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Summary. In this paper we consider the problem of fitting pattern mixture models to
longitudinal data when there are many unique dropout times. We propose a marginally-
specified latent class pattern mixture model. The marginal mean is assumed to follow a
generalized linear model, while the mean conditional on the latent class and random effects is
specified separately. Because the dimension of the parameter vector of interest (the marginal
regression coefficients) does not depend on the assumed number of latent classes, we propose
to treat the number of latent classes as a random variable. We specify a prior distribution for
the number of classes, and calculate (approximate) posterior model probabilities. In order
to avoid the complications with implementing a fully Bayesian model, we propose a simple
approximation to these posterior probabilities. The ideas are illustrated using data from a
longitudinal study of depression in HIV-infected women.

Key Words: Bayesian model averaging; Incomplete data; Latent variable; Marginal
model; Random effects.

1



1 Introduction

Dropout is a common occurrence in longitudinal studies. Missingness induced by dropout

that depends only on the observed data is called missing at random (MAR) or random

dropout. If missingness depends on the unobserved response at the time of dropout or at

future times, even after conditioning on the observed data, then the missingness is called non-

ignorable or informative dropout (Little, 1995). There are many model-based approaches to

deal with informative dropout that are characterized by how they factor the joint distribution

of missingness and the response. We will focus on the pattern mixture approach. Pattern

mixture models are a flexible and transparent way to analyze incomplete longitudinal data

where the missingness is non-ignorable (Little, 1994; Hogan and Laird, 1997). The typical

approach taken in pattern mixture models is to stratify on dropout time (i.e., the pattern)

and assume that missing data within a pattern are missing at random (MAR). Consider

the case of T unique dropout times and define Di to be the dropout time and Yi to be

the response vector for subject i. Pattern mixture models (PMM) account for nonignorable

missingness by allowing the distribution of Yi to differ by dropout time, i.e., f(yi|Di) 6= f(yi).

So, models are built for [Yi|Di], but inferences are based on f(y) =
∑

D f(y|D)p(D). One

issue in this formulation, addressed in Fitzmaurice, Laird and Shneyer (2001) and Wilkins

and Fitzmaurice (2006), is that for nonlinear link functions connecting the means, E[Yi|Di]

to covariates, i.e., g(E[Yit|Di, Xit]) = Xitβ(Di), the marginal mean, E[Yit], is such that, in

general, g(E[Yit|Xit]) 6= Xit
∑

D β(D)p(D). This is one issue we will address in our model.

The other issue we will address are situations where the number of unique dropout times

T is large. In this setting stratification by dropout pattern may lead to sparse patterns,

which will lead to unstable parameter estimates (or unidentified parameters) in those pat-

terns. There are several ways to remedy this include allowing parameters to be shared across

patterns (Hogan and Laird, 1997) or to group the dropout times into m < T groups in an

ad hoc fashion (Hogan, Roy and Korkontzelou, 2004). Roy (2003) proposed an automated
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way to do the latter using a latent variable approach within the context of normal models

for continuous data. This approach assumes the existence of a discrete latent variable that

explains the dependence between the response vector and the dropout time and allows in-

corporation of uncertainty about the groupings, conditional on a fixed number of groups.

We will extend the approach of Roy (2003) by incorporating uncertainty in the number of

classes through (approximate) Bayesian model averaging.

A common way to account for the longitudinal correlation in the vector of responses for

subject i, Yi is to introduce random effects. However, for nonlinear link functions, similar

to the above discussion, the link no longer holds for marginal covariate effects (Diggle et

al. 2002). We will use the ideas in Heagerty (1999) within our model to directly model the

marginal covariate effects. We briefly review Heagerty’s approach below.

Let Yit denote the response for the ith subject (i = 1, . . . , n) at time t (t = 1, . . . , T ). Hea-

gerty (1999) specifies marginalized logistic models in the following way. First, the marginal

mean of Yit is specified as

logit{P (Yit = 1|β)} = XT
itβ. (1)

Then the dependence among the Yit is specified via a conditional model that is consistent

with (1),

logit{P (Yit = 1|bi)} = ∆it + bi (2)

where bi ∼ N(0, θ). The quantity ∆it is determined by the other parameters in the model

and can be computed by solving the following the convolution equation,

P (Yit = 1) =
∫
P (Yit = 1|bi)dF (bi).

Notice that ∆it is a function of Xitβ and θ. The overall objective in our approach will be to

propose a model that marginalizes over the random effects and the dropout distribution to

directly model the marginal covariate effects of interest.
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This work is widely applicable, but was motivated by an HIV natural history study

of depression. The HIV Epidemiology Research Study (HERS) (Smith et al. 1997) was a

longitudinal study of women with, or at high risk for, HIV infection. Data were collected from

1310 women at baseline. Investigators then attempted to collect data from each subject every

6 months for a total of 6 years. Thus, 12 total visits from each subject would be obtained

if there were no missing data. Our interest is in studying the course of depression in the

849 women that had HIV infection at baseline. Depression was treated as a binary, yes/no,

variable (Cook et al., 2004). A challenge with the analysis of these data is that less than

half of these women remained in the study until the end. It is not hard to imagine a scenario

where the course of depression over time might vary as a function of dropout time. Because

there are many unique dropout times (12), some of which include very few subjects, we apply

the latent class pattern mixture modeling approach to the analysis of these data.

In Section 2 we introduce the model. We provide computational details in Section 3.

The example is analyzed in Section 4. A brief simulation study is given in Section 5. We

conclude with a discussion in Section 6.

2 Model

Before we introduce the model, we first go through some additional notation needed for the

latent class component. Define Si = (Si1, · · · , SiM)T to be a vector of latent indicators, where

Sij is defined as an indicator for class j, j = 1, · · · ,M (M < T ) (e.g., if subject i is in class

j, then Sij = 1 and Sij′ = 0 for all j 6= j′). The idea here will be to ‘group’ the dropout

times into the M classes as in Roy (2003).

All of the parameters in the following specification are a function of the number of latent

classes, M ; for example, β(M ). However, we suppress the superscripts without loss of clarity

in the following. First, we specify the marginal mean as

g{E(Yit|β)} = XT
itβ. (3)
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By marginal, we mean marginalized over subject specific random effects and over the latent

class distribution (implicitly over the dropout distribution as well). If the number of classes

M were known, then the parameters β would be of primary interest. We address the issue

of M being unknown below.

In order to fully account for correlation due to repeated observations and informative

censoring, we specify a conditional model in addition to the marginal model. Recall that we

are taking a pattern mixture modeling approach to account for dropout. We assume that

the relevant information in D is captured by the latent variable S. We therefore specify a

mixture distribution over these latent classes, as opposed to over D itself. Before proceeding

to describe the model, however, we first make two points. First, the parameters from the

conditional model are not of scientific interest, and in fact are viewed as nuisance parame-

ters; we are not interested in estimating subject-specific effects (i.e., effects conditional on

the random effects) or class-specific covariate effects (i.e., effects of covariates on Y given a

particular dropout class). Second, we must specify the conditional model in a way that is

compatible with the marginal model (3). As we will see below, this leads to a somewhat

complicated model. Specifying this conditional model is necessary, however, in order to ac-

count for the two types of dependencies (within-subject correlation and dependency between

the outcome and dropout time).

We assume the data Yit, conditional on random effects bi and latent class Si, are from an

exponential family with distribution

f(Yit|bi, Si) = exp[{Yitηit − ψ(ηit)}/(miφ) + h(Yit, φ)]

where E(Yit|bi, Si) = g−1(ηit) = ψ′(ηit), ηit is the linear predictor, ψ(·) is a known function, φ

is a scale parameter and mi is the prior weight. This family includes normal (ψ(x) = x2/2),

binomial (ψ(x) = log(1 + ex)) and Poisson (ψ(x) = ex) distributions, among others. The

conditional mean is specified as
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g{E(Yit|bi, Si)} = ∆it + bi +
M∑

j=1

SijZ
T
itα

(j) (4)

where, in the most general form of the model we allow the variance of bi to depend on the

latent class, i.e., [bi|Sij = 1] ∼ N(0, θj). For identifiability, we use a sum to zero constraint

on the α’s, namely α(M ) = −
∑M−1

j=1 α(j). In this conditional model, each subject has its own

intercept, and the effect of each covariate, Zitj (Zit ⊂ Xit) is allowed to differ by dropout

class via the regression coefficients, α(j).

The probabilities of the latent classes given the dropout time are specified as a propor-

tional odds model

logit



P




k∑

j=1

Sij = 1
∣∣∣∣Di






 = λ0k + λ1Di, k = 1, . . . ,M − 1 (5)

where λ01 ≤ λ02 ≤ · · · ≤ λ0,M−1 and λ1 are unknown parameters. From this regression (5) it

is clear that the class probabilities are a monotone function of dropout time (in fact, linear

on the logit scale). Finally, the dropout times, Di, follow a multinomial distribution with

mass at each of the possible dropout times, parameterized by γ.

We point out that in the above formulation, Yit is independent of Di given Si. This is a

key assumption with this approach which we will examine in Section 3.4.

The intercept ∆it in (4) is determined by the relationship between (3) and (4), namely

the solution to

E(Yit|β) =
∑

D

∑

S

p(Si|Di)p(Di)
∫

E(Yit|bi, Si)p(bi|Si)dbi.

The main target of inference typically will be the covariate effects averaged over classes,

i.e., β(M ) averaged overM . We denote this as β? =
∑

m β
(m)p(m|y). We discuss computation

of p(m|y) in Section 3.3 and the corresponding computation of V ar(β̂?).
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3 Computational details

We provide details on computation of maximum likelihood (ML) estimates conditional on

m, computation of the approximate posterior model probabilities, and model-averaging.

3.1 The likelihood and ML inference

Denote the set of all parameters by ω = (βT , αT , θT , φ, λT , γT )T . We partition the complete

response data for subject i, Y c
i , into observed and missing components. Denote by Yi the

observed part of the vector (i.e., values of Y c prior to dropout) and by Y m
i the response after

dropout. In the following presentation, assume Xi and M are conditioned on throughout.

The likelihood contribution for subject i corresponding to the models described in Section

2 is

Li(Yi, Di;ω) ∝
∫ M∑

j=1

Li(Yi|Sij = 1, bi;α
(j), φ)p(Sij = 1|Di;λ)p(Di|γ)dF (bi|Sij, θj), (6)

where

Li(Yi|Sij = 1, bi;α
(j), φ) = exp[{Y T

i ηi − ψ(ηi)}/(miφ) + 1Th(Yi, φ)],

with ηi = ∆i + bi1 +
∑M

j=1 SijZiα
(j), p(Sij = 1|Di;λ) is defined in (5) and p(Di|γ) is the

distribution of Di, which might depend on covariates, and is parameterized by γ. Propor-

tionality in (6) holds because we assume the missing and observed responses from subject i

are independent, given Si and bi (i.e., [Y m
i |Yi, bi, Si] = [Y m

i |bi, Si]).

Maximization of log{
∏n

i=1 Li(Yi, Di;ω)} with respect to the parameters ω is complicated

by the possibly intractable integral in (6), and the need to calculate ∆it at each iteration

in the algorithm for every record in the data set. We provide details of the maximization

algorithm in the appendix.

3.2 Posterior model probabilities

The models introduced in Section 2 are indexed by the number of latent classes m (m =

1, . . . ,M , M < T ). Given that our main interest is in the regression parameters β, it would
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be sensible to properly account for the uncertainty in the regression coefficients by averaging

over the number of classes as opposed to conditioning on the most likely number of classes.

To do this, we need to first specify a prior distribution on the number of latent classes,

m. We recommending specifying a prior to favor parsimony and/or to be consistent with

subject matter considerations (if available). A convenient specification is a truncated Poisson

distribution with rate parameter, µ and truncated at an integer between 1 and T . Denote

this prior as p(m). The posterior probability of m classes is given by the expression,

p(m|y, x) =
p(y|m, x)p(m)

p(y|x)

where p(y|x) =
∑

m p(y|m, x)p(m) and p(y|m, x) is the integrated likelihood, i.e.,

p(y|m, x) =
∫
p(y|m, x, β(m), α(m), λ, γ, θ)p(λ)p(α(m) |m)p(β(m)|m)p(γ)p(θ)dβ(m)dα(m)dλdγdθ,

where p(y|m, x, β(m), α(m), λ, γ, θ) =
∑

s

∑
D p(y|m, x, β

(m), α(m), θ)p(S|m, x,D, λ)p(D|m, x, γ).

Unfortunately, this integral is not available in closed form. We propose to use a Laplace ap-

proximation to evaluate this integral,

p̂(y|m, x) = (2π)d/2|Σ̂|1/2p(y|m, x, β̂(m), α̂(m), λ̂, γ̂, θ̂) (7)

where d = dim(β, α, λ, γ, θ), (β̂(m), α̂(m), λ̂(m), γ̂(m), θ̂(m)) are the joint maximum likelihood es-

timates of (β(m), α(m), λ(m), γ(m), θ(m)) for the model withm classes, p(y|m, x, β̂(m), α̂(m), λ̂, γ̂, θ̂)

is the value of the maximized integrated likelihood, and Σ̂ is the inverse of the observed in-

formation matrix for (β, α, λ, γ, θ) based on the integrated likelihood (6). These estimates

are obtained using the algorithm described in the Appendix. It is clear that in (7) we have

ignored the contribution of the prior, p(λ)p(α(m) |m)p(β(m)|m)p(γ)p(θ), evaluated at the joint
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maximum likelihood estimates. This is justified (asymptotically) since the maximized like-

lihood term, p(y|m, x, β̂(m), α̂(m), λ̂, γ̂, θ̂), is Op(n) while the prior is typically Op(1). Thus,

the approximate posterior probabilities take the form,

p̂(m|y, x) =
p̂(y|m, x)p(m)

∑
m p̂(y|m, x)p(m)

. (8)

3.3 Model averaging and approximate posterior inference

Once the posterior distribution p(m|y) is estimated, we can then estimate the covariate

effects averaged across class sizes. As described previously, we denote the average covariate

effect over classes as β∗, which can be estimated as β̂? =
∑

m β̂
(m)p̂(m|y). The variance of β̂∗

is

var(β̂∗) = E[var(β̂∗|M)] + var(E[β̂∗|M ])

=
∑

m

var(β̂∗|m)p(m|y) + var(E[β̂(m)|M ])

which can be estimated as

v̂ar(β̂?) =
∑

m

var(β̂(m)|m)p̂(m|y) +
∑

m

(β̂(m) − β̂∗)⊗2p̂(m|y).

Notice that if we conditioned on the most likely value for the number of classes, m, the

variance of the estimated regression coefficients would likely be too small due to ignoring the

2nd term in the variance expression above.

3.4 Model checking

Conditional independence between Y and D given S and X is a key assumption with this

modeling approach. A simple method for checking the conditional independence assumption

for a given class sizeM is as follows; this approach was originally proposed by Lin, McCulloch,

and Rosenheck (2004), as a modification to the test proposed by Bandeen-Roche et al. (1997).
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The goal is to test the null hypothesis that model (4) holds versus the alternative that the

true model is

g{E(Yit|bi, Si, Di)} = ∆it + bi +
M∑

j=1

SijZ
T
itα

(j) +
J∑

j=1

hj(Di)φj (9)

where each hj(·) is a known function and the φ’s are parameters. The null hypothesis is

that φ1 = · · · = φJ = 0. A simple example with J = 1 is h(Di) = Di, which would assume

a linear effect of Di. If class membership S were known, then we could simply fit both the

full model (9) and reduced model (3) using maximum likelihood, and carry out a likelihood

ratio test with J degrees of freedom. Since S is unknown, Lin, McCulloch, and Rosenheck

(2004) proposed the following approach.

First, fit the null model (3). We can then estimate the posterior probability of class

membership for each subject as

P̂ (Sij = 1|Di, Yi, Xi; ω̂) =

∫
Li(Yobs,i|Sij = 1, bi; α̂

(j), φ̂)p(Sij = 1|Di; λ̂)p(Di|γ̂)dF (bi|Sij, θ̂j)

Li(Yi, Di; ω̂)
,

where Li(Yi, Di;ω) was defined in (6). The next step is to create M replicate pseudo data

sets for each record, setting the latent class variable equal to j for the jth replicate of that

record. In other words, the entire data set will be replicated M times, and the latent class

variable will be set to j for every record in the jth replicate of the data set. Each record

is then assigned a case weight based on the corresponding posterior probability of S. For

example, a case weight of P̂ (Sij = 1|Di, Yi, Xi; ω̂) will be assigned to the jth replicate of

subject i’s data. We can then fit models (9) and (3) using the weighted likelihood, and carry

out the likelihood ratio test.

4 Example

As briefly described in the Introduction, we were interested in analyzing data on the lon-

gitudinal course of depression of 850 HIV-infected women from the HERS. Depression was
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measured using the Center for Epidemiologic Studies Depression Scale (CES-D). The CES-

D includes 20 questions related to mood, each of which can take a value from 0 (symptom

rarely present) to 3 (symptom almost always present). Larger scores indicate the presence

of more symptoms, and scores range from 0 to 60. A score of 16 or greater is frequently used

as a depression cutoff (e.g., Cook et al. 2004). We therefore defined our outcome Yit as the

indicator of depression at visit t, meaning it took a value of 1 if subject i had a CES-D≥ 16 at

visit t, and took a value of 0 otherwise. Our goal was to describe changes in depression over

time as a function of baseline characteristics, such as race/ethnicity, number of HIV-related

symptoms, injection drug use and number of recent adverse events (such as homelessness,

violence and death of a close person).

The observed proportion of depression decreased over over time. However, the sample

mean is only a valid estimate of the prevalence at each visit if the missing data were MCAR; it

would not be surprising if depression status was related to dropout. There was a substantial

amount of drop out. By visit 12, less than half of the original sample remained in the study.

We would like to account for the possibility that the prevalence of depression over time might

be related to the dropout time.

4.1 Models

We first fitted a marginally-specified logistic regression model under the MAR assumption.

This could also be thought of as a special case of the proposed latent class model, but with

M = 1 class. We assumed models (1) and (2) hold, where the covariate vector includes: an

intercept; indicator of black race (black); indicator of Hispanic ethnicity (latina); indicator

of other race/ethnicity (other); number of HIV-related symptoms during the 6 months prior

to the baseline visit (symptoms); indicator that the subject has been an injection drug user

(idu); number of adverse events in 6 months prior to the baseline visit (adverse); the HERS

visit number (visit). Only visit was a time-varying covariate. White race was the reference

category for the race/ethnicity variable.
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We next fitted models (3)-(5), with M equal to 2, 3 and 4 classes. The covariate vector

Xit was the same as used in the previous model. We also set Zit = Xit, meaning that

every covariate was allowed to have an effect that varied by dropout class. In order to carry

out the model averaging, we needed to estimate the posterior probability for the number

of classes. We considered two prior distributions p(m): a discrete uniform prior and a

truncated Poisson prior distribution for M − 1, with mean equal to 0.5. The truncated

Poisson prior placed more prior weight on smaller classes; specifically, the probabilities were

0.6076, 0.3038, 0.0759, 0.0127 for M = 1, 2, 3, 4 respectively. The posterior distribution of the

number of classes for the uniform and truncated Poisson priors were estimated using equation

(8). Once the posterior probabilities of the number of classes were calculated, we were able

to estimate β∗ as described in Section 2. All models were fitted using R 2.2.1 software

(http:\\www.r-project.org). We wrote functions to calculate each type of likelihood, and

used the generic optimization function optim to maximize these likelihoods. More details

are given in the Appendix.

4.2 Results

The results are given in Tables 1 and 2. In Table 1, we compared the 4 models based on

the components of the Laplace approximation of the marginal distribution (7) and the cor-

responding approximate posterior distribution of the number of classes. First, we examined

the maximized likelihood, p(y | ω̂). There was a substantial increase in the likelihood (rel-

ative to the increase in the number of parameters) by going from 1 to 2 classes. Similarly,

there was a modest gain in the likelihood by going from 2 to 3 classes. The likelihood for

the 4 class model was almost identical to that in the 3 class model. The 4 class model pro-

vided essentially the same fit as the 3 class model, but with 9 extra parameters. Besides the

maximized likelihood, the term (d/2)log(2π) always increases as the number of parameters

(d) increases. However, the determinant of the estimated covariance matrix, |Σ̂| typically

decreases as the number of parameters increases; this acts as a ‘penalty’ term for adding
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parameters. In particular, consider the comparison between models 3 and 4. In model 4

we added 9 new parameters to the model. These parameters did little to improve the fit to

the data, as the likelihood only increased by a small amount. These parameters were not

well identified by the model, and tended to have large variances and high correlation with

other parameters. This caused the determinant of the estimated covariance matrix to be

considerably smaller than from the 3 class model.

The posterior distribution ofM was insensitive to the choice of the prior (p(M = 3|y, x) =

0.9997 with the uniform prior, and p(M = 3|y, x) = 0.9987 with the truncated Poisson

prior). The 3 class model was the clear ‘winner’ based on the posterior model probabilities;

no reasonable prior would change this conclusion. Due to the closeness of the posterior

probability of the 3 class model to one, there was no need to carry out the model averaging.

In particular, recall that β̂? =
∑

m β̂
(m)p̂(m|y). Since, from Table 1, p̂(M = 3|y) = 1, then

the estimated parameters from the 3 class model, β̂(3), were equivalent to the estimated

parameters that were averaged over the number of classes β̂∗.

The marginal regression coefficient estimates are presented in Table 2 for each model.

The parameter estimates from the one class model were quite different from the models

with multiple classes. For example, based on the 1-class model, we might conclude that the

prevalence of depression was lower for blacks. However, once we account for dropout using

the latent class model, we conclude the opposite.

Since the posterior probabilities overwhelmingly favored the 3 class model, we will now

focus on this model for our conclusions. Blacks, Latinas and other non-white racial and

ethnic groups were estimated to have a significantly higher prevalence of depression, relative

to whites. Injection drug use, the number of adverse events and HIV-related symptoms were

associated with higher prevalence of depression. There was a significant, but somewhat grad-

ual decline in depression over time. We also considered interactions between race/ethnicity

and visit number, but these interactions did not appear to be important in describing the
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data.

Table 3 displays estimated latent class probabilities as a function of dropout time, using

the estimated values of λ, the ordinal regression parameters in (5). Individuals who dropped

out early (after visit 1), were very likely to be in class 1. Individuals who remained in

the study until the end, were most likely to be in class 2. Class 3 consisted of a small

subpopulation of the subjects who dropped out in the final few visits of the study.

4.3 Checking the conditional independence assumption

We used the method described in Section 3.4 to test the null hypothesis of conditional

independence. For each value of M (1 to 4), we fitted model (9), with
∑J

j=1 hj(Di)φj = Diφ.

The test statistic, which, under the null hypothesis follows an approximate χ2
1 distribution,

had value of 7.81, 2.64, 0.41 and 0.41 for M = 1 to M = 4 respectively. Thus, with respect

to the specific alternative of a linear effect of dropout time, the conditional independence

assumption appeared to be reasonable for M = 3.

5 Simulation Study

We carried out a brief simulation study, primarily to examine the effectiveness of the approx-

imation to fully Bayesian inference. For covariates, we used variables from the HIV data

described in the previous section. In particular, the X matrix included an intercept, the

indicator of injection drug use (idu) and visit number. The true values of the β parameters

were -1.1, 0.45 and -0.02 for the intercept, idu and visit, respectively.

We first generated the response for the case where M = 1 (where the MAR assumption

holds). The missing data pattern was just the observed pattern from the HIV data. The

response was generated from models (1) and (2). We also generated data for the case where

M = 2. The missing data pattern was the same, but now the response depended on class

membership. The latent class variable was generated from model (5) with λ01 = 4 and
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λ1 = −0.7. We then set α(1) = (0.003,−0.16, 0.24)T in (4) and generated the response. In

each case, the variance of the random intercept was θ = 4. These parameter values are equal

to their estimated values from the 2 class model fitted in the previous section.

For each generated data set, we fitted a marginally-specified logistic regression model

under the MAR assumption (M = 1). We also fitted the latent class model proposed in the

manuscript. In that case, we fitted a 1, 2 and 3 class model, and carried out model averaging

assuming a discrete uniform prior over the 3 classes. One hundred simulated data sets were

analyzed under each scenario. The percentage bias, average estimated standard error (SE),

the estimated standard deviation of the estimates (ESD), as well as coverage probability was

recorded. For model averaging, β̂∗ was reported. The results are given in Table 4.

When the data were generated under the MAR assumption (M = 1), both modeling

approaches worked reasonably well. The estimates had very little bias. The SEs tended

to be slightly underestimated. Coverage was below the nominal for the intercept. We did

not expect the coverage and standard errors to be exact as we use large sample results for

inference here.

When data were generated from the 2 class model (MAR assumption violated), the model

that relied on the MAR assumption (M = 1) no longer performed well. In general, coverage

probabilities were too low. In particular, the estimated coefficient of visit number had a large

negative bias (582%) and no coverage. The model averaging approach yielded better results.

The coefficient of visit number had negative bias (26%) with coverage probability of 0.91.

The bias comes from putting some weight on the incorrect model (MAR); the coefficient of

visit number conditional on M = 2 had bias of just 3%.

For data generated from the 1 class model (MAR), the 1 class model had the highest

posterior probability in 44% of samples. Here, the 2 class model was slightly favored, which

is only an incorrect model in the sense that it has more parameters than necessary. For data

generated from the 2 class model, the 2 class model had the highest posterior probability
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in 81% of samples. The 1 class model (MAR) only had the highest probability in 2% of

samples.

To confirm that the model probabilities would converge to the correct values as the

sample size increased, we simulated data from the same model as described above, but with

a sample size of 3400 (4 copies of the covariate data from 850 subjects were used). We fitted

5 simulated data sets from the 1 class model (MAR) and from the 2 class model. In each

case, the posterior model probability for the correct M was greater than 0.99.

6 Discussion

We have proposed a new model for dealing with non-ignorable missing data that parsimo-

niously addresses datasets with many possible dropout times (in an automated fashion) and

directly models the marginal covariate effects of interest. Via approximate posterior model

probabilities for the number of latent classes, this approach properly takes into account

uncertainty in the unknown number of classes.

We fitted the model using approximate Bayesian methods. Reversible jump Markov chain

Monte Carlo methods (Green, 1995) would be required to fit a fully Bayes model since the

dimension of the parameter space changes with the number of latent classes.

For the model proposed here, we have assumed a simple within-class longitudinal depen-

dence structure through the introduction of a random intercept. More flexible specifications

of the dependence structure could be obtained by replacing the scalar random effect bi with

a set of correlated random effects bi = (bi1, . . . , biT ) (though this will necessitate higher di-

mensional numerical integrations) or by allowing dependence through a Markov transition

structure within class (Heagerty, 2002).

Alternative methods for specifying marginal effects for correlated binary data have been

proposed. Caffo, An and Rohde (2006) proposed a model for binary data with random effects,

which uses mixtures of normals. Their approach is less computationally intensive than the
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Heagerty (1999) approach that we implemented here. However, extending their approach

to also average over the discrete latent dropout distribution would likely prove challenging.

In particular, the additional step of averaging over the latent dropout classes would make it

difficult to preserve the marginal probit interpretation. Wang and Louis (2004) proposed a

bridge distribution function for binary random intercept models. However, extending their

approach to our setting would likely have similar problems to mixture of normals approach

of Caffo et al. (2006).

The model proposed here assumes conditional independence between the outcome and

dropout processes, given the latent class and covariates. We tested this assumption against

a very simple alternative hypothesis (linear effect of dropout time). A more complicated

approach would be leave the functional form of the dependence unspecified. Specifically, we

could assume

g{E(Yit|bi, Si, Di)} = ∆it + bi +
M∑

j=1

SijZ
T
itα

(j) + f(Di)

where f(·) is a smooth, but otherwise unspecified function. The null hypothesis of conditional

independence would be that f(Di) = 0. We plan to explore a score-type test similar to that

proposed by Zhang and Lin (2003) and Lin, Zhang and Davidian (2006) and examine its

asymptotic distribution for the models proposed here.
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Appendix: Computational details of ML

We propose the following approach to compute the maximum likelihood estimates. First,

obtain initial values of the parameters. Initial values of β and θ could be obtained from ML

estimates of a model that assumes an ignorable missing data mechanism. The parameters λ

initially should be selected in a way that leads to marginal probabilities not too close to zero

for any latent class. Initial values of α could be obtained by fitting a pattern mixture model

with M groups of dropout times that have fixed boundaries. Given the data and parameters

ω, we next calculate ∆it for all i and t. We accomplish this using Newton Raphson with

numerical differentiation and integration. Specifically, we solve h(∆it) − g−1(XT
itβ) = 0 for

∆it, where

h(∆it) =
T∑

d=1

M∑

j=1

{∫
g−1

(
∆it + bi + ZT

itα
(j)

)
p(bi|Sij = 1)dbi

}
p(Sij = 1|Di = d)p(Di = d)

and p(bi|Sij = 1) is N(0, θj) and p(Sij = 1|Di = d) can be found using equation (5). A

10 point Gauss-Hermite quadrature is used to integrate out the random effects bi from the

above equation. The derivative of h(∆it) with respect to ∆it is h′(∆it), which is found using

standard numerical techniques. We then find the value of ∆it by repeatedly calculating

∆new
it = ∆old

it − {h(∆old
it ) − g−1(XT

itβ)}/h′(∆old
it ) until convergence. Once we have a values

of ∆it for the current set of parameters ω, we can then evaluate the likelihood (6), where

again Gauss-Hermite quadrature is used to evaluate the integral. Many possible algorithms

could then be used to find the ML estimates. For example, one could use a Newton Raphson

approach, which would require calculating the likelihood at various points to get numerical

estimates of the score and Hessian at each step. However, the loglikelihood for many latent

class models tends to be poorly behaved (e.g., more than one local maximum). Algorithms

such as Newton Raphson or Fisher scoring may not perform well. Our recommendation is

start with a more stable, robust algorithm, such as Nelder-Mead, and then switch to a faster

algorithm such as Newton Raphson for the final steps.
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Table 1: The components of the Laplace approximation to the marginal likelihood and the
corresponding approximate posterior model probabilities under two priors for the number of
classes: a discrete uniform prior and a truncated Poisson prior.

Number of classes

1 2 3 4
Number of parameters 9 19 28 37
loglikelihood -3571.829 -3501.31 -3489.768 -3489.751

(1/2)log|Σ̂| -24.51 -44.07 -55.84 -78.22
d/2 log (2π) 8.27 17.46 25.73 34.00
P (m|y), uniform prior 0 0 1 0
P (m|y), truncated Poisson prior 0 0 1 0

Table 2: Estimates and standard errors of marginal coefficients β(m). The estimated covariate
effects averaged over classes, β∗, is also given in the column for M = 3

Number of classes

1 2 3 4

Parameter Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 1.36 0.08 -1.11 0.32 -1.01 0.26 -1.01 0.28
black -0.79 0.28 0.67 0.35 0.56 0.25 0.56 0.25
latina 0.39 0.30 1.37 0.33 1.26 0.27 1.26 0.30
other 1.06 0.30 0.85 0.38 0.71 0.26 0.71 0.27
idu 0.59 0.29 0.47 0.19 0.34 0.11 0.35 0.11
symptom 0.20 0.13 0.45 0.06 0.48 0.05 0.48 0.05
adverse 0.31 0.04 0.31 0.05 0.32 0.04 0.32 0.05
visit -0.04 0.007 -0.02 0.009 -0.03 0.011 -0.03 0.011

Table 3: Comparison of the estimated latent class probabilities as a function of the dropout
time for the 3 class model.

Dropout time (visit number of last observed value)

Class 1 2 3 4 5 6 7 8 9 10 11 12
1 0.89 0.86 0.81 0.75 0.68 0.61 0.53 0.44 0.36 0.29 0.22 0.17
2 0.09 0.13 0.17 0.21 0.27 0.32 0.38 0.43 0.47 0.49 0.50 0.48
3 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.12 0.17 0.22 0.28 0.35
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Table 4: Results from simulation study. Percentage bias, average of the estimated standard
errors (SE), empirical standard deviation (ESD) and 95% coverage probabilities are reported
for the estimated marginal regression coefficients.

Fitted model: MAR Fitted model: latent class

Parameter % bias SE ESD coverage % bias SE ESD coverage
True model: MAR

Intercept 0.1 0.07 0.08 0.86 3.5 0.07 0.08 0.87
idu -1.1 0.12 0.14 0.91 -1.9 0.12 0.14 0.91
visit 0.0 0.01 0.01 0.98 -3.2 0.01 0.01 0.93

True model: latent class (M = 2)
Intercept 7.6 0.07 0.07 0.74 8.0 0.07 0.07 0.98
idu -0.9 0.13 0.16 0.87 -1.6 0.12 0.12 0.94
visit -582 0.01 0.01 0.00 -26 0.02 0.02 0.91
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