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We explore a Bayesian approach to selection of variables that represent fixed and random effects in mod-
eling of longitudinal binary outcomes with missing data caused by dropouts. We show via analytic results
for a simple example that non-ignorable missing data lead to biased parameter estimates. This bias re-
sults in selection of wrong effects asymptotically, which we can confirm via simulations for more complex
settings. By jointly modeling the longitudinal binary data with the dropout process that possibly leads to
non-ignorable missing data, we are able to correct the bias in estimation and selection. Mixture priors with
a point mass at zero are used to facilitate variable selection. We illustrate the proposed approach using a
clinical trial for acute ischemic stroke.
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1 Introduction

In models with a large number of candidate predictors, criterion-based strategies for variable selection
such as Aikake’s information criterion or the Bayesian information criterion are often used. However, these
strategies can be computationally prohibitive because the number of possible sub-models to consider grows
exponentially with the number of effects. Model selection for longitudinal data has also been studied using
both penalized likelihood (Fu, 2003; Fan and Li, 2004) and Bayesian methods (George and McCulloch,
1993; Chen and Dunson, 2003; Cai and Dunson, 2006; Kinney and Dunson, 2007; Park and Casella, 2008;
Chenet al., 2009).

However, missing data due to dropout or death during follow-up in longitudinal studies could com-
promise the validity of the aforementioned variable selection procedures. According to Little and Rubin
(2002), missing data mechanisms are classified into three types: missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR). The first two mechanisms assume that
the probability of missingness is not related to the missing values; they are calledignorablebecause valid
statistical inference can be obtained by analyzing the available data without considering missing data mech-
anisms. In the MNAR mechanism, the probability of missingness is related to the missing values. As an
example, a study that evaluates the impact of a new treatment on disease outcome may have MNAR val-
ues at the longitudinal endpoint because patients die due to worsening disease or drop out due to poor
treatment efficacy. The probability of missingness could be related to the poor outcome that would have
been observed in the patients’ final measurements in the absence of death or dropout. Statistical analysis
that ignores the MNAR mechanism can produce biased estimates (we will use MNAR and non-ignorable
interchangeably here although we recognize that non-ignorable MAR is considered in some work focusing
on mixture models).
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The bias caused by analyzing data with MNAR values as if the missing data mechanism is ignorable
can be corrected by modeling the association between the longitudinal measurements and the missing data
mechanism. A growing literature focuses on joint analysis of normally-distributed longitudinal outcomes
(Diggle and Kenward, 1994; Little, 1994; Wulfshon and Tsiatis, 1997; Henderson et. al., 2000; Hogan and
Daniels, 2002; Elashoff et. al., 2007). Follman and Wu (1995), Ibrahim et. al. (2001), and Roy and Daniels
(2008) extend joint models to generalized linear mixed models for exponential family distributions.

Yet, research on variable selection in the presence of MNAR values is limited. Mitra and Dunson (2010)
developed a stochastic search variable selection approach for generalized linear models with missing pre-
dictors. This method cannot be used for longitudinal studies. Paddock (2007) proposed a pattern-mixture
model to characterize the effects of informative censoring on the trajectory of longitudinal data. The
functional form of the longitudinal trajectory was selected by using a stochastic search variable selection
procedure. However, the approach does not focus on estimation and selection bias for fixed and random
effects at the longitudinal endpoint.

In this paper, we address the selection of fixed and random effects for longitudinal binary outcomes
with monotone missing data patterns due to dropout or death. We analytically examine the estimation
bias and asymptotic behavior of posterior selection probabilities in a simplified setting. We show that a
selection procedure that ignores missing data mechanisms asymptotically chooses the wrong effects when
the missing data mechanism is non-ignorable.

We use a Bayesian joint analysis framework to correct the bias in estimation and selection. In the
joint analysis, the dropout hazard is modeled by a logistic regression with current and prior responses
of the longitudinal outcome included as covariates. Applying the ideas of Kinney and Dunson (2007),
we select fixed and random effects in the logistic mixed model for the longitudinal binary outcome by
imposing mixture priors with a point mass at zero. The parameters of the random effects are presented
using a Cholesky decomposition of the covariance structure. We facilitate selection of the missing data
mechanism by applying similar mixture priors to the parameters in the logistic model for dropout hazard.
Conditional linearity of the parameters in the logistic models is achieved by a data augmentation strategy
and by approximating the logistic density using the t-distribution (Albert and Chib, 1993; Kinney and
Dunson, 2007). The mixture prior has the appealing feature that, by setting a positive probability at zero,
effective exclusion of fixed and random effects is allowed. This prior is a conjugate for the proposed joint
model under reparameterization and approximation and eliminates the need to compute model selection
criteria such as DIC (Spiegelhalter et al, 2002). We use simulation studies to examine this modeling
framework and the problem of non-ignorable missing data in complex analyses.

The motivation for this paper was a clinical trial of intravenous recombinant tissue plasminogen activa-
tor (rt-PA) in patients with acute ischemic stroke (National Institute of Neurological Disorders and Stroke
rt-PA Stroke Study Group, 1995). The Barthel Index measures performance in daily living activities. In-
formation on whether or not the patients had a favorable outcome on the Barthel Index was recorded at
7-10 days, 3 months, 6 months, and 12 months post stroke onset. Our goal is to select the baseline factors
that predict post stroke performance from a pool of candidate variables, including health variables such as
history of diabetes, hypertension, angina at baseline, demographic characteristics, and lifestyle variables.
We are also interested in estimation and selection of the model components that describe the trajectory of
the outcome. 30% of the Barthel Index data was missing due to dropout and death at 12 months. We apply
our Bayesian framework to the rt-PA data.

The rest of the article is organized as follows. In Section 2, we present analytic results for the bias in
variable selection caused by non-ignorable missing data. A specific framework for implementing variable
selection using a selection model factorization is given in Section 3. Section 4 reports on simulation results
for more complex settings than those examined analytically in Section 2. Section 5 illustrates the approach
using data from the rt-PA clinical trial for acute ischemic stroke. Section 6 concludes with a discussion.
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2 Analytical results to investigate the bias in posterior selection probabili-
ties

In this section we show via a simple example that non-ignorable missing data leads to biased estimation.
We further prove that the variable selection procedure ignoring the missing data mechanism selects the
wrong effects asymptotically. We consider a scenario in which there are only two measurements,Y1i and
Y2i, for the binary longitudinal outcomeYi at visit 1 and visit 2, wherei denotes theith individual and
i = 1, . . . , n. Let Y = (Y1, Y2) and assume that allY1i’s are observed andY2i’s are possibly missing with
a missingness mechanism that takes the form

logit{pr(R2i = 1|Yi, η)} = η0 + η1Y1i + η2Y2i, (1)

whereη = (η0, η1, η2) are model parameters andR2i is an indicator variable; its value is equal to 1 when
Y2i is observed and equal to 0 whenY2i is missing. This mechanism indicates that the probability of
observingY2i is a function ofY1i andY2i. Let Yobs andYmis represent observed and missing components
of Y , respectively. Whenη2 6= 0, the missing data are MNAR.

The distribution ofY can be parameterized as follows:

p00 = pr(Y1 = 0, Y2 = 0),
p10 = pr(Y1 = 1, Y2 = 0),
p01 = pr(Y1 = 0, Y2 = 1),
p11 = 1− p00 − p10 − p01 = pr(Y1 = 1, Y2 = 1).

Denoteθ = (p00, p10, p01). Let θ̂ = (p̂00, p̂10, p̂01) be the maximum likelihood estimator ofθ derived
from the observed data likelihood, i.e.,L(θ|Yobs). It can be shown that̂θ is an inconsistent estimator ofθ
whenη2 6= 0 (see Appendix A Theorem A.1).

Next we study the impact of MNAR missing data on variable selection. Suppose thatθ̂ converges to
θ∗ = (p∗00, p

∗
10, p

∗
01) asn tends to infinity. We know thatθ∗ 6= θ̃ if η2 6= 0, whereθ̃ = (p̃00, p̃10, p̃01) is the

true value ofθ. We then reparameterize the distribution of(Y1, Y2) using the following regression model

logit{pr(Yt = 1|Yt−1, β)} = β0 + β1(t− 1) + β2(t− 1)Yt−1

for t = 1, 2 andY0 = 0. The parametersβ0, β1 andβ2 are functions ofp00, p10 andp01. Suppose
that the maximum likelihood estimator ofβ derived from the observed data likelihood converges toβ∗ =
(β∗

0 , β∗
1 , β∗

2) asn tends to infinity. It is easy to show thatβ∗ 6= β̃ if η2 6= 0, whereβ̃ is the true value ofβ
(see Appendix A).

For simplicity, we assume that̃β0 and β̃1 are known (i.e.,̃p00, p̃01 are known). The estimator ofp10

converges almost surely top∗10 and p∗10 6= p̃10 if η2 6= 0. Let ∆ = β∗
2 − β̃2. It can be shown that

∆ = logit
p̃10+p̃11−p∗10

p̃10+p̃11
− logit p̃11

p̃10+p̃11
6= 0 if η2 6= 0. When the sample size is large, the likelihood forβ2

conditional onYobs can be approximated by a normal density up to a constant factorC, that is,

L(β2|Yobs) ≈ C × fN (β2;β∗
2 , σ2

β∗2
),

wherefN (β2;β∗
2 , σ2

β∗2
) is a normal density function with meanβ∗

2 and varianceσ2
β∗2

. We assume the prior

for β2 is a zero-inflated normalZI-N(π0; 0, σ2
0). Its density function can be expressed asπ0I(β2 =

0) + (1 − π0)I(β2 6= 0)fN (β2; 0, σ2
0), in which π0 is the prior probability thatβ2 = 0 (please refer to

Section 3.3 for more details on this prior). It can be shown that the posterior probability thatβ2 = 0 is
π∗ = π0

π0+(1−π0)
σ

σ0
exp( σ2

2σ4
β∗2

β∗22 )
, whereσ2 = 1

1
σ2
0
+ 1

σ2
β∗2

. The posterior probabilityπ∗ is a function ofβ̃2, ∆

andσ2
β∗2

. As n →∞, it can be shown that

(a) Whenη2 = 0 andβ̃2 = 0, π∗ → 1.
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(b) Whenη2 = 0 andβ̃2 6= 0, π∗ → 0.
(c) Whenη2 6= 0 andβ̃2 = 0, π∗ → 0.
(d) Whenη2 6= 0 andβ̃2 6= 0, β∗

2 6= 0 in general, andπ∗ → 0.

Therefore, asymptotically the procedure selects the correct effects if the missing data are ignorable
(η2 = 0; scenarios (a) and (b)), but picks the wrong ones ifη2 6= 0 and the missing data mechanism
is ignored. For scenario (d),π∗ tends to be larger than the true posterior exclusion probability in finite
samples if|β∗

2 | < |β̃2|.
In what follows, we propose a Bayesian approach to variable selection while taking into account possible

non-ignorable missing values inY by joint modeling the missingness mechanism.

3 Variable selection framework and models

3.1 Kinney and Dunson model/approach for full data response model

In this section we extend the simple example discussed in Section 2 to longitudinal data with multiple
observations over time. LetYij denote the longitudinal binary outcome on subjecti at timetj , i = 1, . . . , n
andj = 1, . . . , ni. We assume that all the subjects follow the same schedule of visits. Some may drop
out of the study early (or die) so thatni ≤ m, wherem is the maximum number of visits. Let ap × 1
vectorX(1)

ij and aq× 1 vectorZij collect covariates associated withYij . The logistic mixed model can be
expressed as

logit(pij) = logit{pr(Yij = 1|X(1)
ij , Zij , ui, β,Σ)} = X

(1)T
ij β + ZT

ijui, (2)

where β is a p × 1 vector of unknown parameters to represent the fixed effects ofX
(1)
ij and ui =

(ui1, . . . , uiq) are random effects to characterize inter-subject heterogeneity. We assume thatui ∼ Nq(0,Σ).
In the variable selection context, the vectorsX

(1)
ij andZij usually consist of all the candidate predictors.

A stochastic search variable selection approach can be applied by choosing mixture priors that permit
dropping predictors through setting their coefficients at zero. To facilitate random effects selection, Dunson
and colleagues (Chen and Dunson, 2003; Cai and Dunson, 2006; Kinney and Dunson, 2007) proposed a
modified Cholesky decomposition ofΣ

Σ = ΛΓΓT Λ,

whereΛ = diag(λ1, . . . , λq) with λl ≥ 0 for l = 1, . . . , q andΓ is a lower triangularq× q matrix with the
diagonal elements equal to 1 andq(q−1)/2 free off diagonal elementsγ = (γ21, γ31, γ32, . . . , γq1, . . . , γqq−1).
It can be shown thatλl is proportional to the standard deviation of thelth random effect, soλl = 0 is equiv-
alent to dropping the random effect from the model. Under this decomposition, model (2) can be rewritten
in the following form:

logit{pr(Yij = 1|X(1)
ij , Zij , bi, β, λ, γ)} = X

(1)T
ij β + ZT

ijΛΓbi, (3)

wherebi ∼ Nq(0, I) with I being the identity matrix. We now augment this model with a missing data
mechanism to correct for bias and propose similar variable selection for this component of the model.

3.2 Model for missing data mechanism

The dropout hazard is modeled through logistic regression. We denote the response indicatorRij = I{Yij

is observed} for subjecti at timetj . That is,Rij is equal to 1 ifYij is observed and equal to 0 ifYij is
missing. SetRi0 = 1 for all i. Given that the binary outcome is observed at timetj−1, the probability that
it is observed at timetj is

logit{pr(Rij = 1|Rij−1 = 1, Yi, η)} = h(Ȳij ; η),
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whereh(·) is assumed to be a known function,Yi = {Yij : j = 1, . . . , ni}, Ȳij = (Yi1, . . . , Yij), andη is
an unknown (possibly vector-valued) parameter associated withȲij . Here we assume that the probability
of observingYij given the subject has not dropped out at timetj−1 is only related to the responses up
to time tj , conditioning on all the observations ofYi. Such non-future dependence assumptions for the
missing data mechanism have been considered by Fitzmauriceet al. (1995), Baker (1995), Albert (2000),
and Kenwardet al. (2003). Various functional forms ofh(Ȳij ; η) have been proposed to characterize the
relationship between the longitudinal outcome and the dropout process.

An advantage of using a selection model factorization is that there is a direct correspondence between
the functional form ofh(Ȳij ; η) and missing data mechanisms as defined in Little and Rubin (2002): (1)
whenh(Ȳij ; η) 6= h(Ȳi,j−1; η), which indicates that the dropout probability is related to the current (possi-
bly missing) responseYij , the data are missing not at random (MNAR); (2) whenh(Ȳij ; η) = h(Ȳi,j−1; η),
the data are missing at random (MAR) because the dropout probability is a function of observed values, not
the missing components. Note that it would be a simple extension to allow for different types of dropout
by having a separate missing data mechanism for each dropout type. This model can be further generalized
to a setting in which a1× κ vector of baseline covariatesX(2)

i may affect the dropout probability:

logit{pr(Rij = 1|Rij−1 = 1, Yi, X
(2)
i , η, α)} = h(Ȳij , X

(2)
i ; η, α), (4)

whereα = (α1, . . . , ακ) are unknown parameters associated withX
(2)
i . An example of the functional

form of h is given in equation (6) in Section 4.

3.3 Priors

Next we describe a variable selection procedure which involves zero-inflated mixture priors with a point
mass at zero. We use this procedure to select fixed and random effects in (3) as well as the parametersη and
α in model (4) for dropout hazard. To facilitate posterior variable selection via Gibbs sampling, conditional
linearity of the parameters in the logistic models is achieved by decompositingΣ and approximating the
logistic density using thet-distribution.

An advantage of the decomposition (3) is that we can obtain conditional linearity ofλ givenγ andbi

in the logit scale ofpij , and similarly, the conditional linearity ofγ given λ andbi. We adopt mixture
priors forβ andλ as proposed by Cai and Dunson (2006) to allow a subset of fixed and random effects
to be omitted from the model. To be specific, the prior forβ is

∏p
l=1 fZIN (βl;π

β
0l, µ

β
0l, σ

β2
0l ), where

fZIN (βl;π
β
0l, µ

β
0l, σ

β2
0l ) is a zero-inflated normal density defined as follows:

fZIN (βl;π
β
0l, µ

β
0l, σ

β2
0l ) = πβ

0lI(βl = 0) + (1− πβ
0l)I(βl 6= 0)fN (βl;µ

β
0l, σ

β2
0l ),

in whichπβ
0l ∈ [0, 1] andfN (βl;µ

β
0l, σ

β2
0l ) is the normal density function with meanµβ

0l and varianceσβ2
0l .

The prior probability that thelth predictor is not selected into the model is thusπβ
0l. Becauseλl ≥ 0,

l = 1, . . . , q, a zero-inflated positive normal densityfZIN+(λl;πλ
0l, µ

λ
0l, s

2
0l) is chosen as the prior forλl.

That is,

fZIN+(λl;πλ
0l, µ

λ
0l, s

2
0l) = πλ

0lI(λl = 0) + (1− πλ
0l)I(λl > 0)

fN (λl;µλ
0l, s

2
0l)

Φ(0;−µλ
0l, s

2
0l)

,

whereπλ
0l ∈ [0, 1] andΦ is the normal cumulative density function. The prior forλ is assumed to be

p(λ) =
∏q

l=1 fZIN+(λl;πλ
0l, µ

λ
0l, s

2
0l). Similar to πβ

0l, πλ
0l is the prior probability that thelth random

effect is excluded. The variance-covariance parameters have the joint priorp(λ, γ) = p(γ|λ)p(λ), and we
choosep(γ|λ) = fN (γ; γ0, C0)I(γ ∈ Hλ), whereHλ sets the value ofγtk at zero ifλt = 0 or λk = 0.
We use a similar zero-inflated normal densityfZIN (ηl;π

η
0l, µ

η
0l, σ

η2
0l ) to facilitate selection of parameters

pertaining to missing data mechanisms. If one is also interested in selecting baseline covariates in model
(4), a zero-inflated normal priorfZIN (αl;πα

0l, µ
α
0l, σ

α2
0l ), l = 1, . . . , κ, can be specified forα. The impact

of hyperparameters in these priors are explored via simulations (Section 4).
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3.4 Posterior computation

The joint posterior distribution forΩ = (β, λ, γ, η, α) takes a complex form primarily due to nonlinearity
of the parameters in the logistic function. We approximate the logistic density by at-density and use a data
augmentation approach to obtain conditional linearity ofΩ. These strategies help establish conditional
conjugacy to simplify the Gibbs sampler. Similar approaches have been proposed by Albert and Chib
(1993) and Kinney and Dunson (2007). The full conditional posterior distributions of the parameters and
latent variables are given in Appendix B.

The posterior probability of selecting each of the fixed (β) and random effects (λ) as well asη andα
can be estimated by calculating the proportion of non-zero posterior samples. Selection of the effects can
proceed in two ways. At first, a threshold can be set for the posterior selection probability. If the probability
is greater than that threshold, the corresponding effect (fixed or random) is selected. We recommend using
0.5 as a general rule of thumb. However, a more stringent selection criterion can be set if needed. Another
approach is based on the probability of visiting a particular model (with a specific set of fixed and random
effects) out of all possible candidate models and identifying the ones with highest probabilities. The
probability can be estimated by calculating the proportion of that specific model in posterior samples.

4 Simulation studies

Via simulations, we examine variable selection in the presence of non-ignorable missing data using the
modeling framework in Section 3 for more complex settings than those examined analytically in Section
2. We mimic a placebo controlled study where the research interest is to evaluate the between-group
difference in the response variable. The longitudinal binary dataYij were generated from the following
random intercept and slope model:

logit{pr(Yij = 1|xij , ui, β,Σ)} = β0x0i + β1x1ij + β2x2i + β3x3ij +
10∑

k=4

βkxki

+u0ix0i + u1ix1ij , (5)

wherex0i = 1 is the intercept,x1ij = 0, 0.2, 0.4, . . ., up to2.0 is the visit time,x2i ∼ Bernoulli(0.5)
is the indicator for the treatment group,x3ij = x1ij × x2i is the interaction between group and time, and
x4i to x10i are baseline covariates with a zero-mean multivariate normal distribution and AR(1) covariance
structure (correlationρ = 0.5). We setβ = (β0, . . . , β10)T = (−1, 2,−1,−1.5, 0, 1, 0, 0, 0, 1, 0)T .
The random effectsui = (u0i, u1i) ∼ N(0,Σ) with Σ = ΛΓΓT Λ, whereΛ = diag(0.5, 0.5) and
γ = (γ21) = (0.1). Denotexij = (x0i, x1ij , x2i, x3ij , x4i, . . . , x10i).

The dropout time was simulated using the logistic model

logit{pr(Rij = 1|Rij−1 = 1, Yij−1, Yij , xij , η, α)}

= η0 + η1Yij−1 + η2Yij + η3Yijx1ij + η4Yijx1ijx2i + α1x2i +
8∑

k=2

αkx(k+2)i, (6)

for j ≥ 2; that is, allYij ’s are observed in the first two visits (j = 0, 1) for all i. The parameterα =
(α1, . . . , α8)T = (2, 0,−0.5, 0, 0,−1, 0, 0)T . Missing data were generated in the following two scenarios
and we simulated 100 data sets in each scenario:

(a) (η1, . . . , η4) = (0, 0, -1.5, 0.1), i.e., the missing data are non-ignorable. For subjects who respond
(Yij = 1), the dropout rate increases with time, and the placebo group has a higher increase in the dropout
rate than the treated group. On average there are about 23% and 55% missing data in the treated group and
the placebo group, respectively;

(b) (η1, . . . , η4) = (-0.4, 0, 0, 0), that is, the missing data are ignorable. The treated and placebo groups
have around 19% and 50% missing data, respectively.
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Kinney and Dunson (2007) suggested that a relatively small prior variance ofγ will facilitate stable
estimation while containing the flexibility of allowing posterior adjustment by the data. Therefore, the
hyperparameters in the prior forγ were set to beγ0 = 0, C0 = 1 (it is a scalar in the simulations), with
the constraint ofγ possibly being degenerate at zero due toλ. We chose a vague prior forη0, a normal
distribution with mean equal to 0 and variance equal to 1000. To explore the impact of choices of hyperpa-
rameters, we studied a range of priors in the formfZIN (πβ

0 , 0, σβ2
0 ), fZIN+(πλ

0 , 0, s2
0), fZIN (πη

0 , 0, ση2
0 ),

andfZIN (πα
0 , 0, σα2

0 ),for β, λ, η (not includingη0), andα, respectively, withπβ
0 , πλ

0 , πη
0 , andπα

0 = 0.5
and 0.8,σβ2

0 , s2
0, ση2

0 , andσα2
0 = 5, 10, and 100.

Each simulated data set was analyzed using either the joint model (5) and (6), or model (5) alone; the
latter is referred to as the ”ignorable analysis”. We implemented the Gibbs sampling algorithm described
in Appendix B. For each of the data sets, we first ran a burn-in of 5000 iterations, which was determined
by the potential scale reduction factor (Gelman and Rubin, 1992) using three parallel chains with over-
dispersed starting values to ensure convergence of the Gibbs sampler. We generated 15,000 iterations after
the burn-in and then thinned the chain by a factor of 6 to compute posterior means, standard deviations,
and selection probabilities.

Tables 1A and 1B summarize the simulation results for scenario (a) withσβ2
0 = s2

0 = ση2
0l = σα2

0l =
10. We compare posterior means, standard deviations, and selection probabilities (SP) of the fixed and
random effects from the joint analysis to those from the ignorable analysis. In reporting posterior means,
to save space in decimal places for very small values in the intervals (-0.001, 0) and (0, 0.001), -0.001
and 0.001 are reported, respectively. In the presence of non-ignorable missing data, the ignorable analysis
produces biased estimates forβ1 andβ3. Because patients who respond (Y = 1, indicating worse disease
conditions) at the occasionj are more likely to drop out of the study at that occasion, the time trend is
biased downward in the ignorable analysis. In addition, since the treated group has a lower dropout rate
than the control group, the between group difference in the time trend is underestimated. We observe a
larger bias in the estimates forβ1 andβ3 as we increaseπ0 to 0.8, and the posterior selection probabilities
for β1 andβ3 decrease along with the increase ofπ0. The missing data also lead to a biased estimate for
the random effectλ1 and its posterior selection probability drops to 0.39 whenπ0 = 0.8. In contrast, the
joint analysis has a much smaller bias in the estimates of these parameters, although there is some extent
of shrinkage inβ1 andβ3 asπ0 gets large. Nevertheless, the bias in these parameters is mostly corrected
as compared to the ignorable analysis. Also note that the most prominent parameter,η3, in the dropout out
submodel, was correctly identified, with the posterior selection probability greater than 0.95.

The analyses were repeated at a much larger sample sizen = 1000 (see Supplementary Tables S1(A)-
(B)). In the ignorable analysis, the bias in the estimates forβ1, β3 andλ1 still exists. Because this is
systematic bias introduced by non-ignorable missing data, it cannot be corrected by increasing the sample
size. Despite the estimation bias, the posterior selection probabilities of these parameters are uniformly
higher than those in Tables 1A and 1B. This is consistent with our discussion about the behavior ofπ∗ as
n →∞ in Section 2. In addition, for both the joint and ignorable analyses, we observe reduced impact of
the prior exclusion probabilityπ0 compared to the results forn = 300.

We also examined the bias in estimation and selection due to non-ignorable missing data when the actual
time trend in both groups were zero, i.e.,β1 = β3 = 0, (Supplementary Tables S2(A)-(B)). Again there is
a large bias in estimatedβ1 andβ3 in the ignorable analysis, which results in a relatively high probability
of selecting them even though the true values are zero. This pattern is consistent with our discussion about
the asymptotic behavior ofπ∗. The joint analysis leads to almost unbiased estimates for these parameters
and the posterior selection probabilities reduce to below 0.05 whenπ0 = 0.8.

When the missing data are ignorable (Supplementary Tables S3(A)-(B)) we observe comparable results
between the two methods, which is expected since under this scenario the ignorable analysis is valid. The
impact ofπ0 is not as strong as in scenario (a), which implies that under MAR we may need smaller
samples to overcome the influence of priors. It is also noted that, under both scenarios (a) and (b), the
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missing data mechanism does not affect the point estimates or posterior selection probabilities of the fixed
effectsβ2, β4, . . . , β7 andα’s.

The results to examine the impact of hyperparameters are reported in Table 2. To reduce space we only
show the results for three fixed effects inβ (β1, β2, andβ3), the two random effects (λ1 andλ2), the
parameters inη that are associated withYij , and one effect inα. Under a given prior exclusion probability
π0 (0.5 or 0.8), we do not observe significant impact of the prior variance on the posterior inference,
although the posterior inclusion probabilities tend to decrease with increasing prior variance. Since zero-
inflated priors are spike and slab-type priors with a spike at zero, this is in line with results for such priors
in Mitchell and Beauchamp (1988) and Deyet al. (2008). Consistent with Tables 1, S1 and S2, there is
shrinkage inβ1, β3 andλ for a higherπ0, associated with a small inflation in the posterior variability and
a decrease in the posterior selection probability. In all the cases, the method is able to identify the right
component inη that contributes most to the missing data mechanism.

We did further simulations to study the impact of model misspecification in the dropout process. In par-
ticular, data were simulated from a missingness mechanism similar to Equation (6), but with one additional
term, -0.5Yij×Yij−1. This model indicates that patients who respond (Y = 1) at two consecutive occasions
have a higher probability to dropout. The simulated data were then analyzed using model (6), that is, the
product term betweenYij andYij−1 was ignored. Table 3 reports the variable selection results for the fixed
and random effects at the longitudinal endpoint. Selection of baseline covariates in the dropout model is
shown as well. Estimation and selection ofβ andα seem robust to this model misspecification, but the
variance of the random intercept is underestimated, with the posterior selection probability dropping below
50% whenπ0 = 0.8. It suggests that misspecification of the dropout model could lead to biased estimates
at the longitudinal endpoint and thus misleading variable selection results.

5 Example

We illustrate the proposed variable selection procedure using data from a double-blinded, randomized clin-
ical trial of intravenous recombinant tissue plasminogen activator (rt-PA) in patients with acute ischemic
stroke (National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995). A total
of 624 patients were enrolled and randomized to receive either intravenous recombinant t-PA or placebo.
There were 312 patients in each treatment arm. Repeated measurements of Barthel Index, a scale in the
rage of 0 to 100 for performance in daily living, were recorded at 7–10 days, 3 months, 6 months, and 12
months post stroke onset. Hackeet al. (1998) suggested an unfavorable outcome be defined as a score of
less than 95 on Barthel Index. We use this dichotomized measure as the outcome of interest in this exam-
ple. Out of the 624 patients, 25 dropped out before 12 months (14 in rt-PA group and 11 in the placebo)
and 168 died (78 in rt-PA group and 90 in the placebo group, including those died after 12 months). The
average number of measurements per patient was 3.2, and 30% data were missing at 12 months.

Table 4 summarizes the frequency of patients with unfavorable Barthel Index at each of the follow-up
times. The placebo group had a higher rate of missing data during follow-up, and the observed data suggest
that the rt-PA group tended to have fewer patients with unfavorable Barthel Index than the placebo group.

We analyzed the data using both the joint model as outlined in Section 3 and the ignorable analysis
in which we ignored the missing data mechanism. The prior variance was set to 10 for all the fixed and
random effects andπ0 = 0.8. The results were summarized using 60,000 iterations thinned by a factor
of 10 after 40,000 burn-in iterations. The 40,000 burn-in iterations was determined by the potential scale
reduction factor after we ran three parallel chains with over-dispersed starting values.

The results from the joint and ignorable analyses are given in Table 5. We adopted an unstructured time
trend; three binary variables time3, time6, and time12 were generated to indicate the measurement taken at
3 months, 6 months or 12 months post stroke onset. We considered a random intercept and fit three models,
in each of which, a second random effect was assumed for one of the three time indicator variables. All
three models suggested that the time effects showed minimal between-subject variations. For illustration
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purposes, the model that assumed a random effect of time3 is shown. The following baseline covariates
(mostly are binary) were considered: treatment group, age, gender (1 = male), smoking status (1 = yes),
drinking (1 = yes), abnormal baseline CT, and history of diabetes, hypertension, and angina at baseline.
The dropout process model with baseline covariates (corresponding toα) was initially fit, but none of the
baseline variables showed a significant relationship with dropouts. Therefore, we omitted these variables
and only included the terms associated withη0, η1, andη2.

The results from the joint analysis show that, conditional on the random effects, the probability of
obtaining an unfavorable Barthel Index score decreased over time in the placebo group. The odds ratios
were 0.05 (the 95% CI (0.02, 0.09)), 0.05 (0.02, 0.09), and 0.02 (0.007, 0.05), comparing the measurements
at 3, 6, and 12 months post stroke onset with those at 7-10 days, respectively. The two groups showed
similar trend over time (i.e., the interaction between group and time was close to zero). On average the
odds ratio of an unfavorable Barthel index was 0.17 (the 95% CI (0.05, 0.53)) comparing the treated
group versus the control. Among the baseline covariates, only history of hypertension showed higher than
50% chance of being selected. There was strong evidence for a large variation in the intercept, which
has a 100% chance of being selected. However, the variation of time3 effect was relatively small, with
a selection probability of 0.20. In the dropout sub-model, the posterior selection probability forη1 was
1.00, but was only 0.57 forη2. Assuming we have modelled the dropout process and full data response
reasonably well, this result indicates that the missing data mechanism is likely MAR. This is also consistent
with the observation that the results from the ignorable analysis were very similar to the joint analysis. The
estimate ofη1 was negative, indicating that patients with unfavorable Barthel Index had a higher probability
of missing the next visit either due to dropout or death.

6 Discussion

We have examined variable selection in the presence of non-ignorable missing data. Our approach fills
in the gap in existing literature with the attempt to elucidate bias in variable selection associated with
non-ignorable missing data. We propose to resolve this problem by jointly modeling the missing data
mechanism. A Bayesian approach is implemented for fixed and random effects selection as well as se-
lection of missing data mechanisms. To facilitate the posterior variable selection, a zero-inflated mixture
prior proposed by Dunson and colleagues is employed. Conditional linearity is obtained for the parame-
ters in the logistic models by approximation of the logistic density using thet-distribution. Although the
proposed method is illustrated by a randomized clinical trial, we need to point out that in general vari-
able selection is more frequently applied in early stages of drug development as an exploratory tool for
hypothesis generation.

We emphasize the importance of joint analysis whenever the MAR assumption is questionable. In
longitudinal studies, terminating events such as death and dropout could lead to non-ignorable missing
data if these events areinformative, i.e. the event incidence is related to the longitudinal outcome of
interest. As explained in Section 3.2, the proposed model includes the MAR missingness as a special case,
and thus can be used as a tool to investigate the possible underlying missingness mechanism. Since the
MNAR assumption is untestable, it is always helpful to perform the joint model analysis and compare
it with the ignorable analysis whenever the ignorable missingess is questionable. If the results from the
two approaches are similar, then it is very likely the missing data are ignorable assuming the modelling
assumptions are correct. On the other hand, if the two analyses produce very distinct results, then one
should question the validity of the ignorable analysis. In this case the joint analysis is recommended.

The simulation results indicate that the estimation and selection at the longitudinal endpoint could be
influenced by model misspecification for the dropout process. Since it is usually not clear what functional
form of the missing data mechanism would be for a given study, it is recommended to fit a range of
plausible models and evaluate sensitivity of the results to model specifications among those that provide
similar fit to the observed data (Daniels and Hogan, 2008).
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We use zero-inflated mixture priors for variable selection because they have the following advantages:
(1) By setting a positive probability at zero, the prior allows effective exclusion of fixed and random
effects from the model; (2) It is a conjugate prior for the proposed model because under reparameterization
and approximation the model is conditionally linear in the parameters; (3) It is a proper prior to avoid
possible impropriety of the posterior; (4) It avoids the need to compute model selection criteria such as
DIC (Spiegelhalteret al., 2002); this is convenient for model selection as the observed data likelihood is
typically difficult to compute (Daniels and Hogan, 2008).

The variable selection procedure in conjunction with joint analysis developed in this article can be ex-
tended to continuous longitudinal outcomes and the results here arenot specificto the joint model given in
Section 3. The whole procedure can be thought of as Bayesian model averaging and as such, accurately
reflects uncertainty about variable selection. An alternative approach to our fixed prior selection probabil-
ities would be to make these quantities random (Ley and Steel, 2009). Our method assumes monotonic
missing data patterns and regular observation times for the longitudinal outcome. One future direction is to
study variable selection for longitudinal data with irregular observation times and/or intermittent missing
values. Although in practice binning time axis to convert irregular observation times to regular ones is not
so rare, but it may not always be feasible. We expect similar results in these settings as well.

Joint models are generally classified as selection models and pattern-mixture models; our model is a
parametric selection model. The hazard of dropout is modeled by logistic regression under a non-future
dependent mechanism (Kenwardet al., 2003). This approach has the advantages that it allows identification
of all parameters in the model and that the interpretation of the coefficients in the missing data mechanism
has a direct correspondence with the missing data mechanism classifications defined by Little and Rubin
(2002). However, we need to point out that, in the presence of non-ignorable missing data, the inference on
longitudinal measurements is dependent on the posited functional form of the missing data mechanism as
well as the parametric form for the full data response. In addition, parametric selection models do not allow
sensitivity analysis to investigate the impact of modeling assumptions for missing data. An alternative
formulation to the selection model proposed here would be a mixture model; such a formulation would
more easily accommodate sensitivity analysis. We would expect similar biases in selection probabilities
and coefficients in this formulation. For a comprehensive discussion of sensitivity analysis and related
issues, see Daniels and Hogan (2008).
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A Appendix A

Theorem A.1 θ̂ is an inconsistent estimator ofθ whenη2 6= 0

P r o o f. The likelihood forθ based on the observed data, which ignores the missing data mechanism,
is defined as

L(θ|Yobs) =
∫

f(Yobs, Ymis|θ)dYmis

= pn00
00 pn10

10 pn01
01 (1− p00 − p01 − p10)n11(p00 + p01)n0m(1− p00 − p01)n1m , (7)

wheren00 is the number of individuals with (Y1i = 0, Y2i = 0), andn10 is the number of individuals
with (Y1i = 1, Y2i = 0); n01 andn11 are defined similarly. We usen0m (n1m) to denote the number of
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individuals withY2i missing andY1i = 0 (Y1i = 1). The maximum likelihood estimator ofθ derived from
(7) is

p̂00 =
n00 + n01 + n0m

n
× n00

n00 + n01
,

p̂10 =
n10 + n11 + n1m

n
× n10

n10 + n11
,

p̂01 =
n00 + n01 + n0m

n
× n01

n00 + n01
.

We show that these are biased estimates ofθ. It is easy to see thatn00+n01+n0m

n → pr(Y1 = 0) = p̃00+p̃01

and n10+n11+n1m

n → pr(Y1 = 1) = p̃10 + p̃11, regardless of the missing data mechanism. We know that
from (1),

n00

n00 + n01
→ pr(Y1 = 0, Y2 = 0|Y1 = 0, R2 = 1)

=
pr(Y1 = 0, Y2 = 0, R2 = 1)

pr(Y1 = 0, R2 = 1)

=
pr(R2 = 1|Y1 = 0, Y2 = 0)pr(Y1 = 0, Y2 = 0)

pr(R2 = 1|Y1 = 0, Y2 = 0)pr(Y1 = 0, Y2 = 0) + pr(R2 = 1|Y1 = 0, Y2 = 1)pr(Y1 = 0, Y2 = 1)

=
exp(η0)

1+exp(η0)
p̃00

exp(η0)
1+exp(η0)

p̃00 + exp(η0+η2)
1+exp(η0+η2)

p̃01

6= p̃00

p̃01 + p̃00
,

if η2 6= 0. Therefore,̂p00 is not a consistent estimator ofp00 if η2 6= 0, i.e., if the missing data are MNAR.
Similarly, whenη2 6= 0, it can be shown that̂p01 and p̂10 are not consistent estimators forp01 andp10,
respectively, because

n10

n10 + n11
→

exp(η0+η1)
1+exp(η0+η1)

p̃10

exp(η0+η1)
1+exp(η0+η1)

p̃10 + exp(η0+η1+η2)
1+exp(η0+η1+η2)

p̃11

6= p̃10

p̃11 + p̃10
,

and

n01

n00 + n01
→

exp(η0+η2)
1+exp(η0+η2)

p̃01

exp(η0)
1+exp(η0)

p̃00 + exp(η0+η2)
1+exp(η0+η2)

p̃01

6= p̃01

p̃00 + p̃01
.

Suppose asymptoticallŷθ converges toθ∗ = (p∗00, p
∗
10, p

∗
01). We have shown thatθ∗ 6= θ̃ if η2 6= 0.

However, it still holds thatp∗00 + p∗01 = p̃00 + p̃01 andp∗10 + p∗11 = p̃10 + p̃11 even if the missing data are
MNAR.

For the regression model that reparameterizes the joint distribution ofY1 andY2, becauselogit{pr(Y1 =
1|β)} = β0 = logit(p̃10 + p̃11) = logit(p∗10 + p∗11), we haveβ∗

0 = β̃0. However, it can be shown that
β∗

1 6= β̃1 andβ∗
2 6= β̃2 if η2 6= 0 since

logit{pr(Y2 = 1|Y1 = 0, β)} = β̃0 + β̃1 = logit
p̃01

p̃01 + p̃00

6= logit
p∗01

p∗01 + p∗00
= β∗

0 + β∗
1 ,
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and

logit{pr(Y2 = 1|Y1 = 1, β)} = β̃0 + β̃1 + β̃2 = logit
p̃11

p̃11 + p̃10

6= logit
p∗11

p∗11 + p∗10
= β∗

0 + β∗
1 + β∗

2 .

Appendix B

We outline the steps in the Gibbs sampler to draw samples from the posterior distribution ofΩ, assuming
the dropout process model takes the form of (6). By introducing a latent variableWij , the logistic mixed
model (3) can be rewritten as follows:

Wij = X
(1)T
ij β + ZT

ijΛΓbi + εij ,

whereεij ’s arei.i.d. logistic random variables with density function

p(εij) =
exp(−εij)

{1 + exp(−εij)}2
.

The outcomeYij = 1 if Wij > 0 andYij = 0 otherwise. We approximate the distribution ofεij by a
zero meant random variable,tν(0, σ̃2), where the degrees of freedomν = 7.3 and the scale parameter
σ̃2 = π2(ν − 2)/3ν. The distribution is equivalent to a mixture of normals such that conditional on the
scale parameterdij , εij ∼ N(0, σ̃2/dij), anddij ∼ Gamma(ν/2, 2/ν) whose density is proportional to

d
ν/2−1
ij exp(−νdij/2). Kinney and Dunson (2007) showed that approximation of the logistic distribution

by tν(0, σ̃2) was nearly exact using importance weighting. Similarly, for the dropout process model, we
define

Qij = η0 + η1Yij−1 + η2Yij + η3Yijtij + η4Yijτitij + X
(2)
i α + ε′ij ,

whereτi is the group indicator,ε′ij ∼ N(0, σ̃2/aij), andaij ∼ Gamma(ν/2, 2/ν). The response indica-
tor Rij = 1 if Qij > 0 andRij = 0 if Qij ≤ 0.

Let Yobs denote the observed components inY andYmis the missing values. Assume each subject has
at leastr − 1 observations,r ≥ 2. Conditional on the augmented data(W,d,Q, a) and the unobserved
data(Ymis, b), the joint posterior density ofΩ is

L(Ω;Yobs, Ymis, b, R,W, d,Q, a)

=
n∏

i=1

[
min(ni+1,m)∏

j=1

[{I(Wij > 0)I(Yij = 1) + I(Wij ≤ 0)I(Yij = 0)}

×
√

dij

2πσ̃2
exp{− dij

2σ̃2
(Wij −X

(1)T
ij β − ZT

ijΛΓbi)2}dν/2−1
ij exp(−νdij/2)]

min(ni+1,m)∏
j=r

[{I(Qij > 0)I(Rij = 1) + I(Qij ≤ 0)I(Rij = 0)}

×
√

aij

2πσ̃2
exp{− aij

2σ̃2
(Qij − η0 − η1Yij−1 − η2Yij − η3Yijtij − η4Yijτitij −

X
(2)
i α)2}aν/2−1

ij exp(−νaij/2)]
1√

(2π)q
exp(−1

2
bT
i bi)]p(β)p(λ, γ)p(η)p(α).

We assume thatX(1)
ij andZij are observable even if subjecti drops out at occasionj, i.e.,Rij = 0. Poste-

rior computation relies on a Gibbs sampler which iteratively samples from the full conditional distributions
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of the parametersβ, λ, γ, η andα, the latent variablesb, W , d, Q, anda, and the missing dataYmis. Let
N(µ, σ2) stand for normal distribution, andZI-N(π, µ, σ2) andZI-N+(π, µ, σ2) stand for zero-inflated
normal distribution and zero-inflated positive normal distribution, respectively, as defined in Section 3.3.
The full conditional distributions are given as follows.

• The full conditional posterior forβl is ZI-N(πβ
l , µβ

l , σβ2
l ), l = 1, . . . , p, with

σβ2
l =

1

1/σβ2
0l +

∑
i

∑
j dijx2

ijl/σ̃2
,

µβ
l = σβ2

l {
µβ

0l

σβ2
0l

+
1
σ̃2

∑
i

∑
j

dijxijl(Wij −X
(1)T
ij(−l)β(−l) − ZT

ijΛΓbi)},

πβ
l =

πβ
0l

πβ
0l + (1− πβ

0l)
σβ

l

σβ
0l

exp(− µβ2
0l

2σβ2
0l

+ µβ2
l

2σβ2
l

)
,

wherexijl is the l-th element of the vectorX(1)
ij , X

(1)
ij(−l) is the vectorX(1)

ij with the l-th element
omitted, andβ(−l) is defined similarly.

• Let bT
i = (bi1, . . . , biq) and ZT

ij = (zij1, . . . , zijq). Define tijl = zijl(bil +
∑l−1

k=1 bikγlk) for

l = 1, . . . , q. We haveWij = X
(1)T
ij β +

∑q
l=1 tijlλl + εij . λl ∼ ZI-N+(πλ

l , µλ
l , s2

l ), where

s2
l =

1
1/s2

0l +
∑

i

∑
j dijt2ijl/σ̃2

,

µλ
l = s2

l {
µλ

0l

s2
0l

+
1
σ̃2

∑
i

∑
j

dijtijl(Wij −X
(1)T
ij β − tTij(−l)λ(−l))},

πλ
l =

πλ
0l

πλ
0l + (1− πλ

0l)
sl(1−Φ(−µλ

l /sl))

s0l(1−Φ(−µλ
0l/s0l))

exp(− µλ2
0l

2s2
0l

+ µλ2
l

2s2
l
)
,

andΦ(·) is the cumulative distribution function of the standard normal distribution,tij(−l) is the vector
tTij = (tij1, . . . , tijq) with thel-th element omitted, andλ(−l) is λ with thel-th element omitted.

• Let gT
ij = (bilλkZijk; l = 1, . . . , q − 1, k = l + 1, . . . , q), soWij −X

(1)T
ij β = gT

ijγ + εij . The full

posterior conditional distribution forγ is given byN(γ̂, Ĉ)I(γ ∈ Hλ), where

Ĉ = (
∑

i

∑
j

dijgijg
T
ij/σ̃2 + C−1

0 )−1,

γ̂ = Ĉ{
∑

i

∑
j

dijgij(Wij −X
(1)T
ij β)/σ̃2 + C−1

0 γ0}.

• Wij ∼ N(X(1)T
ij β +ZT

ijΛΓbi, σ̃
2/dij) truncated at the left by zero ifYij = 1 and at the right by zero

if Yij = 0.

• dij ∼ Gamma(ν+1
2 , 2

ν+ 1
σ̃2 (Wij−X

(1)T
ij β−ZT

ijΛΓbi)2
).
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• The full conditional posterior forηl is ZI-N(πη
l , µη

l , ση2
l ), l = 1, . . . , 4, with

ση2
l =

1
1/ση2

0l +
∑

i

∑
j aijt2ijl/σ̃2

,

µη
l = ση2

l {
µη

0l

ση2
0l

+
1
σ̃2

∑
i

∑
j

aijtijl(Qij − η0 −
∑
u 6=l

ηutiju −X
(2)
i α)},

πη
l =

πη
0l

πη
0l + (1− πη

0l)
ση

l

ση
0l

exp(− µη2
0l

2σ
η2
0l

+ µη2
l

2ση2
l

)
,

for j = r, . . . ,min(ni + 1,m), wheretij1 = Yij−1, tij2 = Yij , tij3 = Yijtij , andtij4 = Yijτitij .

• The full conditional posterior forαl is ZI-N(πα
l , µα

l , σα2
l ), l = 1, . . . , κ, with

σα2
l =

1

1/σα2
0l +

∑
i

∑
j aijx

(2)2
il /σ̃2

,

µα
l = σα2

l { µα
0l

σα2
0l

+
1
σ̃2

∑
i

∑
j

aijx
(2)
il (Qij − η0 − η1Yij−1 − η2Yij − η3Yijtij −

η4Yijτitij −X
(2)
i(−l)α(−l))},

πα
l =

πα
0l

πα
0l + (1− πα

0l)
σα

l

σα
0l

exp(− µα2
0l

2σ
α2
0l

+ µα2
l

2σα2
l

)
,

for j = r, . . . ,min(ni + 1,m), wherex
(2)
il is thel-th element of the vectorX(2)

i , X
(2)
i(−l) is the vector

X
(2)
i with thel-th element omitted, andα(−l) is α without thel-th element.

• Qij ∼ N(η0 + η1Yij−1 + η2Yij + η3Yijtij + η4Yijτitij + X
(2)
i α, σ̃2/aij) truncated at the left by

zero ifRij = 1 and at the right by zero ifRij = 0.

• aij ∼ Gamma(ν+1
2 , 2

ν+ 1
σ̃2 (Qij−η0−η1Yij−1−η2Yij−η3Yijtij−η4Yijτitij−X

(2)
i α)2

).

• bi ∼ N(b̂i, Σ̂b), where

Σ̂b = (
∑

j

dijuiju
T
ij/σ̃2 + I)−1,

b̂i = Σ̂b

∑
j

dijuij(Wij −X
(1)
ij β)/σ̃2,

anduT
ij = ZT

ijΛΓ.

• If ni < m, the missing observationYi(ni+1) for subjecti is Bernoulli( p1(ni+1)

p0(ni+1)+p1(ni+1)
), where

p1(ni+1) =
exp(X(1)

i(ni+1)β + ZT
i(ni+1)ΛΓbi)

1 + exp(X(1)
i(ni+1)β + ZT

i(ni+1)ΛΓbi)

× 1

1 + exp(η0 + η1Yini + η2 + η3ti(ni+1) + η4τiti(ni+1) + X
(2)
i α)

,

p0(ni+1) =
1

{1 + exp(X(1)
i(ni+1)β + ZT

i(ni+1)ΛΓbi)}{1 + exp(η0 + η1Yini + X
(2)
i α)}

.
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The algorithm was implemented in C. The program is available upon request.
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Table 1A. Non-ignorable missing data in longitudinal binary measurements due to dropout
(scenario (a), n = 300;σβ2

0 = s2
0 = ση2

0l = σα2
0l = 10,π0 = 0.5).

Joint Ignorable
Parameter True Mean SD Posterior SP Mean SD Posterior SP

β†
1 2 1.906 0.308 1.00 1.354 0.439 0.95

β2 -1 -0.955 0.260 0.98 -0.964 0.295 0.95
β†

3 -1.5 -1.422 0.357 0.97 -1.1960.516 0.90
β4 0 0.001 0.017 0.06 0.001 0.026 0.07
β5 1 0.972 0.097 1.00 0.948 0.088 1.00
β6 0 0.003 0.023 0.06 -0.003 0.018 0.06
β7 0 0.001 0.030 0.07 -0.002 0.015 0.05
β8 0 -0.001 0.013 0.06 -0.022 0.052 0.12
β9 1 0.978 0.089 1.00 0.978 0.081 1.00
β10 0 0.002 0.021 0.06 0.002 0.016 0.06
λ1 0.5 0.442 0.245 0.75 0.3400.243 0.57
λ2 0.5 0.451 0.257 0.77 0.492 0.284 0.73
η0 1 0.817 0.201 -
η1 0 -0.001 0.058 0.11
η2 0 -0.206 0.312 0.28
η3 -1.5 -1.453 0.323 0.99
η4 0.1 0.083 0.233 0.22
α1 2 2.049 0.238 1.00
α2 0 0.003 0.034 0.07
α3 -0.5 -0.522 0.083 1.00
α4 0 -0.001 0.025 0.07
α5 0 0.002 0.013 0.06
α6 -1 -0.987 0.113 1.00
α7 0 -0.011 0.035 0.08
α8 0 -0.005 0.035 0.07

† β1: the time trend in the control group;
β3: the between group difference in the time trend.
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18 Ning Li et al.: Variable selection in the presence of non-ignorable dropout

Table 1B. Non-ignorable missing data in longitudinal binary measurements due to dropout
(scenario (a), n = 300;σβ2

0 = s2
0 = ση2

0l = σα2
0l = 10,π0 = 0.8).

Joint Ignorable
Parameter True Mean SD Posterior SP Mean SD Posterior SP

β†
1 2 1.892 0.335 1.00 1.186 0.558 0.86

β2 -1 -0.955 0.314 0.94 -1.038 0.329 0.95
β†

3 -1.5 -1.418 0.398 0.94 -1.0100.598 0.76
β4 0 0.001 0.005 0.02 -0.001 0.004 0.02
β5 1 0.969 0.093 1.00 0.946 0.101 1.00
β6 0 0.001 0.009 0.02 -0.002 0.018 0.02
β7 0 0.001 0.010 0.02 -0.002 0.010 0.02
β8 0 0.001 0.005 0.02 -0.018 0.047 0.07
β9 1 0.979 0.086 1.00 0.963 0.081 1.00
β10 0 0.002 0.018 0.02 0.001 0.030 0.03
λ1 0.5 0.408 0.283 0.60 0.2450.239 0.39
λ2 0.5 0.429 0.291 0.63 0.504 0.326 0.67
η0 1 0.858 0.161 -
η1 0 -0.008 0.060 0.05
η2 0 0.067 0.158 0.10
η3 -1.5 -1.385 0.261 0.98
η4 0.1 0.040 0.112 0.07
α1 2 2.027 0.191 1.00
α2 0 -0.001 0.005 0.02
α3 -0.5 -0.487 0.105 0.98
α4 0 0.001 0.014 0.02
α5 0 0.001 0.011 0.02
α6 -1 -0.968 0.112 1.00
α7 0 -0.001 0.008 0.02
α8 0 -0.001 0.006 0.02

† β1: the time trend in the control group;
β3: the between group difference in the time trend.
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Table 3. Variable selection under model misspecification
(n = 300;σβ2

0 = s2
0 = ση2

0l = σα2
0l = 10).

Joint (π0 = 0.5) Joint (π0 = 0.8)
Parameter True Mean SD Posterior SP Mean SD Posterior SP

β1 2 1.798 0.365 1.00 1.862 0.348 1.00
β2 -1 -0.988 0.267 0.98 -0.903 0.291 0.93
β3 -1.5 -1.311 0.438 0.95 -1.399 0.413 0.96
β4 0 0.001 0.018 0.06 -0.002 0.030 0.03
β5 1 0.958 0.091 1.00 0.953 0.100 1.00
β6 0 0.001 0.017 0.06 -0.002 0.011 0.02
β7 0 -0.001 0.013 0.05 -0.001 0.005 0.02
β8 0 -0.004 0.020 0.07 -0.001 0.011 0.02
β9 1 0.961 0.091 1.00 0.956 0.091 1.00
β10 0 0.001 0.012 0.05 -0.001 0.004 0.02
λ1 0.5 0.309 0.237 0.55 0.274 0.238 0.43
λ2 0.5 0.451 0.271 0.72 0.402 0.279 0.60
α1 2 2.032 0.228 1.00 2.089 0.209 1.00
α2 0 -0.003 0.015 0.06 -0.001 0.025 0.03
α3 -0.5 -0.512 0.110 0.98 -0.539 0.112 0.98
α4 0 -0.003 0.035 0.08 -0.001 0.003 0.01
α5 0 0.003 0.026 0.06 -0.002 0.023 0.02
α6 -1 -0.984 0.108 1.00 -0.993 0.110 1.00
α7 0 -0.009 0.028 0.08 -0.007 .026 0.03
α8 0 -0.002 0.029 0.07 -0.002 0.011 0.02
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Table 4. The rt-PA stroke trial: frequency of patients with unfavorable Barthel Index at each of the
follow-up times.

7-10 days 3 months 6 months 12 months

rt-PA group(N positive) 179 60.6% 96 37.7% 86 35.5% 67 30.2%

Total observed 296 255 242 222

Missing 16 57 70 90

placebo group(N positive) 218 76.5% 129 52.0% 116 50.2% 96 44.4%

Total observed 285 248 231 216

Missing 27 64 81 96
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Table 5. Analyses of unfavorable Barthel Index in the rt-PA stroke trial (π0 = 0.8).

Joint Analysis Ignorable Analysis

Mean SD Posterior SP Mean SD Posterior SP
intercept 2.39 0.68 - 2.35 0.71 -
time3 -3.07 0.34 1.00 -2.90 0.31 1.00
time6 -3.07 0.33 1.00 -2.96 0.31 1.00
time12 -3.93 0.52 1.00 -3.66 0.34 1.00
t− PA -1.78 0.58 0.97 -1.88 0.56 0.99
time3× t− PA 0.004 0.07 0.03 0.003 0.08 0.03
time6× t− PA 0.01 0.11 0.04 0.01 0.10 0.04
time12× t− PA 0.02 0.15 0.05 0.02 0.13 0.05
age <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
gender -0.46 0.66 0.39 -0.21 0.48 0.19
smoking -0.05 0.22 0.08 -0.07 0.28 0.09
drinking -0.13 0.37 0.15 -0.29 0.53 0.29
diabetes 0.56 0.82 0.38 0.63 0.86 0.41
hypertension 1.37 0.75 0.85 1.71 0.60 0.98
angina -0.15 0.42 0.15 -0.24 0.56 0.21
abnormal CT 0.25 0.50 0.24 0.27 0.54 0.25
λ1(intercept) 4.69 0.53 1.00 5.00 0.44 1.00
λ2 (time3) 0.20 0.53 0.20 0.12 0.31 0.18
η0 3.37 0.22 -
η1 -2.19 0.55 1.00
η2 0.94 0.93 0.57
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