinomial distribution with probabilities from (10), normal-

ized to sum to one. As before, we simulate the sets wmjh and zmjh conditional on Amj being

the first occasion where bothwmjh and zmjh are one. For h > Amj drawwmjh ∼ Bern(Wmh)

and zmjh ∼ Bern(Zjh), and when h = Amj , 1 = wmjh = zmjh. For h < Amj , we jointly

draw wmjh and zmjh in accordance to the following probabilities

P (wmjh = 0, zmjh = 0) = (1−Wmh)(1− Zjh)/(1−WmhZjh),

P (wmjh = 1, zmjh = 0) = Wmh(1− Zjh)/(1−WmhZjh),

P (wmjh = 0, zmjh = 1) = (1−Wmh)Zjh/(1−WmhZjh).

7. Conditional for Wmh and Zjh:

Proceeding identically to step 3, we get the following conditionals for h < Hγ ,

Wmh|− ∼ Beta

(
1 +

J∑
j=1

wmjh, αγ +
J∑
j=1

(1− wmjh)

)
,

Zjh|− ∼ Beta

(
1 +

M∑
m=1

zmjh, βγ +
M∑
m=1

(1− zmjh)

)
,

and WmHγ , ZjHγ ∼ δ1.

We now look at some of the issues involved in dealing with the hyperparameters. In practice, it

will generally be infeasible to specify values for these quantities, so we wish to choose reasonable,

disperse prior distributions for them.

8. The first hyperparameter of interest is the variance σ2 from the normal component of the

ξjh’s in equation (3). We choose the InvGamma(a, b) family of distributions for the prior, so

that we will have conjugacy. This yields the following conditional distribution for σ2,

σ2|− ∼ InvGamma

(
a+

1

2

∑
j,h

(1− δ0(ξjh)), b+
1

2

∑
j,h

ξ2jh

)
.

One must now specify the values of a, b. We recommend InvGamma(0.1, 0.1), so that our

prior approximates the commonly-used improper prior π(σ2) ∝ σ−2.
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9. The αφ and βφ control the amount of clustering for the GARP parameters. It is not intuitively

obvious where these parameters would congregate, so we require priors that will not too

strongly inform the posterior. Following the example for Dunson et al. (2008), we choose a

Gamma(1,1) prior for both αφ and βφ. Then the conditional for αφ is

αφ|− ∼ Gamma

M(Hφ − 1) + 1, 1−
M∑
m=1

Hφ−1∑
h=1

log(1− Umh)

 .

Likewise,

βφ|− ∼ Gamma

J(Hφ − 1) + 1, 1−
J∑
j=1

Hφ−1∑
h=1

log(1−Xjh)

 .

Clearly, we can choose a different Gamma(a, b) prior instead of Gamma(1,1), and we will

maintain the Gamma-Gamma conjugacy.

10. The λ1 and λ2 parameters control the distribution of the ηjh. We place independent Gamma(1,1)

priors on each. The conditional for λ2 is

λ2|− ∼ Gamma

(
λ1pHγ + 1, 1 +

∑
j,h

η−1jh

)
.

The conditional for λ1 is

π(λ1|−) ∝ Γ(λ1)
−pHγλ

−λ1pHγ
2 exp

{
−λ1

(
1 +

∑
j,h

log(ηjh)

)}
,

but this is not a standard distribution to use in the Gibbs sampler. So it becomes necessary

to implement an alternative sampling method, and we choose to introduce a Metropolis in

Gibbs step to approximately simulate from the conditional of λ1. Draw the candidate value

λ∗1 to replace the current value λ1 from the N(λ1, ζ) distribution, and accept the move to λ∗1

with probability

min

1,

[
exp

{
log

(
Γ(λ1)

Γ(λ∗1)

)
+

1

pHγ

(λ1 − λ∗1)

(
1 +

∑
j,h

log(ηjh) + pHγ log(λ2)

)}]pHγ
I(λ∗1 > 0)

 ,
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It is necessary to prespecify a candidate variance ζ such that the acceptance rate is 20 to 40%

(Gelman et al., 1996).

11. The αγ and βγ parameters control the amount of clustering for the innovation variance pa-

rameters. As in step 2, we put a Gamma(1,1) prior on both, and we have the following

conditionals:

αγ|− ∼ Gamma

(
M(Hγ − 1) + 1, 1−

M∑
m=1

Hγ∑
h=1

log(1−Wmh)

)
,

βγ|− ∼ Gamma

(
M(Hγ − 1) + 1, 1−

J∑
j=1

Hγ∑
h=1

log(1− Zjh)

)
.

Having specified all of the necessary conditionals for the model, the MCMC algorithm is im-

plemented by sampling the parameters from each set in order.

A2.2 Posterior Computations for the Non-sparse Grouping Prior

Most of the parameters of the non-sparse prior yield identical conditional distribution to those from

the sparsity grouping prior. Hence, we only discuss those parameters with diverging distributions.

1. Because the prior distribution of the ξjh does not incorporate a zero point mass for the GARP

parameters, the conditional will no longer be a mixture of a zero point mass and normal. We

have ξjh ∼ N(µ∗, σ2∗), where the normal parameters come from Equation (8).

4. There are no longer any ε’s in the non-sparse prior, so this is an empty step.

8. The distribution of the variance for the GARP candidates is

σ2|− ∼ InvGamma

(
a+

1

2
JHφ, b+

1

2

∑
j,h

ξ2jh

)
,

where the prior for σ2 is InvGamma(a, b).

15



A2.3 Posterior Computations for the Lag-block Prior

1. The conditional for ξqh will again be a mixture of a point mass at zero and a normal distri-

bution. Let Pqh denotes the set of (m, j) such that q(j) = q and Rmj = h, which is the set

of group-GARP pairs that contribute to the estimation of ξqh. For each (m, j) ∈ Pqh, we let

e∗mij, x
∗
mij, γ

∗
mj be the residual, GARP-regressor, and IV such that e∗mij ∼ N(φmjx

∗
mij, γ

∗
mj),

as described in the step 1 for the sparsity grouping prior. Defining

µ∗ = σ2∗
∑

(m,j)∈Pqh

nm∑
i=1

e∗mijx
∗
mij

γ∗mj
and σ2∗ =

 1

σ2
+

∑
(m,j)∈Pqh

nm∑
i=1

(x∗mij)
2

γ∗mj

−1 ,
we have that ξqh|− is a mixture of zero and the N(µ∗, σ2∗) distribution, where we draw the

point mass at 0 with probability

εq

εq + (1− εq)σ
∗

σ
exp

{
(µ∗)2

2σ2∗

} .
Note if Pqh is empty, then the conditional is εqδ0 + (1− εq)N(0, σ2).

2. The lag-block conditional for Rmj marginalized over {umjh, xmjh}h is multinomial with

probabilities proportional to

P (Rmj = h| − \{umjh, xmjh}h) ∝ πmjh × exp

{
− 1

2γ∗m

nm∑
i=1

(e∗mi − ξq(j)hx∗mi)2
}
.

The conditionals for {umjh, xmjh}h are the same as the sparsity grouping case.

4. With a Beta(αq, βq) prior on εq, the conditional is

εq|− ∼ Beta

αq +

Hφ∑
h=1

δ0(ξqh), βq +

Hφ∑
h=1

(1− δ0(ξqh))

 .

8. With the prior for σ2 of InvGamma(a, b), we have the conditional distribution

σ2|− ∼ InvGamma

(
a+

1

2

∑
q,h

(1− δ0(ξqh)) , b+
1

2

∑
q,h

ξ2qh

)
.
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A2.4 Posterior Computations for the Correlated-logNormal Prior

5. Instead of considering the conditional for ηjh, we instead choose to look in terms of ωjh =

log ηjh. For each sampling set, we partition ωh into (ωhA, ωhB) so that ωhA contains the

collection of ωjh such that Amj = h for at least one m. This divides ωh into the ωhB, which

can be drawn easily through a conjugate distribution, and the ωhA, which require a more

advanced sampling method.

To sample ωhB given the remaining variables, we let a denote the length of ωhA and b = p−a

denote the length of ωhB. Define RAA to be the submatrix of R(ρ) corresponding to the

elements of ωhA, RBB corresponding to the elements of ωhB, and RBA contain the elements

of the rows of ωhB and columns of ωhA. Then, using standard multivariate normal results,

ωhB|ωhA,− ∼ Nb

(
ψ1b +RBAR

−1
AA(ωhA − ψ1a), Ω(RBB −RBAR

−1
AAR

′
BA)
)
.

Jointly drawing the vector ωhB leads to better mixing than drawing each component sepa-

rately.

To sample ωhA, we cycle through the components ωhα of ωhA for α = 1, . . . , a.We recognize

that the contribution to the conditional of ωhα from the prior is

exp

{
− 1

2Ω∗
(ωhα − ψ∗)2

}
,

where

ψ∗ = ψ +Rα,(−α)R
−1
(−α),(−α)(ωh(−α) − ψ1p−1), Ω∗ = Ω

(
1−Rα,(−α)R

−1
(−α),(−α)R

′
α,(−α)

)
,

ωh(−α) is the ωh vector after removing ωhα,R(−α),(−α) is theR(ρ) matrix formed by removing

the row and column corresponding to α, andRα,(−α) is the vector defined by taking the α row

of R(ρ) and removing the α component. We view this equivalently as ηhα = exp(ωhα) ∼
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logNormal(ψ∗,Ω∗), and calculate the conditional distribution in terms of ηhα. This gives

π(ηhα|ηh(−α),−) ∝

η
− 1

2

∑
m nmδh(Amj)−1

hα exp

{
− 1

2ηhα

∑
m

nm∑
i=1

(ẽmij)
2δh(Amj)−

1

2Ω∗
(log ηhα − ψ∗)2

}
.

Sampling from this distribution requires an approximate sampling step. We recommend slice

sampling (Neal 2003), although an alternative sampling strategy could be used.

10. With the correlated-logNormal prior, we no longer have the hyperparameters λ1, λ2, but we

now have ψ,Ω, ρ. Choosing Ω ∼ InvGamma(a, b) and ψ|Ω ∼ N(0,c2Ω) as priors for the two

hyperparameters yields the following conditionals

ψ|Ω, ρ,− ∼ N
(

1′pR(ρ)−1
∑

h ωh

c−2 +Hγ1′pR(ρ)−11p
,

Ω

c−2 +Hγ1′pR(ρ)−11p

)
,

Ω|ψ, ρ,− ∼ InvGamma
(
a+

1

2
(pHγ + 1),

b+
ψ2

2c2
+

1

2

∑
h

(ωh − ψ1p)′R(ρ)−1(ωh − ψ1p)

)
.

In the simulation and data example, we use a = b = .1, c2 = 1000. As mentioned in

Section 6.2, it has been our experience that sampling ρ leads to instability, and we generally

recommend fixing it.

A2.5 Final Comments about MCMC Computations

We finally note that one can view our grouping priors in a hierarchical fashion with multiple levels.

As is often the case in hierarchical models, there may be little information about the parameters

in the lowest levels. We have often found this to be the case for the grouping priors resulting in

poor mixing for some of the model parameters. While the values of the GARPs and IVs tend to

mix well, as evidenced by trace and autocorrelation plots, the stick-breaking parameters αφ, βφ,

αγ , and βγ do not mix as well. While the GARPs/IVs show minimal autocorrelation within ten
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iterations, the stick-breaking parameters require more than fifty. As we are usually not interested

in directly performing inference on α, β and due to the previously mentioned concerns about the

computational time, we recommend selecting a thinning value that accommodates good mixing of

the GARPs and IVs. We also encourage the user to consider the trace plot formed by the log density

of the data given the values of the mean (if non-zero) and covariance parameters. An alternative

solution is to run a short initial chain and fix the values of the stick-breaking parameters at their

posterior means/modes for use in the full MCMC analysis.

When using the correlated-logNormal grouping prior, we similarly observe problems with the

sampling for the ω correlation ρ. In many cases, ρ will alternate between values close to 1 and -1,

which does not correspond with our intuition about the IVs. Hence, we opt to treat ρ as a tuning

parameter. We recommend specifying a default value such as ρ = 0.75, possibly trying a few other

choice and selecting the value with the superior DIC. As shown in the depression data study (see

Table 5), the three choices of ρ=0.5, 0.75, and 0.9 lead to similar model fits as measured by the

deviance. Based on our simulation studies, we believe that the correlated-logNormal prior is fairly

robust to the choice of ρ.

Appendix 3: Additional Risk Simulation Details

Here we include details about some additional risk simulations beyond those discussed in Section

7 of the article.

A3.1 Risk Simulation A1

We perform another risk simulation similar to the first with five groups and p = 4. The true

covariance matrices are given by

Φ1= Φ2= ( 1, 0.5, 1, 0.5, 0.5, 1), Γ1= Γ3= ( 2, 2, 2, 2),
Φ3= Φ4= ( 1, -0.5, 1, -0.5, -0.5, 1), Γ2= Γ4= ( 4, 4, 4, 4),

Φ5= ( 2, -1.0, 2, -0.5, -1.0, 1), Γ5= ( 2, 2, 1, 1).
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As in the article, we create fifty datasets and use the same sample sizes n1 = . . . = n4 = 30, n5 =

15. There should be a large amount of clustering in this case, since there is a great deal of com-

monality among GARPs and IVs for different samples. These covariance matrices also do not have

any conditional independence relationships to exploit since each of the GARPs are nonzero. We

now specify Hφ = Hγ = 30 for the grouping priors and use the same hyperpriors as before.

Risk estimates are shown in Table 1. As in the previous risk simulation, the lag-block/correlated-

logNormal prior produces the best risk (15% and 20% lower than the top naive prior NB2/NB).

For this specification of Σ, we see that the priors that do not promote zeros in the T (Φm) matrices

(NB2 and non-sparse grouping) perform better than their sparsity-inducing counterparts (NB1 and

sparsity grouping). This is not unexpected because this choice of GARPs does not have any con-

ditional independence relationships. The lag-block again is the top prior for the GARPs because

it allows for sharing information across all GARP parameters of a common lag q(j), instead of

only the GARPs at a common j. As before modeling the innovation variances is improved from

the naive Bayes prior to the InvGamma prior to the correlated-logNormal prior. For this particular

choice of Σ, we again see that the grouping priors significantly improved the estimation of the

covariance matrices with risk improvements ranging from 20–36% for L1 and 15–30% for L2 over

the group-specific flat prior.

Risk simulations with these covariance specifications and a doubled sample size for each group

produced the similar results to these. The lag-block and grouping priors continue to dominate over

the flat prior and the naive Bayes estimates.

A3.2 Risk Simulation A2

We explore how the estimates obtained from the proposed priors perform with an increase to the

dimension of the covariance matrices and the number of groups as in Risk Simulation 2 of the

article. Here we allow for M = 8 groups and consider 6 × 6 covariance matrices, defined by the

20



GARP and IV parameters in Table 2. This choice for Φ incorporates commonality both within

lag and across groups, as well as possessing many conditional independence relationships among

the higher lag terms. We choose a sample size of thirty for the first five groups and fifteen for the

final three groups, and thirty clusters for the grouping priors. The estimated risk associated with

estimating the covariance matrices for each of the two loss functions is shown in Table 3.

With the increased values of p and M , all of the grouping priors beat the naive priors. The abil-

ity to borrow strength across groups improves the estimation such that even the non-sparse group-

ing prior, which does not allow the correct independence relationships, beats the NB1 prior, which

correctly incorporates the potential independence. The lag-block/correlated-logNormal prior con-

tinues to beat the remainder of the grouping priors, with a risk improvement of 30 and 23% over the

NB1/NB prior and 64 and 51% over the group-specific flat prior. From these and other simulation

studies, we believe that as the number of groups M and the dimension of the covariance matrix p

increases, the grouping estimators for Σ will outperform the naive Bayes estimators and the margin

by which they do so increases. This is particularly important since the number of possible models

increases as p and M increase.
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Priors Estimated Risk
GARP IV Loss Fcn 1 Loss Fcn 2
Lag-block Corr-logNormal 0.297 0.492
Lag-block InvGamma 0.318 0.520
Non-sparse InvGamma 0.342 0.552
Sparsity Corr-logNormal 0.348 0.563
NB2 NB 0.351 0.563
Sparsity InvGamma 0.371 0.596
NB1 NB 0.385 0.612

Group-specific flat 0.464 0.701
Common-Σ flat 4.815 48.081

Table 1: Risk Estimates for Simulation A1

Φ1=( 0.7, 0.2, 0.7, 0, 0.2, 0.7, 0, 0, 0.2, 0.7, 0, 0, 0, 0.2, 0.7 )
Φ2=( 0.7, 0.2, 0.7, 0.1, 0.2, 0.7, 0, 0.1, 0.2, 0.7, 0, 0, 0.1, 0.2, 0.7 )
Φ3=( 0.3, 0, 0.3, 0, 0, 0.3, 0, 0, 0, 0.3, 0, 0, 0, 0, 0.3 )
Φ4=( 0.3, 0, 0.3, -0.1, 0, 0.3, 0, -0.1, 0, 0.3, 0, 0, -0.1, 0, 0.3 )
Φ5=( 1, -0.5, 1, 0, -0.5, 1, 0, 0 , -0.5, 1, 0, 0, 0, -0.5, 1 )
Φ6=( 1, -0.5, 1, 0.3, -0.5, 1, 0, 0.3, -0.5, 1, 0, 0, 0.3, -0.5, 1 )
Φ7=( 1, -0.2, 1, -0.2, -0.2, 1, -0.2, -0.2, -0.2, 1, -0.2, -0.2, -0.2, -0.2, 1 )
Φ8=( 1, -0.2, 1, -0.2, -0.2, 1, -0.2, -0.2, -0.2, 1, -0.2, -0.2, -0.2, -0.2, 1 )

Γ1=Γ2=( 1, 1, 1, 1, 1, 1 )
Γ3=Γ8=( 3.4, 3.1, 2.8, 2.5, 2.2, 1.8 )

Γ4=( 3, 3, 2, 2, 2, 1 )
Γ5=( 5, 3, 3, 4, 4, 4 )
Γ6=( 5, 5, 3, 3, 2, 2 )
Γ7=( 2, 1.8, 1.6, 1.4, 1.2, 1 )

Table 2: Parameter Values for Simulation A2

Priors Estimated Risk
GARP IV Loss Fcn 1 Loss Fcn 2
Lag-block Corr-logNormal 0.468 0.781
Lag-block InvGamma 0.492 0.816
Sparsity Corr-logNormal 0.556 0.904
Sparsity InvGamma 0.583 0.939
Non-sparse InvGamma 0.602 0.963
NB1 NB 0.664 1.013
NB2 NB 0.761 1.121

Group-specific flat 1.300 1.584
Common-Σ flat 3.036 14.149

Table 3: Risk Estimates for Simulation A2
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