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Abstract: Generalized linear models with random effects and/or serial dependence are commonly used

to analyze longitudinal data. However, interpretation and computation of marginal covariate effects can

be difficult. Heagerty has proposed marginally specified logistic-normal models (1999) and marginalized

transition models (2002) for longitudinal binary and categorical data in which the marginal mean is modeled

explicitly in the presence of random effects and serial dependence, respectively. In this paper, we extend

his work to handle multivariate longitudinal binary response data by proposing a framework consisting of

a triple of regression models, which permits subject-specific inferences, while modeling the marginal mean

response taking into account dependence across time via a Markov structure and across responses within

a subject for a given time via random effects. Markov Chain Monte Carlo Methods, specifically Gibbs

sampling with Hybrid steps, are used to sample from the posterior distribution of parameters. Relative

and absolute model fit is assessed via DIC and posterior predictive checks, respectively. Methods are

illustrated on data from Iowa Youth and Families Project (IYFP), which contains both missing responses

and covariates.

Marginalized transition random effects models for multivariate longitudinal binary
data

Résumé : Generalized linear models with random effects and/or serial dependence are commonly used

to analyze longitudinal data. However, interpretation and computation of marginal covariate effects can

be difficult. Heagerty has proposed marginally specified logistic-normal models (1999) and marginalized

transition models (2002) for longitudinal binary and categorical data in which the marginal mean is modeled

explicitly in the presence of random effects and serial dependence, respectively. In this paper, we extend

his work to handle multivariate longitudinal binary response data by proposing a framework consisting of

a triple of regression models, which permits subject-specific inferences, while modeling the marginal mean

response taking into account dependence across time via a Markov structure and across responses within

a subject for a given time via random effects. Markov Chain Monte Carlo Methods, specifically Gibbs

sampling with Hybrid steps, are used to sample from the posterior distribution of parameters. Relative

and absolute model fit is assessed via DIC and posterior predictive checks, respectively. Methods are

illustrated on data from Iowa Youth and Families Project (IYFP), which contains both missing responses

and covariates.

1. INTRODUCTION
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Repeated measurements from the same subject observed over time are referred to as longitudinal
data. The within-subject measurements over time are typically not independent. When more
than one response is measured on each individual at each time (multivariate longitudinal data) a
second correlation is introduced, correlation among responses. This paper proposes a model for
multivariate binary data that directly models marginal covariate effects while taking these two
types of dependence into account.

There is a wealth of literature on modeling longitudinal data. Some recent articles and texts
include Verbeke & Molenberghs (2000), Pourahmadi & Daniels (2002), Diggle, Heagerty, Liang
& Zeger (2002), and Singer & Willett (2003). Models for multivariate binary data are a cur-
rently developing area with still limited literature. Some of the models proposed for multivariate
binary or categorical data use random effects models and/or latent variables to account for the
multivariate structure of responses (Bandeen-Roche, Miglioretti, Zeger & Rathouz 1997; Legler
& Ryan 1997). However, determination and computation of marginal covariate effects with these
models can be difficult. Agresti (1997) proposed models for multivariate, longitudinal binary data
that allow marginal inferences. However, these models only handle categorical covariates and do
not exploit the ordering implicit in longitudinal data. Geys, Molenberghs & Ryan (1999) used
pseudo-likelihood approaches for multivariate binary responses; the correlation structure in these
models is not well-suited to longitudinal data and marginal covariate effects are difficult to com-
pute. Ribaudo & Thompson (2002) built a three level model for multivariate longitudinal binary
data in the context of quality of life data. They introduced dependence via random effects and
directly modeled conditional (individual specific) covariate effects. Reboussin and Anthony (2001)
constructed latent class marginal models for multivariate longitudinal binary data with estimation
via estimating equations.

Generalized estimating equations (GEEs) are a semiparametric alternative (Liang & Zeger
1986) to full-likelihood based approaches. Missing at random (MAR) responses and/or covariates
can be handled by re-weighting (Robins, Rotnitzky & Zhao 1994, 1995). However, such approaches
are often inefficient compared to full likelihood based alternatives.

Our work here is most similar to that proposed by Fitzmaurice & Laird (1993), Heagerty (1999,
2002) and Miglioretti & Heagerty (2004) in that we propose a full likelihood based approach that
directly models marginal (population level) covariate effects. We describe this previous work below.
Fitzmaurice & Laird (1993) proposed a likelihood based method for multivariate binary data that
directly models the marginal mean. They used a marginal logistic model to explain the mean
structure and conditional log odds-ratios to model the time dependence. However, since the log
odds-ratios considered were conditioned on all observed responses, and not just on the history
(previous responses at a given time point), this model does not allow straightforward modeling of
longitudinal correlation structures.

Heagerty (1999, 2002) introduced marginally specified logistic-normal models and marginalized
transition models (MTM) for univariate longitudinal binary data. In both models, a marginal lo-
gistic regression was first specified for explaining the average response. The model was completed
by introducing a conditional regression that allows for the longitudinal, within-subject, depen-
dence, either via random effects or regressing on previous responses. These two regressions are
tied together by appropriately constraining the ’intercept’ parameters in the conditional regres-
sion model. Parameter estimation in both papers was handled by maximum likelihood and/or
estimating equations.

Recently, Miglioretti & Heagerty (2004) developed marginalized multilevel models for binary
data in the presence of time-varying covariates. The first level of this model was a marginal
logistic regression model. The second level included a transition model to account for a temporal
correlation within subjects plus a random effects term to incorporate correlation within a larger
cluster.

In this paper, we build on Heagerty’s work to handle multivariate longitudinal binary response
data. We separate the random effects and transition structure used in Miglioretti & Heagerty (2004)
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by introducing a third level of the model. Estimation in this model is handled by MCMC methods,
specifically Gibbs sampling with Hybrid steps (Neal 1996).

The use of a Bayesian approach to inference in these models provides several advantages. Under
certain assumptions (usually MAR), uncertainty arising from missing data can be incorporated via
Monte Carlo integration. For complex models like the ones proposed here, the Bayesian MCMC
machinery provides a computational advantage over maximum likelihood approaches. For example,
intermittent missing data can be addressed using a data augmentation step (Tanner & Wong 1987)
while working with full conditional distributions for the parameters conditional on the complete
set of data; intermittent missing data can complicate direct maximization of the likelihood and/or
maximization via the EM algorithm. In addition, the dependence structure can be much more
carefully modelled with potential efficiency gains over estimation done via estimating equations
(that essentially treat the dependence as a nuisance). Finally, exact (up to MC error) approaches
to inference can be done using the posterior distribution which avoids the need to use large sample
theory for inference.

The Iowa Youth and Families Project (IYFP) is a longitudinal study of 451 Iowa families. The
targets were 7-th graders, who along with their families were followed for more than eight years.
The IYFP aimed to investigate the effect of negative life and economic events and characteristics of
targets, such as their gender, on the emotional distress through the symptoms of anxiety, hostility
and depression. The dataset involved many challenges: multivariate repeated responses, both time
dependent and time independent covariates, and missing responses and covariates.

We introduce the model and approaches to handle the missing values and for model checking
in Section 2. Section 3 describes the motivating dataset from Iowa Youth and Families Project
(IYFP) in detail. In Section 4, results and comparisons with simpler approaches are presented.

2. MODEL

Multivariate longitudinal data introduces two kinds of correlation: a within-subject time depen-
dence and a within-subject multivariate response dependence; the latter corresponding to the
correlation between anxiety, hostility, and depression in the IYFP example. To take these two
types of dependence into account, we propose a framework consisting of a triple of regression
models: a marginal logistic regression to explain the mean response, a transition model to explain
within-subject time dependence for each response, and a random effects model for the multivariate
response structure at each time. In this section, we introduce the general model and provide details
for the first order model. Further model features and model checking are also discussed.

2.1 General model: MTREM(p)

Let Yitj be the jth response (j = 1, . . . , J) for the ith subject (i = 1, . . . , n) at time t (t = 1, . . . , T ),
and let Xitj be the corresponding set of covariates. Then, marginalized transition random effects
models, MTREM(p) is defined as,

logitP(Yitj = 1|Xi1j , ..., Xitj) = Xitj β, (1)
logitP(Yitj = 1|yi,t−1,j , ..., yi,t−p,j , Xi1j , . . . , Xitj) = ∆itj +

∑p
m=1 γitj,myi,t−m,j , (2)

logitP(Yitj = 1|yi,t−1,j , ..., yi,t−p,j , Xi1j , . . . , Xitj , bit) = ∆∗
itj + λjbit, (3)

where t > p, bit ∼ N(0, σ2
t ), and λ1 = 1 (for identifiability). We can re-write bit as bit = σtzi,

where zi ∼ N(0, 1); this will be used later. The logit transformation is defined as the logarithm of
the odds.

The first level given in (1) models the covariate effects on the population, i.e., marginal covariate
effects. The marginal regression coefficients β contrast the log odds of success for different values
of a covariate, Xitj , by averaging over individual variation, hence comparing subgroups. For
instance, we can compare the log odds of observing depression in females versus males. Typically
it is assumed that P (Yitj = 1|Xi1j , . . . , Xitj) = P (Yitj = 1|Xitj).
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For each of the j = 1, . . . , J outcomes, level 2 given in (2) captures the temporal (longitudinal)
dependence within the t = 1, . . . , T responses via a transition (Markov) model of order p. The term
∆itj is a subject/time/response specific intercept that takes into account the nonlinear relationship
between the logit of the conditional mean in (2) and the marginal mean in (1). This will become
more transparent when we introduce the constraints on ∆itj in the next subsection. The mth (of
p) transition parameters, γitj,m, are specific to subject i, at time t, for response j. We model these
parameters as γitj,m = αCitj,m for m = 1, ..., p, where Citj,m is a vector of subject/time/response
specific covariates that can differ by lag (order). This specification allows the transition parameters
to be shared across responses and time and also allows them to differ by subject-specific covariates.
With this formulation, we can, for instance, test whether last year’s response for subjects having
negative life events in the previous year has a differential effect on this year’s distress. Equations (1)
and (2) have the structure of J MTM’s (one for each response) although we do allow dependence
parameters and/or covariate effects to be shared across responses. In this specification, we assume
the longitudinal correlation is induced by the direct effect of the previous year’s responses for that
particular response type.

Level 3, given in (3), models the correlation among the J responses at each time, conditional on
the previous (in time) responses via random effects. The term ∆∗

itj is an intercept that connects (3)
to (2); this will be clarified in the next subsection. An approximation to the form of the correlation
among the J responses here can be obtained using a first order Taylor series (Goldstein & Rasbash
1996),

cor(yitj , yitj′) =
λjλj′σ

2
t πitj [1− πitj ]πitj′ [1− πitj′ ]√

(λ2
jπ

2
itj(1− πitj)2σ2

t + πitj(1− πitj))
√

(λ2
j′π

2
itj′(1− πitj′)2σ2

t + πitj′(1− πitj′))
,

where πitj = exp(∆?
itj)/(1 + exp(∆?

itj)). The interpretations of the λj and σ2
t is most easily

understood under the setting of πitj = πitj′ for all j and j′ and πitj = πit′j for all t and t′,
respectively. The parameter λj allows the dependence among the J responses at a given time to
vary; if λj = 1 for j = 2, . . . , J , then we are assuming equal correlation among the J responses,
conditional on the previous (time) responses. This correlation is allowed to change over time by
allowing the random effects variance, σ2

t , to vary with time. If σ2
t = σ2 for t = 1, . . . , T , we

are assuming this across response correlation is constant over time. This three-level specification
also induces some cross-response temporal dependence; we will explore this by examining such
correlations induced by the model in Section 4.

In the MTREM, we assume that the conditional mean of responses given the entire set of
covariates is equal to the conditional mean given the covariate history. That is, at a time point
t, E(Yitj |Xiqj , q = 1, ..., T ) = E(Yitj |Xisj , s ≤ t). This assumption is reasonable for exogenous
time-varying covariates but not necessarily for endogenous ones and is necessary for the validity of
the constraint equations introduced in Section 2.2. We refer the reader to Miglioretti and Heagerty
(2004) for an approach to deal with endogenous time varying-covariates in marginalized models
when this assumption does not hold. We will revisit this issue in the analysis of the example in
Section 4.3.

2.2 First order model: MTREM(1)

In this section, we provide some details specific to the MTREM(1). For higher order models
(p > 1), see the Appendix.
Initial state model

Since there is no history data available for the initial state (t = 1), we cannot use the second
level of the model which regresses on the responses at the previous time. We specify a simpler,
alternative model for t = 1. For the distribution of response at first time point, we assume the
following:
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logitP(Yi1j = 1|Xi1j) = Xi1jβ
∗

logitP(Yi1j = 1|Xi1j , bi1) = ∆∗
i1j + λ∗jbi1

where bi1 ∼ N(0, σ2
1), bi1 = σ1zi, and λ∗1 = 1. This model for the initial state has a similar form

to the marginalized logistic normal model introduced in Heagerty (1999), but here, the random
effects are scaled by λ∗j to account for the J differing responses. In addition, we do not require
β = β?, as in longitudinal data, more variability is expected at baseline, and marginal covariate
effects are often different than those at later times.
Constraints

The intercepts in the logistic regression on the conditional probabilities in (2) and (3), ∆itj

and ∆?
itj , are determined by the other parameters. To determine ∆itj , we solve the marginal

constraint equation formed from the connection between (1) and (2) (we suppress the dependence
on the parameters to simplify the expression of the constraints in the following). We use the
relation between the marginal (1) and conditional (2) probabilities and the assumption given at
the end of Section 2.1, E(Yitj |Xiqj , q = 1, ..., T ) = E(Yitj |Xisj , s ≤ t), to obtain

P (Yitj = 1|Xi1j , ..., Xitj) =∑
yi,t−1,j

P (Yitj = 1|yi,t−1,j , Xi1j , ..., Xitj)P (yi,t−1,j |Xi1j , ..., Xi,t−1,j)

which can be re-written as
eXitjβ

1+eXitjβ =
1∑

yi,t−1,j=0

e∆itj+γitj,1yi,t−1,j

1+e∆itj+γitj,1yi,t−1,j

eyi,t−1,jXi,t−1,jβ

1+eXi,t−1,jβ , (4)

to solve for ∆itj . For t = 2, the second term in the sum on the RHS of (4) is replaced by eyi1jXi1jβ∗

1+eXi1jβ∗

from the initial state model. Given ∆itj , we can solve for ∆∗
itj by forming the following convolution

equation from the connection between (2) and (3),
P (Yitj = 1|yi,t−1,j , Xi1j , ..., Xitj) =

∫
P (Yitj = 1|yi,t−1,j , Xi1j , ..., Xitj , bit)dF (bit)

which can be re-written as
e∆itj+γitj,1yi,t−1,j

1+e∆itj+γitj,1yi,t−1,j
=

∫
e
∆∗

itj+λjσtzi

1+e
∆∗

itj
+λjσtzi

φ(zi)dzi. (5)
To approximate this 1-dimensional integral, we use Gauss-Hermite quadrature. For t = 1, we
construct the convolution equation using the initial state model,

P (Yi1j = 1|Xi1j) =
∫
P (Yi1j = 1|Xi1j , bi1)dF (bi1)

eXi1jβ∗

1+eXi1jβ∗ =
∫

e
∆∗

i1j+λ∗j σ1zi

1+e
∆∗

i1j
+λ∗

j
σ1zi

φ(zi)dzi

These equations are all solved using Newton-Raphson methods. See the Appendix on the web page
(www.stat.ufl.edu/ ∼ mdaniels/research.html) or Ilk (2004) for details.
Posterior sampling

We construct a Gibbs sampling algorithm to sample from the posterior distribution of
(bit, β, β∗, α, λj , λ

∗
j , σt). The full conditional distributions for bit, β, β∗, and α are sampled using

Hybrid MC (Neal 1996). We chose the Hybrid algorithm over a standard random walk Metropolis-
Hastings since the Hybrid uses information from the gradient of the log full conditional distributions
to more efficiently move through the posterior space and since the gradients are available in closed
form (given in the web appendix). The full conditionals of (log(σ2

t ), λj) and (log(σ2
1), λ∗j ) are

sampled using Hybrid MC after the random effects are integrated out to facilitate convergence
(step 4. of the algorithm in Appendix A). The details of the entire algorithm are also given in
Appendix A. For details on the prior distributions specified for the example, see Section 4.2.
Missing responses and covariates

We used data augmentation (Tanner & Wong 1987) to handle missing responses within the
MCMC algorithm (for details, see Appendix A and B). To handle the missing covariates we ex-
tended some of the ideas in Ibrahim, Chen & Lipsitz (2002) to time-varying covariates. Their ap-
proach uses parametric models for the distribution of covariates by factoring the joint distribution
into a sequence of one-dimensional conditional distributions to accommodate missing covariates
that are continuous or categorical or both. See Appendix B for details on the covariates model
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and for the computational algorithm for data augmentation. In the rest of the manuscript, we
will refer to the model for the missing covariates as the X model. We mention that intermittent
missing data is computationally easy to handle under MAR in a data augmentation setup; in-
termittent missingness can create some computational problems within EM and Newton-Raphson
maximization approaches (see, e.g., Pourahmadi, Daniels & Park, 2006).

2.3 Further model features

The joint model specified in (1)-(3), allows for gains in efficiency by being able to model all J
responses together, potentially allowing covariate effects to be the same across responses as β is
not indexed by j (response) in (1). However, allowing for all the covariate effects to differ by
response can be accommodated through the design vector, Xitj , which can be specified such that
Xitjβ ≡ X?

itβj . The specification of (1) also permits lagged values of covariates to be included in
the model as necessary.

Similarly, in (2), allowing distinct transition parameters for each response j can be done through
appropriate specification of the design vector Citj,m or by reparameterizing the model as αjC

?
it,m.

The number of parameters in an MTREM(p) model is [(p + 1) ∗ (J − 1)] + [T ] + [r3 ∗ (T −
p) ∗ p + r3 ∗ (p − 1)] + [p ∗ r1 + r2] + [n ∗ T ], where r1 is the number of parameters in marginal
regression models, (1) for the initial state(s) model, r2 is the number of regression parameters in
the MTREM(p) excluding the initial state(s) model regression parameters, and r3 is the number
of columns in Citj,m in (2). The terms in square brackets correspond to the λ, σ, α, β and b,
respectively.

Through our specification, we have accounted for a complex dependence structure and im-
plemented an efficient sampling algorithm that at most requires evaluation of one-dimensional
integrals. We assess the adequacy of this specification using the methods discussed in the next
subsection.

2.4 Assessing model fit

2.4.1 Deviance Information Criterion

The Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde 2002)
can be used to choose among differing specifications of (2); for example, the order (p) or which
covariates to include in the C matrix. We define the parameters, θ, as all the parameters in (1)-
(3) and yobs as the observed response data. Specifically, let θ be (bit, β, β∗, α, λj , λ

∗
j , σt). Define

Dev(θ) = −2logLik(θ|yobs), θ̄ = E[θ|yobs], and Dev = E[Dev(θ)|yobs]. The DIC is formally defined
as Dev(θ̄) + 2 pD, where pD = Dev −Dev(θ̄). The MTREM(1) likelihood terms for subjects (i)
with no missing responses takes the form,

 ∏
t>1,j

exp((∆?
itj + λjbit)yitj)

1 + exp(∆?
itj + λjbit)

∏
j

exp((∆?
i1j + λ∗j bi1)yi1j)

1 + exp(∆?
i1j + λ∗jbi1)

.(6)

For individuals with missing responses, the likelihood will take a slightly different form. As an
example, consider T = 4 and that the responses are observed at times 2 and 4, but missing at time
3. The likelihood term for this subject would replace the term in brackets in (6) with

∏
j

1∑
yi3j=0

[
exp((∆?

i4j + λjbi4)yi4j)
1 + exp(∆?

i4j + λjbit)
exp((∆?

i3j + λjbi3)yi3j)
1 + exp(∆?

i3j + λjbi3)
]
∏
j

exp((∆?
i2j + λjbi2)yi2j)

1 + exp(∆?
i2j + λjbi2)

.(7)
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Note that in (7), ∆?
i4j depends on yi3j .

The missing covariates, which we did not include as “parameters”, necessitates a further modifi-
cation to the form of the DIC through the observed data likelihood. In particular, we approximated
the integration over the missing covariates by sampling a values from the X model and replacing
the likelihood above with Lik(θ) = 1

a

∑
xmis

Lik(θ|xmis); for details, see Appendix B.

2.4.2 Posterior Predictive Checks

Posterior predictive checks (Gelman, Carlin, Stern & Rubin 2003) can be used to check if the model
had adequately captured the correlation structure of the responses. We conduct these checks using
the following steps. For each iteration of the Gibbs sampler, we obtain a realization of θ and
ymis (from the data augmentation step). Given θ we draw a replicated full dataset, yrep from
the posterior predictive distribution conditional on θ; this involves sampling from independent
Bernoulli distributions with probabilities a function of θ. We compute two sets of q = 1, . . . , Q
statistics, Srep,q(·) and Sobs,q(·) at each iteration. The first set are evaluated at yrep and the
second at the observed data yobs supplemented with the current sampled values of ymis from
the data augmentation step (to obtain a complete dataset). The specific statistics, Srep,q(·) and
Sobs,q(·) used were the log odds ratio (LOR) evaluated for the Q =

(
TJ
2

)
pairs (yitj , yit′j′) to assess

the reasonableness of the association structure given in (2) and (3).
As a more parsimonious measure than the entire posterior predictive distributions, we also com-

pute posterior predictive p-values, the proportion of the association measures based on replicated
responses that were larger than or equal to the associations based on observed data (supplemented

with the replicated missing responses), given as number(Sq(yl
rep)≥Sq(yobs,yl

mis))

L , where L is the total
number of iterations, yl

rep is the realization at iteration l, l = 1, ..., L, yl
mis is the realization of

the missing data from the data augmentation step, and q = 1, . . . , Q indexes the specific LOR.
P-values less than 0.01 or larger than 0.99 were reported to be suspicious.

3. MOTIVATING EXAMPLE: IOWA YOUTH AND FAMILIES PROJECT (IYFP)

Briefly introduced in Section 1, the IYFP explores emotional distress of teenagers in Iowa families.
This section provides more information on this example and includes details on missing data.

3.1 Data

The Iowa Youth and Families Project was a longitudinal study which began in 1989 to help
understand the effect of economic hardship and social changes on family members and to help
improve family life in Iowa during such changes. Economic stress, such as that experienced in
rural parts of Midwest during 1980’s, and negative life events were expected to be related to
emotional distress.

Data used in this paper was part of 4-year follow up of 451 families from eight counties in north
central Iowa. Targets were selected to be seventh graders, with an average age of about 13 years
at the start of the project, with two married biological parents and with a sibling within four years
of age.

Three response variables of interest, anxiety, hostility and depression, were measured using a
symptom checklist. Responses were dichotomized as to whether the target was feeling at least one
of the physical symptoms of distress. Some of the symptoms for distress included nervousness or
shakiness, an urge to break things, or feeling low in energy.

Conger, Elder, Lorenz, Simons & Whitbeck (1994) stated that the farm crisis of 1980s had long
term effects on these families in terms of relationships and individual emotional status. We try
to account for this impact in the model by introducing random effects which induce dependence
between the three responses during each year and represent an ’overall’ measure of distress; see
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Level 3, (3). We allow these random effects to vary over time to reflect potentially unmeasured
factors which impact the components of distress for the targets. Conger et al. (1994) also concluded
that economic hardship caused daily hassles and hence distress on parents, which in turn affected
the well-being of their children through harsh parenting. The dependence in distress in the targets
(children) over time is modelled via the direct effects of the previous year(s) response for each
response individually; see Level 2, (2). We expect most of the correlation to result from the same
response at the previous year (or two). However, we pointed out in Section 2 that there is some
indirect cross-response temporal dependence induced by the model. There are alternative ways to
characterize this dependence. We will discuss these in Section 5.

To help explain the emotional distress, information from targets and their parents were col-
lected. From the targets, this included their gender and whether they experienced any negative
life events (NLE) in the last 12 months, such as having a close friend move away. Household infor-
mation included whether there were any negative economic events (NEE), such as changing jobs
for a worse one, and whether they needed to have cutbacks (Cutbacks), such as taking on a second
(part-time) job to help meet living expenses or changing residences to save money. Of interest was
the effect of these factors on the emotional distress of the cohort (population) as measured through
the anxiety, hostility, and depression outcomes. These questions are addressed by our model by
directly modelling the marginal (i.e., population level) effects of these covariates, Level 1, (1). For
more information about this project, see Elder & Conger (2000).

3.2 Missing responses and covariates

There were no missing data at baseline (1989). The percentage of individuals (i) with at least one
year of missing responses or covariates was 15%, so a complete case analysis of this dataset would
require the removal of 15% of subjects. There were both intermittent missingness and dropouts.
Of all the measured covariates (see Table 1), three of the time-varying covariates, NLE, NEE, and
cutbacks, were occasionally missing. The percentage of missingness in NLE, NEE, and cutbacks
was 7.3%, 7.9%, and 8.6%, respectively, over all years.

Earlier work by Lorenz, Simons, Conger, Elder, Johnson & Chao (1997) reported that there
were no differences in measured covariates or observed responses between those who dropped out
and those who completed the study. In addition, discussions with the investigators who collected
the data led us to believe that missingness was mostly related to relocation of subjects (such as
due to a job change) and was not related to subjects being more/less distressed. Therefore, we
assumed the missing responses were missing at random (MAR). However, with this full-likelihood
based approach, we can also evaluate results under MNAR mechanisms using sensitivity analyses
(Verbeke, Molenberghs, Thijs, Lesaffre & Kenward 2001; Daniels & Hogan 2000).

4. RESULTS

This section illustrates MTREM(1) and MTREM(2) on the IYFP data. Inferences using the
MTREMs are also compared with inferences from simpler models.

4.1 Sampling algorithm details

Initial estimates for the sampling algorithm for the marginal regression coefficients in (1) were
obtained by fitting independent logistic regression models in SAS. To assess convergence, we ran
several chains with different starting values. All the chains converged to the same region of the
parameter space.

To deal with missing covariates, we first ran the X model to impute 1,000 sets of covariates,
and randomly picked five of these. Then, we ran five separate Gibbs sampling algorithms for the
Y model (the Y model refers to the MTREM(p) given in Section 2, conditional on a full set of

8



covariates), each for 2,100 iterations and discarded the first 100 in each chain as burn-in. The use of
Hybrid MC facilitated fast convergence. Every fifth sample was retained to avoid autocorrelation
problems.

4.2 Prior distributions

We specified diffuse proper priors for β, β∗ and α; multivariate normal distributions with means
of 0 and large variances σ2

βI, σ
2
β∗I and σ2

αI respectively. More informative priors were specified
for λ and λ∗, normal distributions with mean 1 and variance 2. The priors were centered at the
value 1 corresponding to ’equal correlation’ among the responses at a given time, see (3). We chose
the variance of 2 to reflect a (weak) prior belief towards equicorrelation among the J responses;
however, the results were not very sensitive to the specification of the variance. The priors for
σ2

t were proportional to 1
(1+σ2

t )2
, which places positive probability at σ2

t = 0 (no multivariate
dependence, see (3)) and is on a similar scale to λj (the prior has a median of 1).

These were the specific priors chosen for our analysis of the IYFP data using the MTREM.
Other choices of priors can be made and will not further complicate the sampling algorithm.

4.3 Models

Individual-level covariates, Xitj included in the marginal mean in (1) for all four models are given
in Table 1. Experts were consulted to assist in choosing these covariates. To avoid multicollinearity,
some of the variables collected were not included into model. For example, material needs, which
is another economic pressure measure, was highly correlated with cutbacks, and it was excluded.

To check the exogeneity assumption for the time-varying covariates (negative life and economic
events and cutbacks), we regressed them on the history of those covariates and previous responses,
adjusting for baseline covariates (gender) and time. We found that none of the time varying
covariates were predicted by responses; in particular, the confidence intervals for all the odds
ratios covered one.

Ultimately, we fit and compared four models. Models I and II were MTREM(1)’s and Models
III and IV were MTREM(2)’s. In Models I and III, the transition parameters were the same
across responses (j), so Citj,m = Cit,m which implies γitj,m = γit,m. Models II and IV removed
this restriction and included indicators of the type of response (j) in Citj,m, effectively allowing a
separate ’transition’ (dependence) parameter for each type of response. Specifically, for Models I
and III, Cit,m = 1, whereas, for Models II and IV, Citj,m = [1, Resp1itj , Resp2itj ], where m = 1
for Model II and m = 1, 2 for Model IV.

4.4 Model Fit

The DIC values for the models I through IV were 3487, 3572, 3452, 3409 respectively. Model IV
had the smallest DIC indicating the best fit among the four models. The corresponding pD values
are 618, 653, 596, 576 respectively. We point out that Models III and IV, which on the surface
seem to have more parameters than Models I and II (see section 2.3), have fewer effective number
of parameters, i.e., smaller pD’s. This reduction in the effective number of parameters in Models
III and IV was most likely a by-product of adding the 2nd order dependence (p = 2) in (2) in
our data example; this resulted in more explained variability and thus, fewer effective number of
random effects.

To further examine the better fit of Model IV (vs. Model III), Model IV had important
parameters not included in Model III. For example, the dependence parameters from regressing
the responses in 1991 (t = 3) on the two previous years’ responses, differed between whether the
response was depression or anxiety; in Table 5, see α3,1;2 which has a posterior mean of 1.26 and
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a 95% credible interval of (.15,2.6), which excludes zero [find this notation defined in the caption
of Table 5].

Posterior predictive checks for all four models were carried out by methods described in Section
2.4.2. Figures and tables are not shown due to space limitation. The p-values and the distributions
of some of the the statistics for the posterior predictive checks indicated some problems in model
fit, even for the best model, Model IV. In particular, the model appeared to have some trouble
capturing the temporal correlation, especially with the hostility and anxiety responses at the later
times. Four out of eighteen p-values calculated for associations in the second level of Model IV
were outside (.01,.99). For example, the distribution of the log odds ratios for the probability of
hostility in 1991 versus 1990 indicated that the observed (supplemented with the missing responses
at each iteration) log odds ratios were consistently higher than the predicted ones under the model.
However, even for the the most extreme discrepancies, as quantified by the posterior predictive
p-values, the actual log odds ratios were never far apart in relative magnitude. We will discuss
possible model expansions to account for this lack of fit in Section 5. The third level of the model
captured the correlation structure of data adequately with p-values ranging from 0.104 to 0.603.

4.5 Parameter estimates and interpretations

Results from Model IV, the best fitting model, are given in Tables 2-5. Note that 95% interval
estimates are not necessarily symmetric around the posterior mean as the (Bayesian) inference
here does not rely on large-sample theory. In the next subsection, we report on inference on the
quantities of interest as outlined in Section 3 using Model IV.

4.5.1 Inference on quantities of interest

At baseline (1989), the parameters corresponding to gender, negative life events, cutbacks, and neg-
ative economic events were not significant. However, the coefficients that allowed the probabilities
for each of the three types of responses to differ were significant. Specifically, exp(β∗Resp1) had a
posterior median of exp(−2.13) = 0.12 with a 95% credible interval of (0.03, 0.43), and exp(β∗Resp2)
had a posterior median of exp(−1.65) = 0.19 with a 95% credible interval of (0.05, 0.71). These
indicated that the probability of a subject being depressed was higher than having either anxiety
or hostility.

In 1990, the effect of gender on distress was significant and differed among the three measures
of distress. The odds of depression for females were exp(1.2) = 3.32 times higher than males, with
a 95% credible interval of (1.7, 6.3). Moreover, females were exp(1.2−0.9) = 1.35 times more likely
to feel anxious, and exp(1.2 − 0.88) = 1.38 times more likely to feel hostile compared to males.
There was also a significantly lower probability of distress among individuals with no negative
life events (posterior medians of exp(β̃NLE1) and exp(β̃NLE2) were 0.38 and 0.18, with credible
intervals (0.13, 1.01) and (0.07, 0.43) respectively). The effects of negative economic events and
cutbacks were not significant.

In the last two years (1991 and 1992), the parameter corresponding to gender (exp(βgender))
had a posterior median of 2.69 and a 95% credible interval of (1.68, 4.31) again indicating females
were more likely to feel depressed. Similarly, females were 1.84 and 1.48 times more likely to feel
anxious and hostile, respectively. The coefficients for negative life events, exp(βNLE1) (posterior
median of 0.47 and 95% credible interval of (0.21, 0.97)) and exp(βNLE2) (posterior median of
0.33 and 95% credible interval of (0.19, 0.53)) indicated that distress was significantly lower for
individuals with no negative life events. The effects of negative economic events and cutbacks were
not significant.

4.5.2 General observations

Marginal covariate effects
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The marginal covariate effect estimates (β̂ and β̂∗) under Model II were close to the estimates
under Model I; the same was observed with Model III and Model IV estimates (note that only
results for Model IV are shown in the tables; results for Models I, II and III are available from
the authors upon request). That is, the parameter estimates for (1) appeared relatively insensitive
to the change in the parameters in (2). Heagerty (2002) proved that β and α are orthogonal in
MTM(1)’s, and hence marginal parameter estimates are consistent regardless of possible misspec-
ification of second level model (although posterior standard deviations or credible intervals will
be incorrect). Since the first two levels of MTREM(1) are essentially MTM(1)’s, we might expect
similar robustness. This was also supported by work by Heagerty & Kurland (2001) who demon-
strated via simulations that marginalized models result in smaller bias in estimates of marginal
regression coefficients. Such robustness for MTREMs will be explored in more detail in future
work.
Dependence

There was clearly strong, and differential temporal and cross-response dependence in both
Levels 2 and 3 (see Table 5). We provide some examples below.
Level 2 dependence:

The parameters that capture the temporal dependence, α, changed slightly from one year to
another, were significant at lags of two years, and were significantly different from zero overall.
For example, for depression, the coefficient for regressing depression in 1992 (t = 4) on depression
in 1990 (t = 2), (α4,2;1) had a posterior mean of 0.71 and a 95% credible interval of (.36, 1.11)
indicating strong temporal dependence even at lag two. In addition, the difference between the
lag two transition parameter in 1991 for hostility versus depression (α3,1;3) was significant with a
posterior mean of 1.27 and a credible interval of (.12, 2.49), indicating stronger temporal correlation
for hostility.
Level 3 dependence:

λ? and λ̃ showed no evidence of the pairwise associations differing between anxiety, hostility,
and depression (all credible intervals covered 1; see Tables 2-3). However, in 1991 and 1992, λ3

(posterior mean of 2.1 and 95% credible interval of (1.2, 3.45)) indicated the association between
hostility and depression was higher than the other pairwise associations (Table 5). In addition, the
variability of the random intercepts at each time, σ2

t , was smaller in 1991 and 1992 (t = 3, 4) than
in 1989 and 1990 (t = 1, 2). This corresponds to a weaker association among the three responses
at each time; to see this more clearly, refer back to the approximate form of the correlation, which
is a function of λj and σ2

t , in Section 2.1.
There was also some cross-response temporal association captured by the model (as discussed

in Section 2.1). We computed posterior predictive p-values on these associations and found the
model captured these associations well with only one p-value outside (.01,.99).

4.6 Comparison with MTM’s

To assess the importance of modelling the multivariate dependence between the three responses,
we also fit several MTM models (i.e., MTREM’s without Level 3). In particular, we fit Model II
and Model IV without Level 3. We also fit independent MTM(1) and MTM(2) for each of the
three responses separately. The DIC of all these models suggested a much poorer fit; the DIC
values ranged from 4149 for the Model II MTM to 4324 for independent MTM(1)’s. In addition,
the posterior predictive p-values for these models were much more extreme than the results for the
MTREM’s even for the within response temporal log odds ratios.

The posterior means and standard deviations for the three independent MTMs (one for each
of anxiety, hostility, and depression), along with the Model IV results, are given in Tables 2-5.
We point out that there were identifiability problems for the initial state model for the MTM for
depression with several covariates. As a result, the results of the initial state model for depression
were not included in Table 2.
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There were considerable differences in the posterior mean and standard deviations between the
Model IV MTREM and the independent MTMs. For example, the posterior standard deviation for
negative life events coefficients (NLE1 and NLE2) for 1989 (Table 2) were considerably smaller in
the MTREM which pooled these coefficients across the three responses. Similar results were seen
for the other coefficients and for the other years. In addition, there were considerable decreases in
the posterior standard deviations of the dependence parameters in (2). For example, in Table 3,
the coefficient for depression, α21 was 50% smaller in the MTREM versus the independent MTM
for depression. Similar results were seen for the depression association parameters in Table 5.

These large differences in posterior standard deviations provides further justification for fitting
the more complex MTREM beyond its ability to more accurately capture the dependence in this
dataset as reflected in the DIC and the posterior predictive checks.

5. CONCLUSIONS AND DISCUSSION

We have proposed a full-likelihood based approach for multivariate longitudinal binary responses
that directly models marginal means as function of covariates while accounting for longitudinal and
multivariate correlation. Temporal (longitudinal) dependence was included via transition models
and cluster (multivariate) correlation from the multivariate response at each time was captured
via random effects. The model allowed for both baseline and exogenous time-varying covariates.
Smaller estimates of variability were expected by modelling the binary longitudinal responses
jointly and by allowing effects/parameters to be shared across responses. This can be seen by
comparing the MTREM results to the independent MTM’s.

Intermittent and dropout missing values in responses were handled by data augmentation and
missing time-varying covariates were modeled using a parametric approach that accounted for the
time-varying structure of the covariates.

Calculations and analyses in this paper were introduced for p = 1 and p = 2, i.e., first and
second order Markov models. Extension to higher orders is possible. Another interesting ex-
tension would be to introduce temporal dependence in the random effects (bi ∼ N(0,Σ), where
bi = (bi1, . . . , biT )T ) and/or cross-temporal dependence between responses (e.g., extend Level 2 for
p = 1 to P (Yitj |Yi,t−1,j , Yi,t−1,j′)). This might help to capture the temporal correlation not cap-
tured by the current model. Another possibility would be to remove (2) and the λj and introduce
J × T vectors bi in (3) with distribution bi ∼ N(0,ΣJ ⊗ ΣT ). However, the efficient sampling
algorithm proposed here would require the evaluation of high-dimensional integrals. Such models
are beyond the scope of this paper and left for future work both in terms of exact model specifi-
cation and development of efficient algorithms to sample from the posterior distribution. A final
extension/addition to the model would be to introduce a random intercept, bij in (2) to better
account for long range temporal dependence within response (Schildcrout and Heagerty, 2005) or
to assume the time-specific random intercept in (3), bit is fixed over time, bi.

The first author is in the process of preparing the complex code for fitting these models via a
Fortran program to be posted at www.stat.ufl.edu/∼mdaniels/research.html.

APPENDIX

A: Details on sampling from posterior distribution of parameters in MTREM(1)
Computational Algorithm for p=1

Let θ be the vector of all parameters in the model, i.e. (bit, β, β∗, α, λj , λ
∗
j , σt). Also, let θ−δ be

the vector of all parameters except δ. The following algorithm was used to obtain a sample from
the posterior distribution of θ.
1. Assign starting values to θ.
2. Calculate ∆itj from the marginal constraint equation (4) using Newton-Raphson.
3. Calculate ∆∗

itj from the convolution equations (5) using Newton-Raphson and Gauss-Hermite
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Quadrature.
4. Sample from the full conditional for (log(σ2

t ), λj , bit) using the following two steps:
a. Integrate out bit by Gauss-Hermite Quadrature (1-dimensional integration), and

sample (log(σ2
t ), λj |θ−(b,σ,λ), Y ) by using Hybrid MC. Update ∆∗

itj for t ≥ 2.
b. Sample from the full conditional of bit using Hybrid MC.

5. Sample from the full conditional for (log(σ2
1), λ∗j , bi1) using the following two steps:

a. Integrate out bi1 by Gauss-Hermite Quadrature (1-dimensional integration), and
sample (log(σ2

1), λ∗j |θ−(b,σ,λ∗), Y ) using Hybrid MC. Update ∆∗
i1j .

b. Sample from the full conditional of bi1 using Hybrid MC.
6. Sample from the full conditional of β using Hybrid MC. Update ∆itj and ∆∗

itj for t ≥ 2.
7. Sample from the full conditional of β∗ using Hybrid MC. Update ∆i2j , ∆∗

i1j , and ∆∗
i2j .

8. Sample from the full conditional of α using Hybrid MC. Update ∆itj and ∆∗
itj for t ≥ 2.

9. Repeat steps 4 through 8. Continue until convergence.

Steps 4-8 constituted the Gibbs sampling algorithm to sample from posterior distribution of θ.
Convergence was assessed by running multiple chains and examining trace plots of a subset of the
parameters.

The calculation of ∆itj and ∆∗
itj as a function of the other parameters and the corresponding

derivatives was quite involved and can be found at the following web page: www.stat.ufl.edu/∼mdaniels/research.html
or in Ilk (2004). The full conditional distributions used in the above algorithm and the derivatives
needed for the Hybrid MC algorithm can also be found there.

B: Details on missing responses and covariates in MTREM(1)
In the IYFP data, we had missingness in the following covariates: Xitj3, Xitj4, Xitj5, Xitj6,

Xitj7 (see Table 1). To deal with missing covariates, the likelihood was first partitioned as
P (Y |X, θ)P (Xmis|Xobs, ψ) and inferences for θ were based on

p(y|xobs, θ) =
∫
p(y|X, θ)p(Xmis|Xobs, ψ)dXmis ≈

1
a

∑
xmis

p(y, xmis|Xobs, θ)

where a values of Xmis were sampled from p(xmis|xobs, ψ). So, we are using a ’multiple imputation’
approach to approximate this integral. In principle, there could be gains in efficiency by using the
information in Y to inform about X, but this was not practical computationally (see Ilk, 2004).
Computational Algorithm for Data Augmentation:

As previously, let θ be the parameters in the Y model, p(y|x, θ) and ψ be the parameters related
to joint distribution of covariates, p(Xmis|Xobs, ψ). The steps of the algorithm are:
1. Set k=0. Set starting values for Yitj,mis, Xitj,mis, ψ, θ.
2. Run the X model, Xitj,mis|Xitj,obs, ψ, for 1000 iterations, and randomly select 5 sets of X
matrices.

Specifically, repeat these two steps, a. and b., for 1000 iterations after burn-in:
a. Sample X(k+1)

itj,mis from its full conditional (see below for details).
b. Sample from the full conditional distribution of ψ(k+1) by Hybrid MC.

3. Sample Yitj,mis|Xitj , Yitj,obs, θ by the following steps:
a. Set l = 2.
b. Calculate ∆∗

ilj (which uses Yil−1j) and pilj = P (Y (k+1)
ilj,mis = 1|Yimj ;m 6= l; θ). If the missing

cases are dropouts, then pilj = e
∆∗

ilj+λjbil

1+e
∆∗

ilj
+λjbil

. If they are intermittent missing, then pilj is

( e
∆∗

ilj+λjbil

1+e
∆∗

ilj
+λjbil

e
yil+1j(∆∗

il+1j+λjbil+1)

1+e
∆∗

il+1j
+λjbil+1

)/( e
∆∗

ilj+λjbil

1+e
∆∗

ilj
+λjbil

e
yil+1j(∆∗

il+1j+λjbil+1)

1+e
∆∗

il+1j
+λjbil+1

+ 1

1+e
∆∗

ilj
+λjbil

e
yil+1j(∆∗

il+1j+λjbil+1)

1+e
∆∗

il+1j
+λjbil+1

).

c. Generate u from Uniform(0,1). If u ≤ pilj , then set Yilj,mis=1, otherwise, set Yilj,mis = 0.
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d. Set l = l + 1. Go back to step 3b. Repeat until responses at all time points are imputed.
4. Sample from the full conditional distribution of θ(k+1). This is the Gibbs sampling step described
in Section A.
5. Set k = k + 1. Go back to step 3. Continue until convergence.
Model for the missing exogenous time-varying covariates

At baseline, there were no cases with missing covariates. For t>1, Ibrahim et al.’s (2002) work
was extended to include the previous time covariate information. We describe this next. For sim-
plicity of notation, the indices i and j were suppressed. LetXt = (Xt2, Xt3, Xt4, Xt5, Xt6, Xt7, Xt10, Xt11)
and Xt−1 = (Xt−1,3, Xt−1,4, Xt−1,5, Xt−1,6, Xt−1,7). Note that Xt−1,2, Xt−1,10 and Xt−1,11 are ab-
sent in the vector Xt−1. These covariates are either baseline covariates and/or indicators of time
and thus implicitly are already included in Xt.

Under a Markov assumption, the joint distribution of covariates can be factored as
P (X2, . . . , XT |ψ) = P (X3|X2, ψ)P (X4|X3, ψ) · · ·P (XT |XT−1, ψ)

Then, each component can be factored as
P (Xt|Xt−1, ψ) = P (Xt3, Xt4|Xt2, Xt,10, Xt,11, Xt−1, ψ3)P (Xt5|Xt2, Xt3, Xt4, Xt,10, Xt,11, Xt−1, ψ5)

∗P (Xt6, Xt7|Xt2, Xt3, Xt4, Xt5, Xt,10, Xt,11, Xt−1, ψ6) (8).
To sample from the joint distribution of Xitj , the following method was used. Since missing
covariates are observed only on NLE (3 levels), NEE (2 levels), and cutbacks (3 levels), we have
3*2*3=18 possible sets for the missing covariate. We explicitly calculated the probability of each
of these 18 possible combinations for each individual and sampled one of them; note, Xitj,mis =
Xitj′,mis for all j and j′.

For the missing covariates with three ’ordered’ levels (i.e. NLE and cutbacks), we used pro-
portional odds models. For the missing covariates with two levels, we used logistic regression
models. For the form of these regressions, see the web appendix. Priors for ψ were assumed to be
independent and identically distributed normals with 0 mean and large variance.

The order of conditioning in (8) is arbitrary and may impact inferences. Ibrahim et al. (2002)
examined the sensitivity to ordering and concluded that posterior inferences of ψ are generally
quite robust to the ordering. For this analysis, there were five other possible orderings. Sensitivity
of inferences to this ordering is left for future work.

C: Second order model, MTREM(2)
Some details on the initial states model (t = 1, 2) for the MTREM(2) are given here. We

assumed a marginally specified logistic-normal model for t = 1, as we did for the MTREM(1), and
an MTREM(1) for t = 2. Specifically, for t = 1, we assume

logitP(Yi1j = 1|Xi1j) = Xi1jβ
∗

logitP(Yi1j = 1|Xi1j , bi1) = ∆∗
i1j + λ∗jbi1

For t = 2, we specify the following model,
logitP(Yi2j = 1|Xi1j , Xi2j) = Xi2j β̃
logitP(Yi2j = 1|yi1j , Xi1j , Xi2j) = ∆i2j + γ̃i2j,1yi1j

logitP(Yi2j = 1|yi1j , Xi1j , Xi2j , bi2) = ∆∗
i2j + λ̃jbi2

λ∗1 and λ̃1 are again set to be 1 for identifiability. Details for fitting these are given in the web
appendix. Note that we allow the coefficients for these two component models, β? and β̃ to differ
from β for reasons similar to those given in the discussion of MTREM(1) in Section 2.2.
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Table 1: Individual- and household-level covariates included in (1). p refers to the order of the
MTREM

Variable Notation Description

Gender Xitj2 1= male, 2 = female

NLE Xitj3,Xitj4 whether subjects experienced any negative life events in the
last 12 months.
(Xitj3 : 1 if they didn’t have any negative events; 0 o.w.,
and Xitj4 : 0 if they had lots of negative events; 1 o.w.)

NEE Xitj5 whether the household had any negative economic events
(Xitj5 : 0 = no, 1= yes)

Cutbacks Xitj6,Xitj7 whether the household had any financial cutbacks
(Xitj6=1 if they had no cutbacks; 0 o.w. and
Xitj7=0 if they had more than 5 cutbacks last year; 1 o.w.)

Response Xitj8, Xitj9 Resp1 (Xitj8=1 if response=anxiety; 0 o.w.),
Resp2 (Xitj9=1 if response=hostility; 0 o.w.)

Time Xitj10, Xitj11 For p=1,
Time1 (Xitj10=1 if Year=1991; 0 if Year=1990,1992),
Time2 (Xitj11=1 if Year=1992; 0 if Year=1990,1991)

For p=2,
Time (Xitj10=1 if Year=1992; 0 if Year=1991)

NLE*NEE Xitj12, Xitj13 interaction effects of NLE1*NEE and NLE2*NEE

Gender*Response Xitj14, Xitj15 interaction effects of gender*Resp1 and gender*Resp2

Response*Time Xitj16, Xitj17, interaction effects of Resp1*Time1, Resp1*Time2,
Xitj18, Xitj19 Resp2*Time1, and Resp2*Time2
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Table 2: Posterior summaries for parameters in Model IV and independent MTMs for baseline
(1989). The MTM for the depression response did not converge so the results are not reported
in the table. As a result, the posterior means and standard deviations for Resp1 and Resp2 and
Gender*Resp1, Gender*Resp2 correspond to the anxiety and hostility specific coefficients, not the
differences between these coefficients and the depression ones.

Model IV Anx Host Depr

posterior posterior posterior posterior
Baseline 2.5% 50% 97.5% mean SD mean SD mean SD mean SD

Inter 1.64 2.03 2.47 2.04 0.2 — —
Resp1 -3.51 -2.13 -0.85 -2.13 0.68 1.75 0.15
Resp2 -2.91 -1.65 -0.34 -1.63 0.66 1.71 0.14
Gender -1.48 -0.61 0.14 -0.62 0.41 — —
Gender*Resp1 -0.04 0.72 1.5 0.72 0.39 0.1 0.27
Gender*Resp2 -0.37 0.41 1.15 0.4 0.38 -0.17 0.27
NLE1 -3.07 -1.14 0.69 -1.13 0.97 -1.85 1.48

-0.78 1.41
— —

NLE2 -1.18 -0.5 0.17 -0.49 0.36 -0.88 0.47
-0.15 0.43

— —
NEE -0.42 0.31 1.03 0.31 0.36 0.04 0.47

0.32 0.41
— —

Cuts1 -1.02 -0.37 0.24 -0.38 0.31 -0.44 0.35
-0.3 0.39

— —
Cuts2 -0.19 0.3 0.76 0.3 0.25 -0.05 0.31

0.54 0.3
— —

NLE1*NEE -1.36 0.81 2.79 0.78 1.08 0.88 1.61
1.2 1.62

— —
NLE2*NEE -1.2 -0.32 0.52 -0.32 0.46 0.01 0.58

-0.48 0.54
— —

log(σ2
1) 0.72 1.36 2.13 1.39 0.37

λ∗2 0.73 1.46 3.23 1.58 0.61
λ∗3 0.73 1.37 3.24 1.5 0.63
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Table 3: Posterior summaries for parameters in Model IV and the independent MTMs for 1990.
We again introduce new notation for the α parameters; α21 corresponds to regressing the response
at time 2 on the previous response for depression, α21 +α22 for anxiety, and α21 +α23 for hostility.

Model IV Anx Host Depr

posterior posterior posterior posterior
Time=2 2.5% 50% 97.5% mean SD mean SD mean SD mean SD

Inter 1.29 1.61 1.95 1.61 0.17 2.01 0.18
Resp1 -0.17 0.76 1.62 0.76 0.45 -0.5 0.24
Resp2 -0.23 0.66 1.5 0.65 0.45 -0.68 0.22
Gender 0.53 1.2 1.84 1.19 0.33 1.2 0.31
Gender*Resp1 -1.5 -0.9 -0.26 -0.9 0.32 -0.87 0.4
Gender*Resp2 -1.48 -0.88 -0.24 -0.87 0.31 -0.78 0.39
NLE1 -2.07 -0.97 0.01 -0.98 0.52 -1.33 0.76

-1.54 0.75
-0.33 0.94

NLE2 -2.69 -1.7 -0.85 -1.72 0.47 -2.8 0.87
-1.21 0.51

-1.13 0.61
NEE -1.45 -0.35 0.61 -0.37 0.53 -1.4 0.91

-0.08 0.61
0.32 0.75

Cuts1 -0.76 -0.26 0.26 -0.26 0.26 0.04 0.32
-0.57 0.31

-0.33 0.38
Cuts2 -0.28 0.19 0.66 0.19 0.24 0.03 0.3

0.4 0.3
0.1 0.36

NLE1*NEE -0.9 0.34 1.66 0.34 0.64 1.11 0.92
0.55 0.88

0.39 1.15
NLE2*NEE 0.04 1.04 2.2 1.08 0.55 2.03 0.94

0.73 0.66
0.28 0.8

α21 0.56 0.97 1.4 0.98 0.22 1.02 0.46
α22 -1.1 -0.19 0.67 -0.19 0.45 -0.08 0.55
α23 -0.57 0.32 1.25 0.33 0.46 0.61 0.55
log(σ2

2) 0.52 1.27 2.14 1.29 0.41
λ̃2 0.54 1 1.92 1.06 0.35
λ̃3 0.82 1.66 3.86 1.85 0.78
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Table 4: Posterior summaries for parameters in (1) for Model IV and the independent MTMs for
1991 and 1992.

Model IV Anx Host Depr

posterior posterior posterior posterior
Time> 2 2.5% 50% 97.5% mean SD mean SD mean SD mean SD

Inter 1.18 1.41 1.63 1.41 0.11 2.03 0.13
Resp1 -0.78 0.03 0.72 0.02 0.38 -0.08 0.16
Resp2 -0.38 0.37 1.04 0.35 0.36 -0.08 0.16
Gender 0.52 0.99 1.46 0.98 0.24 0.99 0.23
Gender*Resp1 -0.86 -0.38 0.17 -0.37 0.26 -0.37 0.3
Gender*Resp2 -1.06 -0.6 -0.12 -0.59 0.24 -0.59 0.3
Time -0.21 0.21 0.68 0.22 0.23 0.2 0.19
Time*Resp1 -0.85 -0.44 -0.03 -0.45 0.21 -0.44 0.24
Time*Resp2 -0.88 -0.45 -0.03 -0.46 0.22 -0.43 0.24
NLE1 -1.56 -0.75 -0.03 -0.75 0.39 -0.69 0.51

-1.12 0.5
-0.48 0.55

NLE2 -1.64 -1.12 -0.64 -1.13 0.25 -0.91 0.32
-1.17 0.34

-1.76 0.5
NEE -0.83 -0.32 0.24 -0.32 0.27 -0.26 0.34

-0.45 0.36
-0.5 0.56

Cuts1 -0.43 -0.08 0.32 -0.07 0.19 -0.05 0.23
0.06 0.25

-0.59 0.29
Cuts2 -0.21 0.09 0.41 0.10 0.16 -0.09 0.2

0.05 0.2
0.65 0.26

NLE1*NEE -0.51 0.57 1.65 0.56 0.55 1 0.75
0.85 0.67

-0.73 0.76
NLE2*NEE -0.07 0.55 1.14 0.54 0.31 0.48 0.38

0.53 0.4
1.16 0.6
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Table 5: Posterior summaries for parameters in (2) and (3) for Model IV and the independent
MTMs for 1991 and 1992. Again, we introduce some new notation for the α for ease of interpre-
tation in this table; αt,t?;j is the regression for the 2nd order Markov model from regressing the
response at time t on t?. The coefficient with j = 1 corresponds to depression while the sum of
the coefficients for j = 1 and j = 2 is for anxiety and the sum of j = 1 and j = 3 for hostility.

Model IV Anx Host Depr

posterior posterior posterior posterior
Time> 2 2.5% 50% 97.5% mean SD mean SD mean SD mean SD

α3,2;1 0.84 1.23 1.63 1.23 0.2 1.43 0.38
α3,1;1 -0.46 0.07 0.54 0.07 0.25 -0.3 0.62
α4,3;1 0.57 0.95 1.31 0.95 0.19 1.12 0.41
α4,2;1 0.36 0.71 1.11 0.71 0.19 0.88 0.4
α3,2;2 -0.84 -0.02 0.75 -0.04 0.4 -0.22 0.48
α3,1;2 0.15 1.23 2.6 1.26 0.62 1.04 0.7
α4,3;2 -0.35 0.48 1.29 0.48 0.42 0.32 0.5
α4,2;2 -0.73 0.05 0.85 0.07 0.41 0.44 0.5
α3,2;3 -0.28 0.55 1.36 0.54 0.41 0.36 0.49
α3,1;3 0.12 1.24 2.49 1.27 0.61 0.91 0.71
α4,3;3 -0.56 0.24 1.04 0.23 0.42 0.15 0.51
α4,2;3 -1.56 -0.78 0.05 -0.77 0.42 -0.55 0.51
log(σ2

3) -0.1 0.59 1.24 0.59 0.34
log(σ2

4) -0.15 0.55 1.18 0.53 0.34
λ2 0.94 1.45 2.53 1.53 0.42
λ3 1.2 2 3.45 2.1 0.59
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