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Summary

We study the role of partial autocorrelations in the reparameterization and parsimonious mod-
eling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal suc-
cess of the partial autocorrelations function (PACF) in model formulation, removing the positive-
definiteness constraint on the autocorrelation function of a stationary time series and in reparam-
eterizing the stationarity-invertibility domain of ARMA models. It turns out that once an order is
fixed among the variables of a general random vector, then the above properties continue to hold
and follows from establishing a one-to-one correspondence between a correlation matrix and its as-
sociated matrix of partial autocorrelations. Connections between the latter and the parameters of
the modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools similar
to partial correlograms for model formulation and various priors based on the partial autocorrela-
tions are proposed. We develop frequentist/Bayesian procedures for modelling correlation matrices,
illustrate them using a real dataset, and explore their properties via simulations.

Key Words: Autoregressive parameters; Cholesky decomposition; Positive-definiteness
constraint; Levinson-Durbin algorithm, Prediction variances, Uniform and
Reference Priors, Markov Chain Monte Carlo.

1 Introduction

Positive-definiteness and high-dimensionality are two major obstacles in modeling the p× p covari-

ance matrix Σ of a random vector Y = (Y1, · · ·Yp)
′. These can partially be alleviated using various

decompositions which in increasing order of effectiveness are the variance-correlation (Barnard et

al., 2000), spectral (Yang and Berger, 1994;) and Cholesky (Pourahmadi, 1999; Chen and Dunson,

2003) decompositions. Only the latter has the unique distinction of providing an unconstrained and

statistically interpretable reparameterization of a covariance matrix, but at the expense of imposing

an order among the entries of Y . Three close competitors are, (i) the covariance selection models

(Dempster, 1972; Wong et al., 2003) based on full partial correlations obtained from Σ−1, which
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are statistically interpretable, but constrained, (ii) the logarithm of eigenvalues and logit of Givens

angles (Daniels and Kass, 1999; Yang and Berger, 1994) and (iii) the matrix-logarithm models

(Chiu et al., 1996). The latter two are based on an unconstrained, but not necessarily interpretable

reparameterization of Σ.

We present yet another unconstrained and statistically interpretable reparameterization of Σ

using the notion of partial autocorrelation from time series analysis (Box et al., 1994; Pourahmadi,

2001, Chap. 7), which, like the Cholesky decomposition also imposes an order among the entries

of Y ; this reparamaterization is also ideal for models that directly include correlation matrices,

instead of covariance matrices, including multivariate probit models (Chib and Greenberg, 1998)

and copulas (Pitt et al., 2006). For covariance matrices, we start with the decomposition Σ = DRD

or the variance-correlation strategy (Barnard et al, 2000) and reduce the problem to and focus on

reparameterizing a correlation matrix R = (ρij) in terms of a simpler symmetric matrix Π = (πij)

where πii = 1 and for i < j, πij is the partial autocorrelation between Yi and Yj adjusted for the

intervening (not the remaining) variables. We note that unlike R and the matrix of full partial

correlations (ρij),Π has a simpler structure in that it is not required to be positive-definite and

hence its entries are free to vary in the interval (−1, 1). Furthermore, using the Fisher z transform

Π can be mapped to the matrix Π̃ where the off-diagonal entries of the latter take values in the

entire real line (−∞,+∞). The process of going from a constrained R to a real symmetric matrix Π̃

is reminiscent of finding a link function in the theory of generalized linear models (McCullagh and

Nelder, 1989). Therefore, the analogues of graphical and analytical machineries developed in the

contexts of regression and the Cholesky decomposition in Pourahmadi (1999, 2007) and references

therein, can be brought to the service of modeling correlation matrices. In the sequel, to emphasize

the roles, the properties and the need for (time-) order with a slight abuse of language we refer to

Π as the partial autocorrelation function (PACF) of Y or Σ, just as in time series analysis.

Compared to the long history of the use of the PACF in time series analysis (Quenouille, 1949;

Daniels, 1956; Barndorff-Nielson and Schou, 1973; Ramsey, 1974; Jones, 1980; Jones 1987), research
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on establishing a one-to-one correspondence between a general covariance matrix, its PACF and

connecting the latter to the entries of the Cholesky factor of the former has a rather short history.

An early work in the Bayesian context is due to Eaves and Chang (1992), followed by Zimmerman

(2000) and Pourahmadi (1999; 2001, p.102) and Daniels and Pourahmadi (2002) for longitudinal

data, and Dégerine and Lambert-Lacroix (2003) for the time series setup. For a general random

vector, Kurowicka and Cooke (2003, 2006) and Joe (2006) have relied on graph-theoretical and

standard multivariate techniques, respectively. The origins of a fundamental determinantal identity

involving the PACF, unearthed recently by these three groups of researchers can be traced to a

notable and somewhat neglected paper of Yule (1907, equ. 25) and in the literature of time series

in connection with the Levinson-Durbin type algorithms. It plays a central role in Joe’s (2006)

method of generating random correlation matrices with distributions independent of the order of

the indices, and we use it effectively in introducing priors for the Bayesian analysis of correlation

matrices. For a similar application in time series analysis, see Jones (1987).

Correlation matrices themselves are accompanied by additional challenges. The constraint of

diagonal elements fixed (at one) complicates both reparameterizations, decompositions and com-

putations. Other than the partial autocorrelation parameterization proposed here, there are no

unconstrained parameterizations currently in the statistical literature for a correlation matrix. In

addition, recent advances in Bayesian computations for correlation matrices (i.e., sampling with

Markov chain Monte Carlo algorithms) rely on augmenting the correlation matrix with a diagonal

scale matrix to create a covariance matrix (i.e., parameter expansion algorithms). The strategy is

to then sample the inverse of this covariance matrix from a Wishart distribution and then transform

back to the correlation matrix; see, e.g., Liu (2001) and Liu and Daniels (2006). However, these

approaches do not easily extend to structured correlation matrices (as we will discuss here).

The outline of the paper is as follows. In Section 2, we review the recent results in reparam-

eterizing a correlation matrix via PACF and the Cholesky decomposition. We use the latter to

derive a remarkable identity expressing determinant of R as a simple function of the partial au-
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tocorrelations. This identity obtained by Dégerine and Lambert-Lacroix (2003), Joe (2006) and

Kurowicka and Cooke (2006), plays a fundamental role in introducing prior distributions for the

correlation matrix R which is independent of the order of indices used in defining the PACF. The

role of a generalized partial correlogram in formulating parsimonious models for R is discussed and

illustrated using Kenward’s (1987) cattle data. In Section 3, we introduce new priors for correlation

matrices based on this parameterization, examine their properties and relation to other priors that

have appeared in the literature (Barnard, et al., 2000), present a simple approach to sample from

the posterior distribution of a correlation matrix, and do some simulations to examine the behavior

of these new priors. Section 4 provides guidance on use of these models and tools in applications

in behavior and social sciences. Section 5 wraps up and provides directions for future work.

2 Reparameterizations of a Correlation Matrix

Modeling correlation matrices and simulating random or “typical” correlation matrices are of central

importance in various areas of statistics (Chib and Greenberg, 1998; Barnard et al. 2000; Pan and

Mackenzie, 2003; Pitt, Chan, and Kohn, 2006), engineering and signal processing (Holmes, 1991),

social and behavior sciences (Liu, Daniels, and Marcus, 2009), finance (Engle, 2002) and numerical

analysis (Davies and Higham, 2000). An obstacle in dealing with a correlation matrix R is that all

its diagonal entries are the same and equal to one.

In this section, first we reparameterize correlation/covariance matrices of a general random

vector Y = (Y1, · · · , Yp)
′ in terms of the partial autocorrelations between Yj and Yj+k adjusted for

the intervening variables. Then, using the concept of regression which is implicit in introducing the

partial autocorrelations and the Cholesky decomposition of matrices, we point out the connections

among the PACF, the generalized autoregressive parameters and the innovation variances of Y

introduced in Pourahmadi (1999).
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2.1 Reparameterization in terms of Partial Autocorrelations

The notion of PACF is known to be indispensable in the study of stationary processes and situ-

ations dealing with Toeplitz matrices such as the Szegö’s orthogonal polynomials, trigonometric

moment problems, geophysics, digital signal processing and filtering (see Landau, 1987; Pourah-

madi, 2001), identification of ARMA models, the maximum likelihood estimation of their pa-

rameters (Jones, 1980) and simulating a random or “typical” ARMA model (Jones, 1987). The

one-to-one correspondence between the stationary autocorrelation functions {ρk} and their PACF

{πk} (Barndorff-Nielsen and Schou, 1973; Ramsey, 1974) makes it possible to remove the positive-

definiteness constraint on {ρk}, and work with {πk} which are free to vary over the interval (−1, 1)

independently of each other.

We parameterize a (non-Toeplitz) correlation matrix R = (ρij) in terms of the lag-1 correlations

πi,i+1 = ρi,i+1, i = 1, · · · , p − 1 and the partial autocorrelations πij = ρij|i+1,···,j−1 for j − i ≥ 2, or

the matrix Π = (πij). This allows swapping the constrained matrix R by the simpler matrix Π with

ones on the diagonal and where for i 6= j, the πij’s can vary freely in the interval (−1, 1). The key

idea behind this reparameterization is the well-known recursion formula (Anderson, 2003, p.41), see

also (1) below, for computing partial correlations in terms of the marginal correlations (ρij). It also

lies at the heart of Kurowicka and Cooke (2003, 2006) and Joe (2006) approaches to constructing

Π; however the recursive Levinson-Durbin algorithm used by Dégerine and Lambert-Lacroix (2003)

will be used in our presentation in Section 2.3.

Following Joe (2006), for j = 1, · · · , p−k, k = 1, · · · , p−1, let r′1(j, k) = (ρj,j+1, . . . , ρj,j+k−1), r
′
3(j, k)

= (ρj+k,j+1, . . . , ρj+k,j+k−1), and R2(j, k) be the correlation matrix corresponding to the compo-

nents (j +1, . . . , j +k−1). Then, the partial autocorrelations between Yj and Yj+k adjusted for the

intervening variables, denoted by πj,j+k ≡ ρj,j+k|j+1,...,j+k−1, are computed using the expression

πj,j+k =
ρj,j+k − r′1(j, k)R2(j, k)−1r3(j, k)

[1 − r′1(j, k)R2(j, k)−1r1(j, k)]1/2[1 − r′3(j, k)R2(j, k)−1r3(j, k)]1/2
. (1)

In what follows and in analogy with R, it is convenient to arrange these partial autocorrelations

in a matrix Π where its (j, j + k)th entry πj,j+k. Note that the function g(·) in (1) that maps a
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correlation matrix R into the partial autocorrelation matrix Π, is indeed invertible, so that solving

(1) for ρj,j+k, one obtains

ρj,j+k = r′1(j, k)R2(j, k)−1r3(j, k) + Djk πj,j+k, (2)

where Djk is the denominator of the expression in (1). Then, the formulae (1)-(2) clearly establish

a one-to-one correspondence between the matrices R and Π. In the sequel, with a slight abuse

of language and following the tradition in times series analysis we refer to the matrix Π or πj,j+k

viewed as a function of (j, k), as the partial autocorrelation function (PACF) of Y .

Evidently, when R is a stationary (Toeplitz) correlation matrix, then πj,j+k depends only the

lag k, see (1). Consequently, Π is a stationary (Toeplitz) matrix. Fortunately, the converse is also

true and follows from (2). For ease of reference, we summarize these observation in Lemma 1 in

Section 2.3. A correlation matrix R is stationary (Toeplitz) if and only if its associated PACF Π is

a stationary (Toeplitz) matrix.

Moreover, for a stationary correlation matrix, R reduces precisely to the celebrated Levinson-

Durbin formula (Pourahmadi, 2001, Theorem 7.3) for computing the PACF recursively.

2.2 An Alternative Reparameterization: Cholesky Decomposition

Next, we present an alternative reparameterization of a covariance matrix via its Cholesky decom-

position or the idea of autoregression for the underlying random vector.

Consider a mean-zero random vector Y with the positive-definite covariance matrix Σ = (σst).

For 1 ≤ t ≤ p, let Ŷt be the linear least-squares predictor of Yt based on its predecessors Y1, · · · , Yt−1

and let εt = Yt − Ŷt be its prediction error with variance σ2
t = V ar(εt). Then, there are unique

scalars φtj so that Ŷt =
t−1
∑

j=1

φtjYj or

Yt =
t−1
∑

j=1

φtjYj + εt, t = 1, · · · , p. (3)

Let ε = (ε1, · · · , εp)
′ be the vector of successive uncorrelated prediction errors with Cov(ε) =

diag(σ2
1 , · · · , σ2

p) = D. Then, (3) rewritten in matrix form becomes ε = TY , where T is a unit lower
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triangular matrix with 1’s on the main diagonal and −φtj in the (t, j)th position for 2 ≤ t ≤ p, j =

1, · · · , t − 1. Note that σ2
t = V ar(εt) is different from σtt = V ar(Yt). However, when the responses

are independent, then φtj = 0 and σ2
t = σtt, so that the matrices T and D gauge the “dependence”

and “heterogeneity” of Y , respectively.

Computing covariances using ε = TY , it follows that

TΣT ′ = D, |
∑

| =
p
∏

t=1

σ2
t . (4)

The first factorization in (4), called the modified Cholesky decomposition of Σ, makes it possible

to swap the p(p + 1)/2 constrained parameters of Σ with the unconstrained set of parameters φtj

and log σ2
t of the same cardinality. In view of the similarity of (3) to a sequence of varying order

autoregressions, we refer to the parameters φtj and σ2
t as the generalized autoregressive parameters

(GARP) and innovation variances (IV) of Y or Σ (Pourahmadi, 1999). A major advantage of

(4) is its ability to guarantee the positive-definiteness of the estimated covariance matrix given by

T̂−1D̂T̂ ′−1 so long as the diagonal entries of D̂ are positive.

It should be noted that imposing structures on Σ will certainly lead to constraints on T and

D in (4). For example, a correlation matrix R with 1’s as its diagonal entries is structured with

possibly p(p − 1)/2 distinct parameters. In this case, certain entries of T and D are either known,

redundant or constrained. In fact, it is easy to see that the diagonal entries of the matrix D for a

correlation matrix are monotone decreasing with σ2
1 = 1. For this reason and others, it seems more

prudent to rely on the ordered partial correlations when reparameterizing a correlation matrix R

as in Section 2.1, than using its Cholesky decomposition.

2.3 A Multiplicative Determinantal Identity: Partial Autocorrelations

First, we study the role of partial autocorrelations in measuring the reduction in prediction error

variance when a variable is added to the set of predictors in a regression model. Using this and the

second identity in (4) we obtain a fundamental determinantal identity expressing |Σ| in terms of the

partial autocorrelations and diagonal entries of Σ. Joe (2006) and Kurowicka and Cooke (2006) had
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obtained this identity using determinantal recursions and graph-theoretical methods based on (1),

respectively. An earlier and a slightly more general determinantal identity for covariance matrices

in the context of nonstationary processes was given by Dégerine and Lambert-Lacroix (2003, p.54),

using an analogue of the Levinson-Durbin algorithm.

For u and v two distinct integers in {1, 2, · · · , p}, let L be a subset of {1, 2, · · · , p}\{u, v} and

πuv|L stand for the partial correlation between Yu and Yv adjusted for Yℓ, ℓǫL. We denote the linear

least squares predictor of Yu based on Yℓ, ℓǫL by Ŷu|L, and for v an integer Lv stands for the union

of the set L and the singleton {v}.

Lemma 1. Let Y = (Y1, · · · , Yp)
′ be a mean-zero random vector with a positive-definite covariance

matrix Σ. Then, with u, v and L as above, we have

(a) Ŷu|Lv = Ŷu|L + αuv

(

Yv − Ŷv|L

)

, αuv = πuv|L

√

√

√

√

V ar(Yu − Ŷu|L)

V ar(Yv − Ŷv|L)
. (5)

(b) V ar
(

Yu − Ŷu|Lv

)

=
(

1 − π2
uv|L

)

V ar
(

Yu − Ŷu|L

)

. (6)

Proof. (a) Let sp{Yu;uǫL} stand for the linear subspace generated by the indicated random

variables. Since Yv − Ŷv|L is orthogonal to sp{Yu;uǫL} it follows that

sp{Yu;uǫLv} = sp{Yu;uǫL} ⊕ sp{Yv − Ŷv|L},

and from the linearity of the orthogonal projection we have

Ŷu|Lv = Ŷu|L + αuv(Yv − Ŷv|L),

where αuv, the regression coefficient of Yu on Yv − Ŷv|L is given by

αuv =
Cov(Yu, Yv − Ŷv|L)

V ar(Yv − Ŷv|L)
.

Since Ŷu|Lǫ sp{Yi; iǫL} is orthogonal to Yv − Ŷv|L, the numerator of the expression above can

be replaced by Cov(Yu − Ŷu|L, Yv − Ŷv|L), so that

αuv =
Cov(Yu−Ŷu|L,Yv−Ŷv|L)

√

V ar(Yu−Ŷu|L)V ar(Yv−Ŷv|L)
.

√

V ar(Yu−Ŷu|L)

V ar(Yv−Ŷv|L)

= πuv|L

√

V ar(Yu−Ŷu|L)

V ar(Yv−Ŷv|L)
.

8



(b) From the first identity in (5), it is immediate that

Yu − Ŷu|Lv = Yu − Ŷu|L − αuv

(

Yv − Ŷv|L

)

,

or

Yu − Ŷu|Lv + αuv(Yv − Ŷv|L) = Yu − Ŷu|L. (7)

Computing variances of both sides of (7) and using the fact that Yu − Ŷu|Lv is orthogonal to

Yv − Ŷv|L, it follows that

V ar
(

Yu − Ŷu|Lv

)

= V ar
(

Yu − Ŷu|L

)

− α2
uvV ar

(

Yv − Ŷv|L

)

.

Now, substituting for αuv from (a), the desired result follows. Q.E.D.

Next, we use the recursion (6) to express the innovation variances or the diagonal entries

of D in terms of the partial correlations or the entries of π. Similar expressions for φtj ’s, the

entries of T , are not available. The next theorem sheds some light on this problem. Though

the expressions are recursive and ideal for computation (Levinson-Durbin algorithm), they are

not as explicit or revealing. The approach we use here is in the spirit of the Levinson-Durbin

algorithm (Pouramadi, 2001, Corollary 7.4) as extended by Dégerine and Lambert-Lacroix (2003)

to nonstationary processes.

Theorem 1. Let Y = (Y1, · · · , Yp) be a mean-zero random vector with a positive-definite covariance

matrix Σ which can be decomposed as in (4).

(a) Then, for t = 2, · · · , p; j = 1, · · · , t − 1, we have

σ2
t = σtt

t−1
∏

j=1

(1 − π2
jt),

(b) |Σ| =

( p
∏

t=1

σtt

) p
∏

t=2

t−1
∏

j=1

(1 − π2
jt).

(c) For t = 2, · · · , p; L = {2, · · · , t − 1}

φt1 = π1t

√

√

√

√

V ar(Yt − Ŷt|L)

V ar(Y1 − Ŷ1|L)
.
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(d) φtj = φtj|L − φt1φ1,t−j|L, for j = 2, · · · , t − 1,

where φtj|L and φ1,t−j|L are, respectively, the forward and backward predictor coefficients of Yt

and Y1 based on {Yk; kǫL}, defined by

Ŷt|L =
t−1
∑

j=2

φtj|L Yj , Ŷ1|L =
t−1
∑

j=2

φt,t−jYj .

Proof (a) follows from the repeated use of (6) with u = t and v = j, j = 1, · · · , t − 1. (b) follows

from (4) and (a). Q.E.D.

Part (c) proved first in Pourahmadi (2001, p.102) shows that only the entries of the first column

of T are multiples of the partial autocorrelations appearing in the first column of π. However, for j >

1, since φtj is a multiple of the partial correlation between Yj and Yt adjusted for {Yi; i ∈ [1, t)\{j}},

(see Lemma 1(a)), it is not of the form of the entries of π. Note that these observations are true even

when Y is stationary or Σ is Toeplitz (Pourahmadi, 2001, Lemma 7.8 and Theorem 7.3). In the

search for connection with the entries of π, it is instructive to note that the nonredundant entries

of T−1 = (θtj) can be interpreted as the generalized moving average parameters (GMAP) or the

regression coefficient of εj when Yt is regressed on the innovations εt, · · · , εj , · · · , ε1, see Pourahmadi

(2001, p.103). An alternative interpretation of θtj as the coefficient of Yj when Yt is regressed on

Yj, Yj−1, · · · , Y1 is presented in Wermuth et al. (2006 Sec. 2.2). Consequently, θtj is a multiple of

the partial correlation between Yt and Yj adjusted for {Y1, · · · , Yj−1}. We hope these connections

and working with partial correlations will offer similar advantage to working with the GARP in

terms of the autoregression interpretation (Pourahmadi, 2001, Sections 3.5.3 and 3.5.4).

2.4 An Attractive Property of the PACF parameterization

Parsimonious modeling of the GARP of the modified Cholesky decomposition often relies on explor-

ing for structure as a function of lag; for example, fitting a polynomial to the GARP as a function

of lag (Pourahmadi, 1999). For such models, the GARP , in a sense, have different interpretations

within lag; i.e., the lag 1 coefficient from the regression of Y3 on (Y2, Y1) is the Y2 coefficient, when

another variable, Y1 is also in the model; however, for the regression of Y2 on Y1, the lag 1 coefficient
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is the Y1 coefficient with no other variable in the model. So, for a given lag k, the lag k coefficients

all come from conditional regressions where the number of variables conditioned on are different.

However, by construction, the lag k partial autocorrelations are all based on conditional regressions

where the number of conditioning variables are the same, always conditioning on k − 1 intervening

variables. This will facilitate building models for the partial autocorrelations as a function of lag.

We discuss such model building in the next section.

2.5 Parsimonious Modeling of the PACF

In this section, we use the generalized partial correlogram, i.e. the plot of {πj,j+k; j = 1, · · · , p− k}

versus k = 1, · · · , p−1, as a graphical tool to formulate parsimonious models for the PACF in terms

of the lags and other covariates. If necessary, we transform its range to the entire real line using

z transform. Such modeling environment is much simpler and avoids working with the complex

constraints on the correlation matrix R (Barnard et al., 2000; Daniels and Normand, 2006) or the

matrix of full partial correlations constructed from Σ−1 (Wong et al. 2003); note that the full

partial correlations (ρij) are defined as the correlation between two components conditional on all

the other components.

Note that the partial autocorrelations πj,j+k between successive variables Yj and Yj+k are

grouped by their lags k = 1, · · · , p−1, and heuristically, πj,j+k gauges the conditional (in)dependence

between variables k units apart conditional on the intervening variables, so one expects it to be

smaller for larger k. In the Bayesian framework, this intuition suggests putting shrinkage priors on

the partial autocorrelations that shrink the matrix Π toward certain simpler structures (Daniels

and Kass, 2001).

2.6 Data illustration

To illustrate the capabilities of the generalized correlograms in revealing patterns, we use the

cattle data (Kenward, 1987) which consists of p = 11 bi-weekly measurements of the weights of

n = 30 cows. Table 1, displays the sample (partial) correlations for the cattle data in the lower
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(upper) triangular segment and the sample variances are along the main diagonal. It reveals

several interesting features of the dependence in the data that the commonly used profile plot of

the data cannot discern. For example, note that all the correlations are positive, they decrease

monotonically within the columns (time-separation), they are not constant (nonstationary) within

each subdiagonal. In fact, they tend to increase over time (learning effect). Furthermore, the

partial autocorrelations of lags 2 or more are insignificant except for the entries 0.56 and 0.35.

Figure 1 presents the generalized correlograms corresponding to the sample correlation matrix

of the data, the full partial correlations, the generalized partial correlogram and the Fisher’s z

transform of the PACF. Note that the first two correlograms suggest linear and quadratic patterns

in the lag k, but in fitting such models one has to be mindful of the constraints on the coefficients

so that the corresponding fitted correlation matrices are positive definite. Details of fitting such

models and the ensuing numerical results can be found in Pourahmadi (2001). The generalized

partial correlogram in (c) reveals a cubic polynomial in the lags, i.e. πj,j+k = γ0+γ1k+γ2k
2+γ3k

3;

in fitting such models the only constraint to observe is that the entries of the matrix Π are required

to be in (−1, 1). However, the Fisher z transform of the entries of Π are unconstrained and Figure

1(d) suggests a pattern that can be approximated by an (exponential) function α + β exp(−k), k =

1, · · · , p−1, with no constraints on (α, β) or another cubic polynomials in the lags. The least-squares

fits of a cubic polynomial and an exponential function to the correlograms in Figure 1 (c)-(d) are

summarized in Table 2. Note that fitting such models to the PACF amounts to replacing the

entries of the kth subdiagonal of the matrix Π by a single number and hence R is approximated by a

stationary (Toeplitz) matrix, see Lemma 1 and Theorem 2 below. In addition, this parameterization

also allows the marginal variances to be similarly modelled parsimoniously (as a function of time)

similar to the modelling of the prediction variances in Pourahmadi (1999). The maximum likelihood

estimation of the parameters and their asymptotic properties will be pursued in a future work.
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3 Priors for R via the partial autocorrelations

In addition to the advantages for formulating parsimonious models, the unconstrainedness of the

PACF suggests some approaches for constructing priors for R using independent linearly trans-

formed Beta priors on (−1, 1) for the PACF.

3.1 Independent priors on partial autocorrelations

Given that each partial autocorrelation is free to vary in the interval (-1,1), we may construct

priors for R derived from independent priors on the PACF. A natural option would be a uniform

distribution on the space of Π, i.e., a uniform distribution on the p(p−1)/2-dimensional hypercube;

we denote this prior as the independent uniform (IU) prior. This can be shown to induce the

following prior on the correlation matrix R:

p(R) ∝ [
p−1
∏

k=1

p−k
∏

j=1

(1 − π2
j,j+k)

p−1−k]−1/2. (8)

One can express the prior in (8) in terms of the marginal correlations, ρj,j+k by plugging in for

πj,j+k from (1). This prior induces a particular behavior on the marginal correlations. Specifically,

the priors on the (marginal) correlations ρj,j+k, become gradually more peaked at zero as the

lag k grows. As an illustration of this behavior, Figure 2 shows the histograms based on 10, 000

simulations from the uniform prior on the partial autocorrelations for p = 5. As the dimension

p of the correlation matrix grows, the priors become more peaked at zero for larger lags. This

can also be seen by examining the prior probability of being in some interval, say [−.5, .5], as a

function of the lag. For p = 15, the (averaged) probabilities, ordered from lag 1 to lag 14, are

respectively, (.50, .59, .65, .70, .73, .76, .78, .80, .82, .83, .84, .85, .86, .87). This would appear to be a

desirable behavior for longitudinal data which typically exhibits serial correlation decaying with

increasing lags.

It is also evident from Figure 2 that the priors for ρj,j+k with k fixed, appear to be the same

(see the subdiagonals). We state this observation more formally in the following theorem; see also

Lemma 1.
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Theorem 2. If the partial autocorrelations, πjk have independent stationary priors, i.e

p(πjk) = p(πil) if |j − k| = |i − l|, (9)

(or the priors are the same along the subdiagonals of Π), then the marginal priors on the correlations

ρjk are also stationary, i.e.

p(ρjk) = p(ρil) if |j − k| = |i − l|. (10)

(or the priors are the same along the corresponding subdiagonal of R).

Theorem implies that independent “stationary” priors on Π induce “stationary” priors on the

marginal correlations. Most priors we introduce here satisfy this property.

More generally, independent linearly transformed Beta priors on the interval (-1,1) for partial

autocorrelations are a convenient and flexible way to specify a prior for a correlation matrix R.

These priors, denoted by Beta(α, γ), have the density

p(ρ) =
1

2β(α, γ)
(
1 + ρ

2
)α−1(

1 − ρ

2
)γ−1. (11)

Interestingly, the uniform prior on the correlation matrix (Barnard et al, 2000) corresponds to the

following stationary Beta priors on the partial autocorrelations:

πi,i+k ∼ Beta(αk, αk), (12)

where αk = 1 + 1
2(p − 1 − k); see Joe (2006). We will refer to this prior as Barnard Beta (BB).

As noted in Barnard et al. (2000), such a prior on R results in the marginal priors for each of the

marginal correlations being somewhat peaked around zero (same peakedness for all ρjk). Also note

that the priors become more peaked as p grows.

In general, priors for the correlation matrix proportional to powers of the determinant of the

correlation matrix,

p(R) ∝ |R|αp−1 (13)

14



are constructed by setting αk = αp + 1
2(p − 1 − k) in (12). Priors so constructed are proper,

so improper priors like Jeffreys’ for a correlation matrix in a multivariate normal model, π(R) =

|R|−(p+1)/2, are not special cases.

3.2 Shrinkage behavior of the BB and IU priors

The IU priors on the PACF induce desirable behavior for longitudinal (ordered data) by ’shrinking’

higher lag correlations toward zero. The Beta priors in (12), which induce a uniform prior for R (BB

priors) place a uniform (-1,1) prior on the lag p − 1 partial autocorrelations and shrink the other

partial autocorrelations toward zero with the amount of shrinkage being inversely proportional to

lag. This induces the desired behavior on the marginal correlations, making their marginal priors

equivalent, but it is counter-intuitive for ordered/longitudinal data with serial correlation; in addi-

tion, the shrinkage of the lag one partial autocorrelations for the BB prior increases with p (recall

the form in (12)). In such data, we would expect lower lag correlations to be less likely to be zero

and higher lag correlations to be more likely to be zero. Thus, the independent uniform priors are

likely a good default choice for the partial autocorrelations in terms of inducing desirable behavior

on the marginal correlations and not counter-intuitively shrinking the partial autocorrelations. We

explore this shrinkage behavior further via some simulations in Section 3.5.

In addition, we expect many of the higher lag partial autocorrelations to be close to zero for

longitudinal data with serial correlation via conditional independence (see Table 1). To account

for this, we could (aggressively) shrink the partial autocorrelations toward zero (with the shrinkage

increasing with lag) using shrinkage priors similar to those proposed in Daniels and Pourahmadi

(2002) and Daniels and Kass (2001) or by creating such priors based on the Beta distributions

proposed here. We are currently exploring this.

3.3 Some other priors for a correlation matrix

Other priors for R have been proposed in the literature which cannot be derived based on inde-

pendent priors on the partial autocorrelations. For example, the prior on R that induces marginal

15



uniform (-1,1) priors on the ρij ’s (Barnard et al., 2000) has the form:

p(R) = |R|p(p−1)/2−1
p
∏

i=1

|R[−i,−i]|−(p+1)/2 (14)

where R[−i,−i] is the submatrix of R with the ith row and column removed and |R[−i,−i]| =

[R]−1
ii |R|. Such a prior might not be a preferred one for longitudinal (ordered) data where the same

marginal priors on all correlations (irrespective of lag) may not be the best default choice.

Eaves and Chang (1992) derived some related reference priors for the set of partial correlations,

π1,j for j = 2, . . . , p; however, their priors are not natural for longitudinal data. Chib and Greenberg

(1998) specified a truncated multivariate normal distribution on the marginal correlations. Liechty

et al. (2004) placed normal distributions on the marginal correlations with the goals of grouping

the marginal correlations into clusters. The latter two priors along with those in Wong et al. (2003)

for the full partial correlations (ρij) are highly constrained given that they model the marginal (or

full partial) correlations directly.

3.4 Bayesian Computing

An additional issue with modeling the correlation matrix is computational. Our development here

will focus on cases without covariates in the correlation matrix (this will be left for future work)

under the class of independent priors on the PACF discussed in Section 3.1. The proposal here might

be viewed as an alternative to the PX-RPMH algorithm in Liu and Daniels (2006) that explicitly

exploits the fact that we are modeling the partial autocorrelations themselves (a computational

comparison will be left for future work). However, our approach will naturally allow structures in

the partial autocorrelations which cannot be done when using current versions of the PX-RPMH

(or similar) algorithms; for example, if the partial autocorrelations are zero or constant within lag

since then the correlation matrix is highly constrained.

In the following, we assume the data, {Yi : i = 1, . . . , n} are independent, normally distributed

p-vectors with mean Xiβ and with covariance matrix Σ = R (a correlation matrix). A natural

way to sample the partial autocorrelations is via a Gibbs sampling algorithm in which we sample
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from the full conditional distributions of each of the partial autocorrelations. Given that the full

conditional distributions of the partial autocorrelations are not available in closed form there are

several options to sample them. We explore a simple one next.

We propose to use an auxiliary variable approach to sample each partial autocorrelation. Define

the likelihood for the partial autocorrelation, πjk as L(Π) and the prior as p(πjk). As in Damien

et al. (1999), introduce a positive latent variable Ujk such that

L(Π)p(πjk) =

∫ ∞

0
I{ujk < L(Π)}p(πjk)dujk. (15)

To sample πjk, we can proceed in two steps,

1. Sample Ujk ∼ Unif(0, L(Π)).

2. Sample p(πjk) constrained to the set {πjk : L(Π) > Ujk}.

Truncated versions of the priors proposed here, linearly transformed Beta distributions (of which

the uniform is a special case), can easily be sampled using the approach in Damien and Walker

(2001). The truncation region for step 2, given that the domain of πjk is bounded, can typically

be found quickly numerically. The likelihood evaluations needed to find the truncation interval can

be made simpler by using the determinant identity derived in Theorem 1.

In the following, we list several facts about the likelihood that are useful in computing the

marginal posteriors of individual πjk.

Fact 1. If we factor R−1 = CPC, where P is a correlation matrix and C is a diagonal matrix, the

elements of P are the full partial correlations, ρij (Anderson, 1984, Chapter 15).

Fact 2. To isolate the likelihood contribution of πj,j+k, we can factor the entire multivariate normal

distribution into p(yj, . . . , yj+k)p(yl : l < j or l > j + k | yj , . . . , yj+k). The (l, k) entry of

inverse of the correlation matrix, R[j : j + k] for the first factor is related to the partial

autocorrelation of interest (recall Fact 1).
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Fact 3. Using the determinantal identity in Theorem 1(b), the determinant of submatrices of R in

terms of partial autocorrelations can be written as a function of the partial autocorrelations,

|R[j : j + k]| =
k
∏

l=1

j+k−l
∏

i=j

(1 − π2
i,i+l). (16)

Extensions of these computational procedures to modelling the correlation matrix when the

matrix of interest is a covariance matrix is straightforward (see, e.g., Liu and Daniels, 2006).

3.5 Simulations

We now conduct some simulations in a longitudinal setting to

1. examine the mixing behavior of the auxiliary variable sampler here and

2. compare the risk of the IU prior to the BB prior, the standard default prior for a correlation

matrix.

In terms of the mixing of the Markov chain, the auxiliary variable sampler on the partial

autocorrelations works quite well, with the lag correlation in the chain dissipating quickly. For

example, for p = 5, n = 25, the lag correlations for each partial autocorrelation was negligible by

lag 10. Similar results were seen for other p/n combinations.

For our simulation, we consider three true matrices representing typical serial correlation, an

AR(1) with lag 1 correlation of .8 and one with lag correlation .6. Both these matrices have all

partial autocorrelation beyond lag 1 equal to 0. We also considered a matrix that had more non-zero

partial autocorrelations with lags 1,2,3,4 equal to (.8, .4, .1, 0) respectively; this corresponds to the

lag 1-4 marginal correlations being equal to (.8, .78, .73, .68). We consider two size matrices/sample

size combinations, p = 5 with n = 10, 25, 50, 100 and p = 10 with sample sizes, n = 20, 50, 100.

We also consider several loss functions, log likelihood (LL) loss, tr(R̂R−1) − log |R̂R−1| − p, with

Bayes estimator the inverse of the posterior expectation of R−1 and squared error loss on Fisher’s z-

transform of the partial autocorrelations, πjk (SEL-P) and the marginal correlations, ρjk (SEL-M),

with Bayes estimator the posterior mean (of the z-transformed correlations).
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For p = 5, the risk reductions from the IU prior are clear from Table 3, with percentage

reductions as large as 30% for n = 10, 25% for n = 25 and 15% for n = 50. For p = 10, the risk

reductions from the uniform prior are clear from Table 4, with percentage reductions as large as

50%. The largest risk reductions were for loss SEL-M (squared error loss on the Fisher’s z-transform

on the marginal correlations). The lower risk reductions for the first order autoregressive covariance

matrices are related to only the lag 1 partial autocorrelations being non-zero; so the shrinkage of

the BB prior for all the other partial autocorrelations is not unreasonable. Examination of squared

error loss for the partial autocorrelations by lag indicates large reductions for the lag 1 partial

autocorrelations and smaller increases for the other lag partial autocorrelations.

In addition, the estimates of the first order lag correlation themselves show large differences

(not shown). For AR(.8) with p = 10 and n = 50, the means were .75 under the IU prior and about

.70 under the BB prior with larger discrepancies for p = 5.

Some of the risk reductions from using the IU priors on the partial autocorrelations are small.

However, they come at no computational cost (unlike some priors for covariance matrices proposed

in the literature) and are consistent with prior beliefs about partial autocorrelations representing

serial correlation. The BB prior is not a good default choice due to its dampening effects on

the important lower order partial autocorrelations. Further risk improvement might be expected

through the use of more targeted shrinkage (Daniels and Pourahmadi, 2002).

4 Partial correlations in the behavior and social sciences

The models and priors for partial correlations are extremely important for many applications in-

volving longitudinal and functional data in the behavior and social sciences. In particular, modeling

longitudinal data using structural equation and factor analytic models (i.e., latent variable mod-

els in general) typically require careful modeling of correlation matrices (see e.g., Daniels and

Normand, 2006) as do multivariate probit models (Chib and Greenberg, 1998; Czado, 2000; Liu,

Daniels, and Marcus, 2009). The tools here provide both a general class of methods for using the

partial autocorrelations that allow parsimonious modeling of correlations via regression modeling
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and sensible priors on correlations within such models which is often essential in small to medium

sized datasets. Such modeling takes on even more importance in the presence of incomplete data

(Daniels and Hogan, 2008). In addition, the uniform priors on the partial autocorrelations rec-

ommended in Section 3 provide no additional computational challenges over standard priors for a

correlation matrix. Future work will illustrate these methods more fully in applications.

5 Discussion

Using the variance-correlation separation strategy, modeling a covariance matrix is reduced to that

of its correlation matrix R which has the additional constraint that all its diagonal entries must

equal to one. Though the Cholesky decomposition can handle the positive-definiteness, it cannot

be applied directly when there are additional constraints such as stationarity or constancy along

diagonals (Pourahmadi, 1999, Sec. 2.6), zero entries (Chaudhuri, Drton and Richardson, 2007) and

separable covariance structures (Lu and Zimmerman, 2005). The reparameterization in terms of

partial autocorrelations is shown to work well in the face of an additional constraint. It requires

ordering the variables which is not a problem for longitudinal and functional data, but might be

difficult to justify for other situations. Related work on trying to ’order’ data that does not have

a natural ordering can be found in Stein et al (2004) and Berger and Bernardo (1992). The long

history and successful use of the PACF in the time series literature provide valuable graphical and

analytical tools which can be generalized to the nonstationary setup.

Given the conditioning structure of the partial autocorrelations, we expect many of them to be

zero (see Table 1). Thus, it would be natural to adapt the approach in Wong, Carter, and Kohn

(2003) to zero out the partial autocorrelations. We might expect computational simplifications

given that the PACF are free to vary independently in [−1, 1] unlike the full partial correlations.

In addition, when constructing priors for the probability of a partial autocorrelation being zero,

the lack of exchangeability of the partial autocorrelations (vs. the full partial correlations) given

that they condition on different numbers of variables (i.e., only the intervening variables) must be

taken into account; such issues have been addressed in Liu et al. (2009) in a related setting.
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We will explore the computational efficiency of other proposals for Bayesian computing in

future work, including sampling all the partial autocorrelations together. In addition, we will derive

strategies for Bayesian inference when modeling Fisher’s z transform of the partial autocorrelations

as a function of covariates.
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106 0.82 0.07 -0.24 0.03 0.01 0.16 -0.06 0.26 -0.22 0.19
0.82 155 0.91 0.03 0.02 -0.23 -0.17 0.01 -0.01 -0.07 -0.25
0.76 0.91 165 0.93 0.07 -0.04 -0.12 0.01 0.09 0.21 0.03
0.66 0.84 0.93 185 0.94 0.23 -0.18 -0.2 -0.22 0.02 0.27
0.64 0.80 0.88 0.94 243 0.94 -0.04 0.07 -0.23 -0.08 0.16
0.59 0.74 0.85 0.91 0.94 284 0.93 0.56 -0.3 -0.09 -0.24
0.52 0.63 0.75 0.82 0.87 0.93 306 0.93 0.35 -0.24 -0.18
0.53 0.67 0.77 0.84 0.89 0.94 0.93 341 0.97 0.15 -0.28
0.52 0.60 0.71 0.77 0.84 0.90 0.93 0.97 389 0.96 0.2
0.48 0.58 0.70 0.73 0.80 0.86 0.88 0.94 0.96 470 0.98
0.48 0.55 0.68 0.71 0.77 0.83 0.86 0.92 0.96 0.98 445

Table 1: Cattle Data. Sample correlations (below the main diagonal), sample PACF (above the
main diagonal) and sample variances (along the main diagonal).

Lags 1 2 3 4 5 6 7 8 9 10

Fitted PACF 0.89 0.24 -0.09 -0.19 -0.15 -0.02 0.11 0.16 0.07 -0.26

Fitted z transf. -1.64 -0.49 -0.07 .09 0.15 0.17 0.18 0.18 0.18 0.18

Table 2: Fitted PACF from the least-squares fit of a cubic polynomial to the sample PACF (first
row) and the fitted Fisher’s z transform of PACF from the least-squares fit of an exponential
function of the lags (second-row).
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Table 3: Results for p = 5. Each row corresponds to n = 10, 25, 50, 100. IU: independent uni-
form priors; BB: Barnard Beta priors. LL: log likelihood loss; SEL-P: squared error loss on
Fisher’s z-transformation of the partial autocorrelations; SEL-M: squared error loss on Fisher’s
z-transformation of the marginal correlations. Full: matrix with lag 1-3 partial autocorrelations
equal to (.8, .4, .1) with the rest zero.

LL SEL-P SEL-M
R IU BB IU BB IU BB

AR(.8) 2.4 1.6 1.4 1.1 1.7 1.1
.69 .51 .48 .39 .55 .38
.27 .23 .20 .18 .22 .17
.11 .10 .09 .08 .09 .07

AR(.6) 1.1 .99 .89 .86 .98 .89
.48 .45 .41 .39 .46 .44
.23 .21 .19 .18 .19 .17
.11 .11 .10 .09 .10 .10

Full 2.7 1.9 1.8 1.3 2.8 1.8
.68 .50 .46 .35 .61 .38
.25 .20 .19 .16 .21 .15
.12 .11 .10 .09 .08 .07

Table 4: Results for p = 10. Each row corresponds to n = 20, 50, 100. IU: independent uni-
form priors; BB: Barnard Beta priors. LL: log likelihood loss; SEL-P: squared error loss on
Fisher’s z-transformation of the partial autocorrelations; SEL-M: squared error loss on Fisher’s
z-transformation of the marginal correlations. Full: matrix with lag 1-3 partial autocorrelations
equal to (.8, .4, .1) with the rest zero.

LL SEL-P SEL-M
R IU BB IU BB IU BB

AR(.8) 5.0 2.8 3.3 2.3 5.2 2.7
1.6 1.1 1.2 .88 1.7 .97
.60 .48 .49 .42 .52 .36

AR(.6) 2.4 2.2 2.1 2.1 2.2 1.9
.97 .85 .86 .79 .88 .71
.49 .45 .45 .42 .42 .36

Full 6.4 3.5 4.3 2.7 11.0 4.8
1.8 1.1 1.4 .94 2.9 1.3
.69 .52 .55 .45 .90 .50
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Figure 1: (a) Generalized sample correlogram for the cattle data, (b) Generalized inverse correlo-
gram, (c) Generalized partial correlogram, (d) Plot of Fisher z transform of the PACF.
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Figure 2: Marginal priors on ρjk from independent uniform priors on the partial correlations, πjk.
The subplots are arranged as the matrix R.
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