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Summary

We propose a class of conditionally specified models for the analysis of mul-
tivariate space-time processes. Such models are useful in situations where there
is sparse spatial coverage of one of the processes and much more dense coverage
of the other process(es). The dependence structure across processes and over
space, and time is completely specified through a neighborhood structure. These
models are applicable to both point and block sources; for example, multiple pol-
lutant monitors (point sources) or several county level exposures (block sources).
We introduce several computational tricks which are integral for model fitting,
give some simple sufficient and necessary conditions for the space-time covariance
matrix to be positive definite, and implement a Gibbs sampler, using Hybrid MC
steps, to sample from the posterior distribution of the parameters. Model fit is
assessed via the DIC. Predictive accuracy, both over time and space, is assessed
both relatively and absolutely via mean squared prediction error and coverage
probabilities. As an illustration of these models, we fit them to particulate mat-
ter and ozone data collected in the LA area in 1995 over a 3 month period. In
this data, the spatial coverage of particulate matter was sparse relative to that
of ozone.
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1 Introduction

Conditionally specified, or Markov random field, models can often be easily specified for

processes over space and time, but computations are intractable. We propose a particular

class of conditionally specified space-time models for a multivariate process here that will be

computationally tractable and that allows a neighborhood structure to be explicitly specified

over both space and time. These models will also accommodate nonstationary spatial and

temporal structures and are applicable to both point and block source data, whether as a

model for the data itself or as a model for random effects embedded within a regression

model for the data.

Some recent work on conditional specification of models for spatial data include Cressie

and Chan (1989) and Cressie et al. (1999) who use ’distance’-based neighbors for block

and point sources, respectively. Bayesian conditional autoregressive (CAR) models using

distance-based neighbors have been applied in Conlon and Waller (1998) and Best et al.

(1999). Kaiser et al. (2002) specify anisotropic distance-based neighborhood structures

which vary over time. Conditions under which conditionally specified models induce a valid

joint distribution were originally given in Besag (1974) and a weaker set of conditions was

given in Kaiser and Cressie (2000). Hrafnkelsson and Cressie (2003) compare geostatistics

and conditionally specified models for predicting at many location using a fine grid; they

conclude that the conditional approach is a viable alternative for spatial environmental data.

Recent Bayesian work on specifying priors for particular conditionally specified models in-

cludes a series of papers by Sun, Tsutakawa, and colleagues (Sun, Tsutakawa, and Speckman,

1999; Kim, Sun, and Tsutakawa, 2001); these papers and many papers using CAR models

focus on placing these conditional priors on random effects in the setting of block (areal)

sources.

There has also been work on conditionally specified models for multivariate spatial

processes. Mardia (1988) generalizes CAR models to the multivariate setting, referring

to them as MCAR models. These models are somewhat restrictive as the same spatial
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dependence parameters are assumed for each of the multivariate processes. Gelfand and

Vounatsou (2003) generalize this work to allow a separate spatial dependence parameter

for each multivariate process. Carlin and Banerjee (2003) propose separable models with a

CAR model for spatial dependence and direct specification of the multivariate dependence.

Knorr-Held and Rue (2002) develop intrinsic CAR models for bivariate processes.

In addition, there has also been considerable work on space-time modeling in recent

years, in some cases with multivariate processes. Carroll et al. (1997) specify a space-time

covariance function for a Gaussian random field on ozone (for a discussion of their choice, see

the accompanying discussion of this paper by Cressie). Wikle, Berliner, and Cressie (1998)

build complex Bayesian space-time models that capture spatial dependence using Gaussian

Markov random fields (GMRFs) and temporal dependence using vector autoregressive (VAR)

models. Wikle and Cressie (1999) develop a space-time Kalman filter that is more general

than the (kriged) Kalman filter previously proposed in Mardia et al. (1998). Le et al. (1997)

and Kibria et al. (2002) use multivariate t-models for daily multivariate spatial prediction of

pollutants while assuming independence over time using the concept of gauged (sometimes

observed) and ungauged (never observed) sites. To deal with the space-time problem, Zidek

et al.(2002) extends this approach by taking temporal correlation into account through pre-

whitening the time series (as a block) which results in minimal loss of the spatial correlation

of the residuals, which are again modeled using multivariate t-models. Haas (1995, 2000)

uses a moving “cylinder” to do local prediction in a space time process. Niu et al. (2003)

propose a general model for spatio-temporal data on a regular lattice; after ’differencing’

to remove seasonal patterns and/or trends, they regress the response at each location on

the grid at each time using ARMA models to account for temporal dependence and order

r spatial neighborhoods. Stein (2003) recently proposed a class of non-separable space-time

covariance functions which require pseudo-likelihood approaches for estimation. Shaddick

and Wakefield (2002) construct models for multivariate space-time models using geostatistics

models for the spatial component and vector autoregressive models for the temporal and
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multivariate dependence. Other work in the development of space-time models includes

Handcock and Wallis (1994), Stroud et al, (2001), and Brown et al. (2001).

In general, computations in space-time models are often problematic, requiring the in-

version of large covariance matrices and as such, separable (over space and time) models

are often considered (Gelfand et al., 2001). In addition, when both spatial and temporal

dependence are considered the literature is lacking on models with such dependence repre-

sented explicitly via spatial and temporal neighbors. Some work in this area can be found in

Knorr-Held (2000) who considers neighborhoods among spatial and temporal random effects

and with space-time interaction terms.

A general issue these models will address is the use of information on a ’densely’ observed

space-time processes to help ’fill-in’ a correlated, but sparsely observed, space-time process,

whether the process is observed at a point or block. As an illustration of this issue and the

methodology, we analyze data from a joint pollutant field of particulate matter and ozone in

the Los Angeles (LA) area (van den Eeden, 2001), where there were many monitors for ozone,

but only a few for particulate matter. Models such as those proposed by Le et al. (1997)

and Zidek et al. (2002) would be well suited to this application, but would not generalize

to block source data for which conditionally specified models such as the one proposed here

are better suited.

Section 2 will introduce the model and discuss specification of the components of the

covariance structure, computations, and model fitting. Section 3 presents the results from

analyzing the LA pollutant data. Some extensions of the model are proposed in Section 4.

Conclusions and discussion are contained in Section 5.

2 Model

Let Yk(ski, t) : k = 1, . . . , K; i = 1, . . . , Nk; t = 1, . . . , T denote the possibly transformed

measured value for the kth process (pollutant) at its ith location at time t, with p =
∑

k Nk

the total number of sub-sites. We refer to the ski as sub-sites since more than one of the K
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processes may be measured at the same location. Now, consider models with the following

form:

Y ∼ N(Wβ, [M−1(τ 2)(IpT − C(η))]−1) (1)

where Y = (Y ?(1)′, Y ?(2)′, . . . , Y ?(T )′)′) is a pT × 1 vector, with

Y ?(t) = (Y1(s11, t), Y1(s12, t), . . . , Y1(s1,N1
, t), Y2(s21, t), . . . , Y2(s2,N2

, t), . . . , YK(sK,NK
, t))

a p× 1 vector, M is a block diagonal matrix of the form, M = IT ⊗M?, where M? is a p× p

matrix, and

C(η) =













Vs(ηs) Vt(ηt) 0 . . .
Vt(ηt) Vs(ηs) Vt(ηt) . . .

0 Vt(ηt) Vs(ηs) . . .
...

...
...

. . .













. (2)

Vs(ηs) is a p × p matrix characterizing the spatial neighborhoods with diag(Vs) = 0p and

parameters ηs, and Vt(ηt) is a p × p matrix, characterizing the temporal neighborhoods,

parameterized by ηt.

This covariance structure implies the following two conditional specifications, the first in

terms of an individual element of the Y vector when M ? is assumed to be diagonal, and the

second in its partitioned form, Y ?(t), where M? is not assumed diagonal,

Yk(ski, t)|Yk′(sk′i′, t′) 6= Yk(ski, t) ∼ N(wiktβ +
∑

i′,k′,t′

c
(k,k′)
(i,i′),(t,t′)(yk′(sk′i′, t′) − wi′k′t′β), τ 2

ik) (3)

Y ?(t)|Y ?(j), j 6= t ∼ N(W··tβ + Vt(ηt)[(Y
?
t−1 −W··t−1) + (Y ?

t+1 −W··t+1)],M
?) (4)

where c
(k,k′)
(i,i′),(t,t′) denotes the element of the C(η) matrix corresponding to the pair of values

(Yk(ski, t), Yk′(sk′i′, t
′)), wikt is the row of the design matrix W corresponding to the ith

location for the kth process at time t, W··t are the rows of the design matrix corresponding

to time t, and τ 2
ik is the diagonal element from the M matrix corresponding to Yk(ski, t).

Note that these models are often constructed starting with conditional specification (3) or

(4).

5



Some features and remarks on the model:

• These models assume a constant spatial neighborhood and parameters over time. How-

ever, there are no restrictions on the spatial neighborhood matrix, Vs (other than

M? −1(Ip − Vs) being positive definite).

• These models assume an AR(1)-type temporal neighborhood structure through the

matrix Vt(ηt). However, nonstationarity is allowed by varying the AR(1) parameters

over space, and different sites can be lag 1 neighbors. The elements of this matrix are

related to the coefficients of vector autoregressive (VAR) models (they are, in fact, just

appropriately re-scaled versions of these parameters).

• Proper spatial CAR (e.g., Best et al, 1999) and MCAR (Mardia, 1988) models are

special cases when Vt = 0p and the appropriate structure is placed on M ? and Vs. The

ηs parameters play the role of the spatial autocorrelation parameters in proper spatial

(M)CAR models.

• The conditional specifications of this model (3) or (4) demonstrate how straightforward

predictions using both spatial and temporal neighbors can be done.

• Although the models have a similar form to separable geostatistics models (see, e.g.,

Gelfand et al., 2001), the resulting covariance matrix in these models is not separable.

• Asymptotics in these models when modeling point sources are not well understood.

In Kaiser et al. (2002), no measures of uncertainty are reported for the parameter

estimates. We will fit fully Bayesian models here to conduct exact Bayesian inference.

This will facilitate taking into account all sources of variability when characterizing the

variability of the predictions and assessing the variability of the parameters, in general.
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2.1 Neighborhood structure, dependence parameters, and condi-
tional (co-)variances

The neighborhood/dependence structure given in the spatial matrix, Vs, and the temporal

matrix, Vt, can be specified with great flexibility subject to the constraint that M−1(IpT −

C(η)) is positive definite. For example, if a natural barrier exists between two sites, the

corresponding component of C(η) can be set to 0. Such issues can be difficult to handle with

direct specification of covariances, as in geostatistics models. Choices for the M ? matrix and

the spatial and temporal neighborhood matrices, Vs and Vt, respectively, can be made by

equating these matrices to their counterparts in common (multivariate) spatial models and

temporal models. For example, if Nk = N for k = 1, . . . , K and ski = sk′i for all i, then

the form of the M ? and Vs can be specified as in MCAR models (Mardia, 1988). Extending

this to the more flexible MCAR models in Gelfand and Vounatsou (2003) will be discussed

in Section 4.3. Any type of spatial dependence/parameters can be used in Vs(η) as long

as they are constant over time. The form of the Vt matrix can be made similarly to the

choices commonly made in vector autoregressive (VAR) time series models for multivariate

responses. It might be chosen to be diagonal with a separate parameter for each process/site

or to be a full matrix with the temporal autoregressive parameters decreasing with distance

from the site. Simplified (diagonal) forms for the M ? matrix include M? = τ 2Ip, a constant

conditional variance across sites and time and process or M ? = diagp(τ
2
k ), i.e., a separate

conditional variance for each process. Additional discussion of specification of the M ? matrix

can be found in Section 4.4. We will introduce the neighborhood structure, η parameters,

and the parameterization of the M ? matrix used in our example in Section 3.

2.2 Prior distributions

A diffuse normal prior was assumed on the regression parameters, β, and inverse Wishart/gamma

priors on M? matrix and/or its components as appropriate. Prior specification for the de-

pendence parameters, η, is tricky and an open problem. Here, for simplicity, we consider
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uniform priors on the space over which M−1(IpT −C(η)) is positive definite. For some mod-

els, this region can be determined explicitly. For details, see Section 3.3. Prior specification

on simpler CAR models within a multilevel setup can be found in Sun et al. (1999).

2.3 Computational Difficulties and Solutions

Space-time models often create computational challenges. Here, we will discuss how this

class of models can be fit with minimal computational difficulty. The main challenge involves

computation of both the determinant, inverse, and eigenvalues of a matrix which is Tp×Tp

where T is the number of time points and p =
∑

k Nk is the total number of spatial locations

over each process. To accomplish these tasks, clever, but simple, computational approaches

are required. We consider the case where M = IT
⊗

M?.

Result 1:

If M? −1(Ip − Vs) is not positive definite, then M−1(IpT − C(η)) is not positive definite.

Proof:: It is a leading submatrix of M−1(IpT − C(η)).

Result 2:

Given the form of M−1(IpT − C(η)), we can rewrite it as

M−1(IpT − C(η)) = [IT ⊗M? −1(Ip − Vs(ηs))] − ρ⊗ (M? −1Vt(ηt)) (5)

where ρ is the T × T matrix defined below.

ρ =













0 1 0 . . .
1 0 1 . . .
0 1 0 . . .
...

...
...

. . .













.

Result 3: Using some Kronecker product identities,

M−1(IpT − C(η)) = (IT ⊗ A−1)(IpT − ρ⊗B)(IT ⊗ A−1)

where A = (Ip − Vs)
−1/2M? 1/2 and B = AM? −1VtA. This result will hold given Result 1.
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Result 4: M−1(IpT −C(η)) is positive definite if and only if A is full rank and (IpT −ρ⊗B)

is positive definite. (follows from an adaptation of Theorem A.1.1 in Anderson (1984, p.

583)).

Theorem I:

Define γi to be the eigenvalues of M ? −1(Ip − Vs), λi to be the eigenvalues of ρ, and µj

to be the eigenvalues of B. Then M−1(IpT − C(η)) will be positive definite iff γi > 0 and

λiµj < 1 for all i and j.

Proof: Follows directly from Results 1-4.

So to check the positive definiteness of the joint covariance matrix M−1(IpT − C(η)), we

only need to compute the eigenvalues of two
∑

k Nk-dimensional matrices, A and B, and a

T -dimensional matrix ρ, which has a simple form and is fixed; this implies that even within

a sampling based algorithm, the eigenvalues of ρ only need to be computed initially. Given

the eigenvalues, it is easy to compute the determinant. To invert M−1(IpT − C(η)), we just

need the eigenvectors of these same matrices. Thus, all the computations reduce to dealing

with T and p =
∑

k Nk dimensional matrices. Based on specific neighborhood structure,

calculations can be simplified even further (see Section 3.3).

The form of the C(η) matrix given in equation (2) implies a a ’balanced’ C(η) matrix,

i.e., the same sites over time and the same times for all sites. The computational tricks above

require such balance. If the actual data is unbalanced, balance can be achieved by filling in

the intermittent ’missing’ data using data augmentation within an MCMC algorithm. The

details of this will be discussed in Section 2.5.

So, similar to separable space-time geostatistics models, the ’limiting’ factor in computa-

tions is the size of T and p =
∑K

k=1Nk. Manipulating other T , p, or Nk dimensional matrices

can sometimes facilitate posterior computation (see Section 3.3).
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2.4 Posterior sampling

We use a Gibbs sampler to obtain a sample from the posterior distribution of the parameters.

The full conditional distributions for β is normal. Sampling M ? will depend on the form of

this matrix; e.g., if M ? = τ 2Ip, then the full conditional distribution of τ 2 will be inverse

gamma. Otherwise, we propose to use an appropriate version of the Metropolis-Hastings

algorithm. To sample the η, we used a Hybrid MC algorithm (Neal, 1994). This requires

evaluation of the first derivative of the log full conditional with respect to η, which is simple

to compute given the form of the likelihood,

log(L(η)) ∝ (1/2) log |M−1(IpT −C(η))|−(1/2)tr[M−1(IpT −C(η))(Y −Wβ)(Y −Wβ)T ] (6)

as η appear directly in the components of the C(η) matrix. This algorithm facilitates efficient

movement through the multivariate η space.

When intervals over which the η resulted in a positive definite M−1(IpT − C(η)) matrix

could be determined explicitly, the parameters were transformed using a logit type transfor-

mation on that interval, log( η−ηmin

ηmax−η
), where (ηmin, ηmax) is the interval; this was done in order

to transform η from a closed interval for the Hybrid MC algorithm. If an interval cannot be

determined, a check of positive definiteness (p.d) can be conducted using Theorem I, and if

the values corresponds to a non-positive definite covariance matrix, the value is thrown out

(since it has prior probability 0). Details using the structure of the C and M matrix in our

example will be given in Section 3.3.

2.5 Model comparison

As discussed in Kaiser et al. (2002), evaluation of model fit and predictive ability are two

different questions and can result in differing conclusions. To evaluate model fit and compare

models, we use the Deviance information criterion (DIC) (Spiegelhalter et al., 2002). We

will give some details in the following. Define the parameter vector to be θ. The DIC is
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defined to be Dev(θ̂) + 2pD, where Dev(θ) = −2loglik(θ), θ̂ is the posterior mean of θ, and

pD = D̂ev −Dev(θ̂) with D̂ev the posterior mean of the Deviance. Here, θ = (β,M(τ 2), η)

and the likelihood is given in (6). Smaller values of the DIC are preferred.

To compare the predictive ability of these models, we compute both the prediction error

and coverage probabilities. We use a cross-validation approach. To assess spatial prediction,

we drop out the data on a sub-site at all times, re-fit the model, and then predict the process

values at the dropped sub-site. For temporal prediction, we drop out all sub-sites at the first

and last times, re-fit the model, and then predict the process values at the dropped times.

Some details on prediction follow (under the restriction that M ? is diagonal; extension

to non-diagonal M ? is straightforward). Similar to the approach in Kaiser et al. (2002), we

drop a sub-site (time) and fit the model to the remaining sites to obtain the posterior dis-

tributions of the parameters conditional on these sub-sites. Then, we assume the pollution

process at the dropped sub-site follows the same distributional form as (3), i.e., the condi-

tional distribution of Y0, the vector of responses at the sub-sites/times to be predicted (i.e.,

the dropped sub-sites/times), given the remaining sub-sites/times, Yobs, follows a normal

distribution with mean,

Y0,pred = W0β +
K

∑

k=1

Nk
∑

i=1

T
∑

t=1

c
(0,k)
(0,i),(0,t)(Yk(ski, t) −Wiktβ) (7)

and variance

V −1
y = M−1

0 (Idim(Y0,pred) − C0) (8)

where C0 is the neighborhood matrix for the sub-sites to be predicted, W0 is the design

matrix for the sub-sites to be predicted, c
(0,k)
(0,i),(0,t) is the matrix of elements of the C(η) matrix

corresponding to the regression of the sub-sites to be predicted on the remaining sub-sites

(cf. (3)), and M0 is a diagonal matrix containing the appropriate conditional variances;

these are formed using (3). So, for prediction, the dimension of the matrix that needs to be

inverted will be the dimension of Y0.
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The C(η) matrix is constructed to include intermittent missing values. At each iteration

of the sampler, these values are filled in via data augmentation using a normal distribution

with mean and variance analogues of (7) and (8); this is necessary for the computational

results outlined in Section 2.3 to hold. We emphasize that by using this approach, we

are implicitly using monte carlo integration to account for the uncertainty of these missing

values.

We will evaluate prediction using mean squared prediction error (MSPE) and coverage

probabilities. Mean square prediction error is defined as

MSPE =
∑

(Y0,pred − Y0,obs)
2

where Y0,pred is the conditional posterior mean given in (7) and Y0,obs is the observed value

of the dropped sub-site/time. To help calibrate MSPE, we can compare its value to the

conditional variances (τ 2
ik), estimated from fitting the model with all sub-sites/times.

To evaluate coverage, we compute 95% prediction intervals using the following approach.

We will illustrate the approach under the setting of dropping out a sub-site at all times

(dropping out all sub-sites at one time follows similarly). At iteration m (of M) of the Gibbs

sampler, we create 95% credible regions using (Y0,obs(si, ·)−Y
m
0,pred(si, ·))

T (V m
y )−1(Y0,obs(si, ·)−

Y m
0,pred(si, ·)) where Y m

0,pred(si, ·) is given in (7) and V m
y is given in (8), using the values of

(τ 2, η, β) at iteration m. Since the conditional distribution is normal, this should follow a chi-

squared distribution on T degrees of freedom. We can count for how many iterations these

regions cover the true value of the dropped sub-site; ideally, close to 95% for each sub-site. A

referee has pointed out that these regions may be too small, especially if there is considerable

uncertainty/variability reflected in the posterior distribution of (β, η, τ 2). As an alternative,

we also examine marginalized credible regions that integrate over the uncertainty in (β, η, τ 2).

These are constructed as (Y0,obs(si, ·)−Y0,pred(si, ·))
T (V ?

y )−1(Y0,obs(si, ·)−Y
m
0,pred(si, ·)), where

Y0,pred(si, ·) and V ?
y are computed using Rao-Blackwellization (Gelfand and Smith, 1990)

as follows, Y0,pred(si, ·) = 1
m

∑

Y m
0,pred(si, ·) and V ?

y = 1
m

[V m
y + Y m

0,pred(si, ·)Y
m
0,pred(si, ·)

T ] −
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Y0,pred(si, ·)Y0,pred(si, ·)
T . For this region, we again use a chi-squared distribution with T

degrees of freedom to create a cutoff; however, here, this will only be approximate, with the

approximation improving as the posterior of (β, η, τ 2) concentrates around the true values.

If the original data were transformed, the predictive variance will be needed to obtain

the posterior predictive mean on the original scale. For example, in the application, we log

transformed the responses. So, the prediction on the original scale, Xpred, is given as

Xpred = exp{Ypred + Vy/2}.

We will compute MSPE on both the original scale and the transformed scale of the data .

In the following example, we will examine MSPE and coverage overall, and for each

process separately.

3 Data Example

We illustrate this methodology on pollutant data from the LA area. There were a total of 35

sites with pollutant monitors, 5 of which monitored both particulate matter (PM) and ozone

and 30 which only monitored ozone; a map of the sites is given in Figure 1. We analyze data

collected during a 54 day period during the summer in 1995, July 10-Sept. 1 (this period

was chosen since it contained no missing data); however, we point out that that the time

window chosen was chosen for ease of demonstration of these models. These models easily

accommodate intermittent missing data (even if missing by design) as discussed in Section

2.5. We also mention that we undertake a simple analysis of this data here. A more definitive

analysis would include many extensions which we discuss more thoroughly in Sections 3.7

and 4. One objective of this modeling was to use ozone to help predict PM given the sparsity

of the PM sites.

A log transformation of both ozone and PM seemed to provide a good approximation to

normality and constant variance. This agrees with previous work by Carroll et al. (1997) on

ozone and Cressie et al. (1999) on PM. The design matrix ultimately chosen, W , consisted

13



of 9 × 1 design vectors which included a set of ozone-specific components: an intercept,

terms for both latitude and longitude and an interaction, and a quadratic in time; and a

set of PM-specific components: an intercept and a quadratic in time. We also considered

some additional design vectors that included/excluded spatial components for the mean

structure for PM/ozone. Some weather covariates were also available, but there was so

much missingness here that they could not be used without explicitly building models for

them. Ultimately, the most complex mean structure ’fit’ the data best (by DIC), but resulted

in poorer cross-validation predictive accuracy.

A summary of the data by site appears in Table 1.

3.1 Neighborhood Structure

We consider the following possible neighbors of Yk(ski, t)

1. Yk(ski, t+ 1). The pollutant value at the same location on the subsequent day.

2. Yk(ski, t− 1) The pollutant value at the same location on the previous day.

3. {Yk(skl, t) : l 6= i}. The pollutant values on the same day at other locations.

4. {Yj(sji, t) : j 6= k}. The pollutant values of other pollutants on the same day at the

same location.

Let c
(k,k′)
(i,i′),(t,t′) denote the element of the C(η) matrix corresponding to the pair of values

(Yk(ski, t), Yk′(sk′i′, t
′)). Using the neighborhood structure given above, we specify the C(η)

matrix to have the following structure,

1. c
(k,k)
(i,i),(t,t+1) = η

(k)

t

2. c
(k,k)
(i,i),(t,t−1) = η

(k)

t

3. c
(k,k)
(i,l),(t,t) = η

(k)
s f(si, sl)

4. c
(k,j)
(i,i),(t,t) = η

(k,j)
s
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and 0 otherwise. In this application, we set f(si, sl) = mini′,l′(di′,l′)/di,l where di,l is the

Euclidean distance between the two sites. This is similar to the choice of Cressie and Chan

(1989), though they set the dependence to 0 when the distance between locations exceeded

some data determined threshold. For a good approach for determining distance based neigh-

borhood structures using geostatistical techniques, we refer the reader to Hrafnkellson and

Cressie (2003), which we will discuss further in Section 4. For block source data, f(si, sl)

might be chosen to be an indicator of whether sites si and sl are neighbors or some measure

of the ’quality’ of the neighbors (see Section 4.4).

3.2 Choice of the conditional covariance matrix, M ?

For the M? matrix, we consider two specifications. For the first, we assume a common

conditional variance over space, i.e., M ? = τ 2Ip. For the second, we assume a separate

conditional variance for each process (pollutant); in our application, τ 2
1 and τ 2

2 . The elements

of the C(η) matrix then need to be adjusted for the matrix M−1(IpT −C(η)) to be symmetric.

The elements of the C(η) matrix will remain as specified above except for the elements of

the C(η) matrix corresponding to cross-pollutant neighbors. These will have the following

structure,

1. c
(k,j)
(i,i),(t,t) = η

(j,k)
s τj/τk

2. c
(j,k)
(i,i),(t,t) = η

(j,k)
s τk/τj

where the first term is in the upper triangle and the second term is in the lower triangle of

the C(η) matrix.

3.3 Posterior sampling details

The full conditional for τ 2 in the model with M? = τ 2Ip will be inverse gamma. For the more

general specification of M ?, the C(η) matrix will contain the diagonal elements of the M ?

matrix. For this choice of M ?, we use a random walk Metropolis-Hastings algorithm. For

the neighborhood structure, given in Section 3.1, we can compute ’necessary’ intervals for
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positive definiteness (i.e., values outside the interval, correspond to a non-positive definite

matrix). For M = τ 2I and the specific M ? described in Section 3.2, necessary intervals, given

our neighborhood structure, for η(k)
s are (1/ψk,max, 1/ψk,min), where ψk,min and ψk,max are

the smallest and largest eigenvalues respectively of the distance matrices for each pollutant

(k), i.e., the Nk × Nk matrix of pairwise distances (as specified in Section 3.1 with 0’s

on the main diagonal). In addition, the following bound must be satisfied which provides

additional restrictions on η
(k)
t given η(k)

s and vice versa, |η
(k)
t | < 1

maxlλl
(1− η(k)

s ψk,max). Here,

we have assumed that η(j,k)
s = 0; the intervals are further restricted if this is not the case. In

Section 3.4, we use these bounds to help interpet the magnitude of the estimated dependence

parameters (η). However, we cannot use a logit transformation based on this last interval as

the bounds for η
(k)
t depend on the current value of η(k)

s and vice versa. However, we can use

the first set of bounds for η(k)
s and simpler bounds on η

(k)
t , (−.5, .5), based on the eigenvalues

of the ρ matrix, λ.

The Gibbs sampling algorithm converged quickly using several starting values. 50, 000

iterations were run, with the first 1000 thrown out as burn-in; computing time for com-

plex models like Models IV and V was four hours on a PC with a pentium 4, 1.8 GHz

processor. For Model V, we broke the dependence parameters, η’s into two blocks: 1)

(η
(1)
s , η

(2)
s , η

(1)

t , η
(2)

t ), and 2) η
(1,2)
s . The dependence parameters mixed quite well using the

Hybrid MC algorithm though the cross-pollutant parameter, η
(1,2)
s mixed more slowly than

the others. Convergence was assessed by examining trace plots from four chains.

3.4 Model fit and inference on η parameters

We fit five dependence models as given in Table 2. Model fit, as discussed in Section 2.5,

was assessed via the DIC. DIC values for the given models, are given in Table 3. Clearly,

the model with all the spatial and temporal dependence parameters fit best.

The estimates of η, the dependence parameters, and τ 2
k , k = 1, 2, the variance parameters,

for the best fitting model, Model V, appear in Table 4. Using the information on the necessary
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intervals/bounds in Section 3.3, all of the spatial and temporal dependence parameters are

quite close to their upper bounds. As the intervals in Section 3.3 do not include η(1,2)
s , we did

some simulations conditional on the other η parameters and found this was also in fact near

its upper bounds as well. So, clearly, both the spatial and temporal dependence is strong in

this data.

3.5 Prediction Error

For prediction, for each sub-site, 5100 iterations were run, with a burn-in of 100; twenty-two

hours was required to run the prediction for all the sub-sites in the model. Predictive ability

as measured by MSPE is given in Tables 5-8 for prediction on the log and original scale

both spatially and temporally. We use the posterior means of τ 2
1 and τ 2

2 and Table 1 to help

calibrate the magnitude of the prediction errors for PM and ozone respectively, below.

The overall gains in spatial prediction when comparing the independence model to the

best dependence model, Model V, was to decrease MSPE by about 30%. The magnitude

of the prediction error was about twice the value of the respective posterior means of τ 2

(cf: Table 4). To assess the gains in PM prediction by modelling it jointly with ozone, we

compare models IV and V. The gains in predicting PM here are not large, on the order of a

2-4% reduction in MSPE. The bias in general was quite small (cf. Table 1).

The superior temporal prediction for PM versus ozone is mainly due to the fact that

an AR(1) type model fit PM very well, but not ozone (not shown). However, we do see a

decrease in MSPE of over 30% for ozone when including temporal dependence in the model.

The huge differences between the MSPE for PM was due to very poor prediction for the

independence model on the first day. We can see that in Model V, the magnitude of the

prediction error for PM was less than the posterior mean for τ 2
1 while it was about twice the

value of τ 2
2 for ozone. This indicates solid temporal prediction for PM.
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3.6 Coverage results

To obtain some absolute measure of model fit, we examined the coverage probabilities (based

on 95% confidence regions) for Model V using the cross-validation approach. For the PM

spatial predictive coverage, we observed coverages between .94 and 1.0 for four of the five

sites, with one site having coverage of 0.0; for ozone, we observed coverage between .94 and

1.0 for 28 of the 35 sites, with 7 sites having less than .04 coverage. Thus, for both PM and

ozone, the model appears to be fitting about 80% of the sub-sites well. This agreed with the

marginal credible regions which covered 80% of the sub-sites. For PM temporal predictive

coverage, coverage was over 90% for both days while for ozone, coverage was about .98 for

the last day, but .00 for the first day.

We did some further exploration of the sub-sites with poor coverage. These tended to be

sites with the fewest ’quality’ neighbors (for a discussion of ’quality’ neighbors, see Section

4.4) and with considerable variability over time (relative to the other sub-sites; see Table 1).

Poorer prediction at sub-sites with not too many ’quality’ neighbors is not surprising.

3.7 Model Expansions

These results suggest further model expansion from several perspectives. In terms of spa-

tial dependence, nonstationary spatial structures should be considered, especially given the

topography in this region of the United States, as well as fine tuning the distance based

neighborhood structure using the approach of Hrafnkellson and Cressie (2003) (see Section

4.5). Other extensions might include adjusting the M matrix to account for the ’quality’ of

neighbors (see Section 4.4) and taking into account the measurement error in the monitors

(Section 4.2). We will discuss some details about these expansions and others in the next

section.
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4 Model Generalizations and Extensions

In the following, we will discuss several generalizations and extensions to the model, both

with respect to the neighborhood structure and incorporating additional sources of variabil-

ity.

4.1 More than lag 1 temporal dependence

Only lag 1 temporal dependence has been considered here. Increasing the temporal neigh-

borhood structure beyond the single nearest neighbor creates major difficulties with compu-

tations. Such matrices will have a block Toeplitz form for which the inverse can be computed

efficiently (Dietrich, 1991), but checking positive definiteness and computing the determinant

are not computationally tractable.

4.2 Measurement Error

Another extension would be a to build a hierarchical (mixture) model to allow for measure-

ment error. These models are most appropriate when the variance of the measurement error

is known or there are replications. In our setting, we did not know the measurement error

variances and we did not have replications. However, the measurement error variance still

could be identified by assuming independence of the measurement errors, conditional on the

true values of the process; the measurement error variance estimated in this way would likely

be confounded by residual error not explained in the spatial dependence model for the true

process (see below). An alternative approach would be to put an informative prior on σ2.

The extension to our model is as follows,

Y ∼ N(θ,D) (9)

θ ∼ N(Wβ, [M−1(τ 2)(IpT − C(η))]−1) (10)

with D a diagonal matrix often specified as σ2I. We have added a measurement error

component into the model and the true process of interest is now represented by θ, not
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y. How does this impact computing? Sampling from the full conditional distributions of

β, η, τ 2 will be the same, but with Y replaced by θ. The full conditional for σ2 will be inverse

gamma (assuming a conjugate prior). The full conditional distribution of θ will be normal

and the tools used in this paper to deal with M−1(IpT − C(η)) can be used for computing

this distribution. Finally, intermittent missing data can easily be handled more easily within

this model as the missing Y ’s can be sampled from a N(θ,D) distribution.

For count or binary data, (9) could be replaced by a Poisson or logistic regression model

with θ now being a random effect.

4.3 Extension to flexible MCAR models

Gelfand and Vounatsou (2003) consider linear transformations of the data/random effects to

extend the MCAR models of Mardia (1988) to allow a separate spatial parameter for each of

the multivariate processes. We will give some details on incorporating these ideas into our

model. Consider a p×p linear transformation matrix G, which is block diagonal with blocks

of size K. We can modify the model proposed in this paper by replacing the covariance

matrix M−1(IpT − C(η)) with the matrix (G ⊗ IT )M−1(IpT − C(η))(G ⊗ IT )′. The benefit

of extending the model using this approach is a more flexible specification for multivariate

spatial dependence with simple constraints on the spatial dependence parameters for positive

definiteness; thus, no check would need to be made on the eigenvalues, γi, as in Theorem I.

In addition, Theorem I will hold as before with appropriate modification to the matrix B.

Care, however, must be taken to account for the impact of G on the temporal neighborhood

matrix, Vt.

4.4 Adjustment for ’quality’ of neighbors

In the air pollution dataset here, and in many other settings with an irregular lattice, there

is an asymmetry in terms of the number of neighbors (for block sources) or the number and

quality of neighbors (with point sources). The ’adjustment’ often made to the conditional

variance in CAR models with block sources is to divide a constant unknown variance by
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the number of neighbors, τ 2/ni (Sun et al, 1999). The motivation for such an adjustment

is that we would expect the conditional variance of sites with more neighbors to be smaller

than sites with fewer neighbors. Adjustments are also frequently made for the quality of

neighbors as well; e.g., how much of the total boundary do they share. In point source

data, often all sites are neighbors to each other. We might construct a similar adjustment

to the standard CAR models in this case by dividing τ 2 by a measure of the ’quality’ of

the neighbors. We might define this quantity, n?, by the inverse of the harmonic average of

the distances from the current site to all other sites. Since the neighborhood structure in

this model is assumed static over time, n? will be constant over time and computations will

proceed under the M = IT
⊗

M? case. Appropriate adjustments then need to be made to

the conditional mean (through the C matrix) to ensure M−1(IpT −C(η)) remains symmetric.

This idea will be explored in future work and might improve the prediction for the pollution

example as discussed in Section 3.6.

4.5 Alternative neighborhood structures and nonstationarity

The temporal neighborhood structure used in the example could be supplemented by in-

cluding the following additional neighbors for Yk(ski, t); Yk(skl, t + 1), l 6= i (lag 1 temporal

correlation across sites) and/or Yj(sjl, t + 1), l 6= i, j 6= k (lag 1 temporal correlation across

sites and pollutant). In addition, to better calibrate distance-based neighbors, the techniques

in Hrafnkellson and Cressie (2003) could be implemented which involves, among other things,

finding a range of dependence for the neighbors by ’equating’ the neighborhood structure

to the results from fitting variograms using geostatistical techniques. In this paper, the

distance-based neighborhood structure was specified without using such techniques as in

Kaiser et al. (2002) among others.

The neighborhood structure proposed for our models might be characterized as station-

ary. To extend to a nonstationary dependence, we can allow the neighborhood dependence

parameters only to operate locally and/or allow them to vary over space. The deformation of
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distance approach (Sampson and Guttorp, 1992) might be a reasonable methodology to try

to integrate into this model. Care must be taken in order to ensure the conditional variance

matrix M? and the neighborhood matrix, C(η) are specified appropriately so as to make

M−1(IpT − C(η)), symmetric.

5 Discussion

We have proposed a conditionally specified space-time model which provides both tractable

computations and flexibility in specifying the spatial dependence structure while allowing for

simple temporal dependence. This provides another class of models that can be considered

for space-time data with either point or block sources.

The multi-pollutant example illustrated the potential gains from modeling multiple space-

time processes jointly via the slightly increased predictive accuracy and greatly improved

model fit (DIC). Larger gains would likely have been seen in the example by modeling

pollutants that are more related than PM and ozone and by introducing some of the model

expansions discussion in Sections 3.7 and 4.

In addition to ’modeling’ the pollutant field as an end in and of itself, the ’output’ from

these models has other uses. For example, these multi-pollutant space-time models might

be used as input to health effects models. However, the health effects data are usually at

a different level of aggregation than the pollutant data. In particular, the pollutant data

are point sources and the health effects data tend to be over areas. So, in some sense, an

average exposure (pollutant level) for the area would be desired. This could be accomplished

by creating a fine grid over the areas, constructing the appropriate C(η) matrix on this grid,

predicting the pollutants at each point on the grid (Hrafnkelsson and Cressie, 2003), and

then averaging. Such an approach would avoid the change of support problem discussed

recently in Gelfand et al. (2001). In addition, the posterior draws from the Gibbs sampler

can be used to address the uncertainty of the pollutant exposure in the health effects models.

Recent work on such modeling has been done by Van den Eeden (2001), Zhu et al. (2003),
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and Dukic et al. (unpublished manuscript). For block sources, we might use these models

to fill in spatial covariates for a regression model where some of the covariates (exposures)

are missing in certain blocks.

In the LA data, weather variables were also collected. However, there was considerable

missingness. These might be used in both the spatial model for the pollutants and the health

effects models by fitting additional spatial models to the weather data to obtain a predicted

weather field that could be used as covariates in both the pollutant and health effects models.

A criticism of conditionally specified models is that the marginal distribution of the

original sites changes when we add in additional sites; i.e., lack of marginal invariance. For

block sources this is less of an issue than with point sources. However, the ultimate goal of

the modeling may either be a good fit of the model to the data and/or good prediction; the

model should be judged more on these criteria than the lack of marginal invariance property.

An alternative approach for prediction (cf: Section 2.5) would be to augment the C(η)

matrix with the site(s) to be predicted, Y0, and then to sample from the posterior distribution

with the additional site(s) in the model, similar to the data augmentation approach used to

’fill-in’ intermittent missing data. This approach may potentially result in slightly different

predictions and posterior distributions of the parameters since the marginal distribution of

the observed sites is altered when adding in the site to be predicted. This was the approach

used in Hrafnkelsson and Cressie (2003).

The fit of the covariance structure could be assessed via posterior predictive checks (Gel-

man et al., 2003). Such checks have been used recently to assess the fit of the correlation

structure in complex hierarchical models (see, e.g., Ilk and Daniels, 2005).

Future work will include doing many of the model expansions discussed here for a more

definitive analysis of the pollutant data and making comparisons of such models with geo-

statistics models with a separable space-time structure. In addition, we will report on the

propriety of the posterior under improper priors on the regression coefficients, β, and the

diagonal matrix of variances, M , including derivation of default reference priors for the
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dependence parameters. We will also explore efficient sampling algorithms as the neighbor-

hood/dependence structure gets more complex.
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Pollutant Site No. Mean Variance Min Max
PM 1 3.93 .077 3.42 5.27

2 3.70 .056 3.13 4.76
3 4.38 .059 3.75 4.81
4 4.21 .112 3.36 5.35
5 3.79 .040 3.47 4.34

ozone 1 3.22 .042 2.73 3.61
2 3.15 .073 2.65 3.65
3 3.78 .059 3.35 4.25
4 3.68 .082 3.21 4.27
5 3.38 .082 2.73 3.85
6 2.67 .094 1.72 3.24
7 3.66 .046 3.30 4.10
8 3.73 .121 2.83 4.55
9 3.46 .051 2.96 4.05
10 3.57 .118 3.14 4.60
11 4.00 .282 1.97 4.59
12 3.28 .089 2.48 3.88
13 3.13 .092 2.45 3.71
14 3.83 .061 3.41 4.38
15 3.30 .044 2.59 3.71
16 3.79 .043 3.23 4.19
17 3.96 .054 3.39 4.45
18 3.24 .067 2.64 3.73
19 3.81 .058 3.17 4.32
20 3.92 .075 3.36 4.35
21 3.63 .095 3.05 4.28
22 3.66 .053 3.29 4.11
23 3.54 .047 3.04 4.01
24 3.86 .058 3.34 4.41
25 3.43 .038 3.02 3.84
26 3.53 .040 3.13 3.96
27 3.53 .068 3.08 4.03
28 4.04 .083 3.37 4.54
29 3.48 .062 2.82 4.04
30 3.95 .065 3.53 4.41
31 3.80 .062 3.35 4.60
32 3.59 .051 3.03 4.60
33 3.75 .074 3.33 4.28
34 3.84 .139 2.57 4.60
35 3.31 .046 2.62 3.73

Table 1: Summary statistics for each site over time on the log scale. Sites 1-5 are
measured for both PM and ozone.
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Parameters
Model Spatial Temporal
I - -

II - (η
(1)
t , η

(2)
t )

III (η(1)
s , η(2)

s ) -

IV (η(1)
s , η(2)

s ) (η
(1)
t , η

(2)
t )

V (η(1)
s , η(2)

s , η(1,2)
s ) (η

(1)
t , η

(2)
t )

Table 2: Models Fit

Model DIC pD

I 1259 11.7
II 269 13.8
III 755 14.7
IV 99.7 14.9
V 78.1 14.3

Table 3: DIC and effective number of parameters (pD) for models fit

Parameter Posterior mean (CI)

η(1)
space .046 (.005,.099)
η(2)

space .043 (.035,.051)
η(1,2)

space .065 (.033,.094)

η
(1)
time .42 (.37,.45)

η
(2)
time .39 (.37,.41)
τ 2
1 .055 (.046,.066)
τ 2
2 .049 (.045,.052)

Table 4: Posterior means and 95% credible intervals for the spatial dependence
parameters. (1) corresponds to PM and (2) to ozone.

Overall PM Ozone
Model MSPE Bias MSPE Bias MSPE Bias
I .119 .003 .169 .000 .112 .003
IV .094 .004 .107 -.003 .092 .005
V .093 .005 .103 -.004 .091 .007

Table 5: MSPE and bias overall and broken down by pollutant for predicting one
site at all times on log scale

30



Overall PM Ozone
Model MSPE Bias MSPE Bias MSPE Bias
I 239 0.4 735 .15 168 .41
IV 180 0.0 508 -.6 133 .1
V 178 0.0 498 -.9 133 0.1

Table 6: MSPE and bias overall and broken down by pollutant for predicting one
site at all times on original scale

Overall PM Ozone
Model MSPE Bias MSPE Bias MSPE Bias
I 1.26 -.30 9.1 -2.1 .133 -.04
V .092 -.09 .030 -.08 .100 .-.10

Table 7: MSPE and bias overall and broken down by pollutant for predicting all
sites at the first and last times on log scale

Overall PM Ozone
Model MSPE Bias MSPE Bias MSPE Bias
I 547 -5.5 2730 -35 235 -1.3
V 190 -4.0 87 -4.0 204 -3.9

Table 8: MSPE and bias overall and broken down by pollutant for predicting all
sites at the first and last times on original scale
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