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Summary

A method for simultaneous modelling of the Cholesky decomposition of several covariance ma-
trices is presented. We highlight the conceptual and computational advantages of the unconstrained
parameterization of the Cholesky decomposition and compare the results with those obtained us-
ing the classical spectral (eigenvalue) and variance-correlation decompositions. All these methods
amount to decomposing complicated covariance matrices into “dependence” and “variance” com-
ponents, and then modelling them virtually separately using regression techniques. The entries of
the “dependence” component of the Cholesky decomposition have the unique advantage of being
unconstrained so that further reduction of the dimension of its parameter space is fairly simple.
Normal theory maximum likelihood estimates for complete and incomplete data are presented us-
ing iterative methods such as EM (Expectation-Maximization) algorithm and their improvements.
These procedures are illustrated using a dataset from a growth hormone longitudinal clinical trial.

Key Words: Common principal components; Longitudinal data; Maximum likelihood es-
timation; Missing data; Spectral decomposition; Variance-Correlation de-
composition.

1 Introduction

Virtually all areas of classical multivariate statistics involve estimation of a single p× p covariance

matrix with as many as p(p+1)/2 parameters (Anderson, 2003). Many modern applications instead

require dealing with several p×p covariance matrices Σ1, · · · ,Σc, corresponding to c separate groups

of multivariate observations, where both c and p are potentially large. Often there are not enough

data to adequately estimate a separate Σi for each group, but if Σi’s share some common features,

they can be estimated more efficiently by pooling the data. Prominent examples of this pooling
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phenomenon include model-based principal component analysis (Flury, 1984, 1988); model-based

cluster analysis and discriminant analysis (Murtagh and Raftery, 1984; Banfield and Raftery, 1993),

longitudinal data analysis (Diggle et al. 2002), and multivariate volatility in finance (Bollerslev,

Engle and Woodridge, 1988; Engle, 2002) where the number of covariances to be estimated could

be as large as the number of observations.

Some of the most commonly used methods for handling several covariance matrices in the lit-

erature of multivariate statistics, the biomedical sciences, and financial econometrics are based on

the spectral decomposition (Flury, 1984, 1988; Boik, 2002; Fraley and Raftery, 2002), the variance-

correlation decomposition (Manly and Rayner, 1987; Barnard, McCulloch and Meng, 2000), and

multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models (Bollerslev,

1990; Engle, 2002). It is conceivable that a framework like Nelder and Wedderburn’s (1972) gen-

eralized linear models (GLM) could be used to compare, unify and possibly generalize the above

approaches to covariance modelling. Some of the powerful principles of the GLM are: (i) the use of

link functions leading to unconstrained and interpretable parameters, (ii) the use of linear predic-

tors to gauge the covariates effect additively and (iii) the use of a likelihood method for estimation

of the parameters (Pourahmadi, 2000).

Even unequal Σi’s may share certain common features (components). A natural way to search

for common features is to decompose complicated covariance matrices into simpler “dependence”

and “variance” components and scan these for simplifying patterns such as equality of the “de-

pendence” components across groups. Three of the most popular approaches in increasing order

of adherence to the GLM principles, employ the variance-correlation, spectral (eigenvalue) and

Cholesky decompositions of covariance matrices. In this paper, we show the distinguished role

of the latter in providing unconstrained reparameterization and a systematic data-based statisti-

cal procedure for parsimonious modelling of several covariance matrices. While the entries of the

correlation and orthogonal matrices appearing in the variance-correlation and spectral decomposi-

tions are always constrained, those appearing in the unit lower triangular matrix of the Cholesky
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decomposition, referred to as the generalized autoregressive parameters (GARP), are always uncon-

strained (Pourahmadi, 1999, 2000). Consequently, computing the maximum likelihood estimates

(MLE) of the Cholesky decomposition involves unconstrained optimization, unlike the algorithms

needed for estimation with the other two decompositions; see Flury and Gautschi (1986), Barnard

et al. (2000) and Boik (2002).

The outline of the paper is as follows. The three decompositions of covariance matrices and the

corresponding hierarchies of nested models are introduced in Section 2. Algorithms for computing

the normal theory MLE of the parameters under the common correlation matrices, principal com-

ponents, and GARP (with extensions) are presented in Section 3. For various hierarchies, we also

partition the likelihood ratio statistic for testing the equality of c covariance matrices:

T =
c∑

i=1

ni log
|S|
|Si|

, (1)

where Si is the sample covariance matrix of a sample of size ni + 1 from the ith population and S

is the pooled covariance matrix of all c samples (Anderson, 2003, Chap. 10). Section 4 develops

the EM algorithm for computing the MLE of parameters of the Cholesky decomposition when data

are incomplete. Application of these hierarchies in longitudinal clinical trials is detailed in Section

5 and illustrated using the data from a growth hormone clinical trial (Kiel et al.,1998). Section 6

concludes the paper.

2 The Three Decompositions and Parameterizations

In multivariate statistics (Anderson, 2003) and in the context of modelling common features of

Σi’s among c groups, the variance-correlation, spectral, and Cholesky decompositions are used

frequently. They have the advantage of being familiar, providing interpretable parameterizations

in some situations and giving rise to hierarchies of nested models. However, only the Cholesky

decomposition provides a simple unconstrained parameterization with a fine enough hierarchy to

allow models with any number of parameters from 1 to cp(p+1)/2 as in the GLM for a mean vector.
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We start with the familiar variance-correlation decomposition given by

Σi = DiRiDi, (2)

where Di = diag
(√

σi11, · · · ,
√

σipp

)
is a diagonal matrix whose diagonal entries are the square-

roots of those of Σi and Ri is the corresponding correlation matrix. Manly and Rayner (1987)

introduce a hierarchy and a corresponding ANOVA-type partition of (1) which we rely on as our

road map in this paper. Their hierarchy has four coarse levels:

(M1) equality, Σ1 = · · · = Σc with p(p + 1)/2 parameters;

(M2) proportionality, Σi = ρiΣ1, i = 2, · · · , c with p(p + 1)/2 + c− 1 parameters;

(M3) common correlation matrices, Ri ≡ R, with pc + p(p− 1)/2 parameters and

(M4) arbitrary covariance matrices with cp(p + 1)/2 parameters.

The MLE of the parameters under (M3) is reviewed in Section 3.1.

Flury’s (1984, 1988, Chap. 7) slightly finer hierarchy is based on the spectral decomposition of

the covariance matrices:

Σi = PiΛiP
′
i , i = 1, · · · , c, (3)

where Pi’s are orthogonal matrices and Λi = diag (λi1, · · · , λip) with λij standing for the jth

eigenvalue of Σi. His hierarchy replaces the (M3) by the following three variants of the common

principal components (CPC):

(M′3) CPC, Pi ≡ P for all i, with d′3 = pc + p(p− 1)/2 parameters;

(M′4) CPC (q), partial CPC of order q(1 ≤ q ≤ p − 2) where the first q columns of Pi’s are the

same, with d′3 + d′4 parameters and d′4 = 1
2(c− 1)(p− q)(p− q − 1);

(M′5) CS(q), common space of order q where the first q eigenvectors of Σi span the same subspace

as those of Σ1 with d′3 + d′4 + 1
2(c− 1)q(q − 1) parameters.
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We review the MLE of the parameters under (M′3) in Section 3.1. Note that in the decompositions

(2)-(3), the “dependence” components are a correlation matrix Ri and an orthogonal matrix Pi,

respectively, and hence their elements are subject to constraints.

Next, a more flexible hierarchy among several covariance matrices is introduced using their

modified Cholesky decompositions:

TiΣiT
′
i = ν i. (4)

Here the “dependence” component Ti, a unit lower triangular matrix, has unconstrained entries

with statistical interpretation as the generalized autoregressive parameters (GARP) and the entries

of ν i = diag (ν2
i1, · · · , ν2

ip) are the corresponding innovation (residual) variances (Pourahmadi,

1999). More concretely, let Y = (Y1, · · · , Yp) be a generic random vector with mean zero and

positive-definite covariance matrix Σ. Let Ŷj stand for the linear least-squares predictor of Yj

based on its predecessors Yj−1, · · · , Y1 and εj be its prediction error:

Ŷj =
j−1∑
`=1

φj,`Y`, εj = Yj − Ŷj = Yj −
j−1∑
`=1

φj,`Y`, j = 1, · · · , p, (5)

where the regression coefficients φj,`’s are unconstrained and the variances ν2
j = var (εj)are non-

negative. Evidently, the successive prediction errors are uncorrelated, so that with ε = (ε1, · · · , εp)

we have cov (ε) = diag (ν2
1 , · · · , ν2

p) = ν and (5) can be written in matrix form

ε = TY, (6)

where T is a unit lower triangular matrix with −φj,` in the (j, `)th position for 2 ≤ j ≤ p, ` =

1, · · · , j − 1. Consequently, from (6) we obtain TΣT ′ = ν, i.e. the matrix T diagonalizes the

covariance matrix Σ as in (4). It is clear that this decomposition depends on the ordering of the

components of Y ; thus, it is well suited to data that have ordered responses, such as longitudinal

data.

Analogues of (M′3)-(M′5) for the decomposition (4) can be defined with the same number of

parameters by imposing a suitable hierarchy on Ti’s:

(M′′3) Common GARP, Ti ≡ T ;
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(M′′4) Common GARP of order q, where the first q subdiagonals of Ti’s are common.

(M′′5) Common GARP of dimension r, where certain r entries of Ti’s are common.

A notable disadvantage of the first two classes of hierarchies is that the number of covariance

parameters from one level of hierarchy to the next increases not by one, but by a multiple of c− 1.

Boik’s (2002, 2003) spectral models attempt to provide a more “gradual” parameterization of the

pair of matrices (Pi,Λi), i = 1, · · · , c. However, the unconstrained nature of GARPs make them

ideal for introducing finer hierarchies whereby the number of parameters increases by one when

going from one level to the next as in the following model (also motivated by the Growth Hormone

trial discussed in Section 5):

(M′′6) Common GARP of variable dimension r, where r entries of the Ti’s are common across all

groups and the other p(p − 1)/2 − r entries can either be distinct or common across some

subset(s) of the groups.

Other advantages of the GARP hierarchies over the competing correlation and spectral models

include both computational aspects and asymptotic theory (both discussed in Section 3.3).

Further reduction of the dimension of the parameter space of {Σi}c
i=1 is achieved by imposing

restrictions on the “variance” components in (2)-(4). For example, adopting multiplicative variance

models for these matrices, namely

σij = αiσ1j ;λij = βiλ1j ; νij = γiν1j , i = 1, · · · , c, j = 1, · · · , p, (7)

will reduce the number of “variance” parameters from pc to 2p − 1. Furthermore, it is evident

that (7) coupled with either common correlation matrices, CPC (Flury, 1988, p. 103), or common

GARP amounts to the class of proportional covariance matrices (M2). We study more general

log-linear models for “variances” and highlight their roles in reducing the dimension of the overall

parameter space.

In this paper, in addition to presenting the details of using the GARP to model covariances
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across groups, we also develop a new algorithm for the common correlation models (M3) which

allows for log-linear variance models.

3 Model Estimation: The Likelihood Procedures

The three decompositions of covariance matrices lead to simpler covariance structures by reducing

the high number of parameters. So far as estimation is concerned, perhaps the most steady progress

has been made using the spectral decomposition in the context of principal components analysis

(Anderson, 2003, Chap. 11) and variants of Flury’s (1984, 1988) CPC; see the introduction of

Boik (2002) for an excellent review. However, the orthonormality of the eigenvectors makes them

awkward to model in terms of covariates, and MLE requires optimization procedures capable of

handling orthogonality constraints. In sharp contrast, for the Cholesky decomposition these tasks

are relatively easy and, in fact, closed-formula for the MLE of common GARPs can be derived.

For the ease of reference and comparison, we start with a brief overview of the MLE for normal-

theory covariance matrices and then present the MLE for common correlation matrices, CPC, and

common GARPs in the next three subsections.

Throughout the paper we assume that the p-variate random vectors Yi`, i = 1, · · · , c, ` = 1, · · · , ni

are independent, with Yi` distributed as N(Xiα, Σi); we assume that min
i

ni > p and that all Σi are

strictly positive definite. For convenience, denote by Si the “sample” covariance matrix for the ith

sample: Si = Si(α) = 1
ni

∑ni
`=1(Yi`−Xiα)(Yi`−Xiα)′, where the data are centered by the unknown

mean vector Xiα. Then the likelihood function of Σ1, · · · ,Σc, and α is given by

L(Σ1, · · · ,Σc, α) = C
c∏

i=1

|Σi|−ni/2etr(−ni

2
Σ−1

i Si(α)),

where C does not depend on the parameters and etr stands for the exponential function of the

trace. Thus the log-likelihood is

l(Σ1, · · · ,Σc, α) =
c∑

i=1

[
−ni

2
log |Σi| −

ni

2
tr(Σ−1

i Si(α))
]
, (8)

up to an additive constant. Since parsimonious modeling of both the mean vectors and covariance
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matrices is becoming increasingly important in longitudinal data analysis (Carroll, 2003) and other

areas of application, we include α in our estimation algorithms.

3.1 MLE of Common Correlation Matrices

When the mean and variance parameters are unrestricted, the MLEs for the common correlation

model (M3) can be obtained using a simple iterative algorithm developed by Manly and Rayner

(1987). Unfortunately, this algorithm cannot be easily generalized to common correlation models

with restricted variance parameters. In addition to the multiplicative variance models in (7),

commonly-used variance models from various application areas include log-linear models (Barnard

et al. 2000), univariate GARCH models (Bollerslev, 1990) and specific variance functions suggested

by GLM.

Throughout this section, the variances will be assumed to follow general log-linear models

log σ2
ij = Zijγ, j = 1, . . . , p. For notational convenience, let

Zi =

 Zi1
...

Zip

 , i = 1, . . . , c

(that is, the row vectors Zij , j = 1, . . . , p, stacked into a matrix), and let

Z =

 Z1
...

Zc

 .

Bollerslev (1990) pursues an alternative computational approach in the context of multivariate

time series models. This approach is applicable if the matrices Zi can be partitioned as Zi =

[Ip Z̃i], where Ip is the p × p identity matrix. (The matrices Zi can be coerced to this form via

a linear reparameterization of γ if range(Z) ⊃ 1c ⊗ Ip, where 1c is the c-dimensional ones vector

and ⊗ denotes the Kronecker product.) Let γ = (γ′1, γ
′
2)

′ be the corresponding decomposition

of γ, and define the “standardized” residuals ε̃i`(α, γ2) = Ṽi(γ2)−1/2(Yi` − Xiα), where Ṽi(γ2) =

exp(diag(Z̃iγ2)). Then an appropriate counterpart to Bollerslev’s equation (7), in which R and γ1
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are ‘removed’ from the log-likelihood, is the profile log-likelihood (up to an additive constant)

l(α, γ2) = −1
2

c∑
i=1

ni log |Ṽi(γ2)| −
n

2
log

∣∣∣∣∣
c∑

i=1

ni∑
`=1

ε̃i`(α, γ2)ε̃i`(α, γ2)′
∣∣∣∣∣ , (9)

where n =
∑c

i=1 ni. The maximization of this profile log-likelihood over α and γ2 can proceed using

any suitable unconstrained optimization method to obtain the MLEs α̂ and γ̂2. Subsequently, the

MLEs R̂ and γ̂1 for R and γ1 can be obtained from the variance-correlation decomposition

1
n

c∑
i=1

ni∑
`=1

ε̃i`(α̂, γ̂2)ε̃i`(α̂, γ̂2)′ = V̂ 1/2R̂V̂ 1/2,

where V̂ = exp(diag(γ̂1)).

The structural assumption on the Zi matrices above is unduly restrictive. For instance, it

would preclude a model that specified the variances of two different components to be equal within

a group. Unfortunately, no convenient analytical reduction for removing the correlation parameters

is available in the general case. Even in the simple case where c = 1 and p = 2, finding the MLE

of the correlation parameter for fixed values of the means and variances requires the solution of a

cubic equation (Kendall and Stuart, 1967, Example 18.3). The common-correlation MLEs presented

in Section 5 were obtained by applying a general Newton-based algorithm simultaneously on all

parameters (α, γ, and off-diagonal elements of R), with a trust-region restriction (Fletcher, 1987)

incorporated to ensure that the matrix R is always positive-definite and the likelihood is monotone

increasing.

Parsimonious representation of a single correlation matrix via its spectral decomposition has

recently been proposed in Boik (2003), as an adaptation of his earlier models for a covariance matrix

(Boik, 2002).

3.2 MLE of PC Models

For a single covariance matrix a complete theory of MLE for its eigenvectors and eigenvalues for the

saturated case has been available for a while (Anderson, 2003, Chap. 11). Its analogue for several

covariance matrices was developed later by Flury (1986).
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3.2.1 MLE of CPC Models

Assume that the hypothesis of common principal components holds, i.e. (M′3) is satisfied with

Pi ≡ P = (β1, β2, · · · , βp) where βj is the jth column of P . The MLEs of the α, βj ’s and λij ’s are

then obtained by maximizing

l(β1, · · · , βp, λ11, · · · , λcp, α) =
c∑

i=1

p∑
j=1

[
−ni

2
log λij −

ni

2
β′

jSi(α)βj/λij

]
,

subject to the orthonormality constraint on βj ’s:

β′
jβ` = δj,`, j ≥ ` = 1, · · · , p. (10)

This can be formulated as an (unconstrained) optimization problem by using Lagrange multipliers.

Following the derivation of Flury (1984), but additionally considering estimation of the regression

parameters, we obtain the following likelihood equations:

α =

(
c∑

i=1

niX
′
iΣ

−1
i Xi

)−1( c∑
i=1

niX
′
iΣ

−1
i Ȳi

)
,

λij = β′
jSi(α)βj , i = 1, · · · , c, j = 1, · · · , p,

β′
`

(
c∑

i=1

ni
λi` − λij

λi`λij
Si(α)

)
βj = 0. `, j = 1, · · · , p, ` 6= j

(11)

An iterative procedure for solving the last two equations in (11) was developed by Flury and

Gautschi (1986). Noniterative estimators of βj ’s are given by Krzanowski (1984) as the orthonor-

malized eigenvectors of the sum of the sample covariance matrices.

Substituting the expression for λij in the log-likelihood and dropping irrelevant additive con-

stants yields the profile log-likelihood in P = (β1, . . . , βp) and α:

l(β1, . . . , βp, α) = −1
2

c∑
i=1

p∑
j=1

ni log β′
jSi(α)βj . (12)

Optimization over P may proceed using any of several specialized algorithms for optimization over

orthogonal matrices (see, for example, Edelman, Arias, and Smith (1998)). Simultaneously maxi-

mizing over α might require an extension of current methods, e.g., . the Fisher scoring algorithm

in Boik (2002).
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Extending the common principal component model to allow models for the eigenvalues λij is

possible, but direct log-linear models of the form log λij = Zijγ are unsatisfactory for this purpose

because they allow no control over the ordering of the eigenvalues. For instance, although a log-

linear model would allow specification that two eigenvalues in a particular group are equal, it would

not allow specification that these two were the largest eigenvalues for that group, rather than some

other pair. Two alternatives that allow for ordering are

λij =
∑
r

uijr expZirγ and log λij =
∑
r

uijr expZirγ, (13)

where the matrices Ui = [uijr], i = 1, . . . c, allow for specification of the order of the eigenvalues.

Details can be found in Boik (2002, Sec. 2.2).

3.2.2 Other PC Models

Algorithms to fit models (M′4) and (M′5) are given in Flury (1988). In addition, Boik’s (2002)

spectral models subsume most of these earlier extensions of CPC and other models. These models

attempt to parameterize the matrices (Pi,Λi), i = 1, · · · , c, with more flexibility including various

models for eigenvalue ’sharing’ across groups (for example, equality, proportionality, and equal

volume) and ’sharing’ of spaces with the eigenvectors. A Fisher scoring algorithm is proposed for

optimization. Despite the flexibility of such models, the optimization algorithms still tend to be

overly complex as compared to the simple algorithms for the GARP models that will be discussed

in Section 3.3.

3.3 MLE for GARP Models

For a single covariance matrix the theory of MLE for GARPs and innovation variances is developed

in Pourahmadi (1999, 2000). Their analogues and ramifications for several covariance matrices will

be developed next.

3.3.1 MLE for Common GARPs

In analogy with the estimation of common correlation and CPC reviewed above, we compute the

MLE of common generalized autoregressive parameters (GARP) when (4) is satisfied with Ti ≡ T =
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(T̃1, T̃2, · · · , T̃p) where T̃j is the jth column of T and ν i = diag(ν2
i1, · · · , ν2

ip) is a diagonal matrix

of innovation variances (IV) changing across the c populations. First, we allow the nonredundant

entries of T and ν i’s to remain unstructured; then, in Section 3.3.2, we discuss the structured

case. For normal populations, the likelihood equations for α and ν2
ij ’s are similar to those in

(11), but the equation for the nonredundant and unconstrained parameters of T denoted by Φ =

(φ21, φ31, φ32, · · · , φp,p−1)′ is much simpler with a closed-form solution resembling that of a weighted

least-squares problem (see (16) below).

From (4), because ν i is diagonal, it follows that

log |Σi| =
p∑

j=1

log ν2
ij , i = 1, · · · , c,

and
tr(Σ−1

i Si) = tr(T ′ν−1
i TSi) = tr(ν−1

i TSiT
′)

=
p∑

j=1

T̃ ′
jSiT̃j/ν2

ij .
(14)

Therefore, (8) reduces to

`(Σ1, · · · ,Σc, α) =
c∑

i=1

p∑
j=1

(
−ni

2
log ν2

ij −
ni

2
T̃ ′

jSiT̃j/ν2
ij

)
, (15)

which can be minimized by computing its partial derivatives with respect to α, ν2
ij and the nonre-

dundant entries of T . Setting these to zero yield the first equation in (11) for α, and (for details,

see Appendix A)
ν̂2

ij = T̃ ′
jSiT̃j , i = 1, · · · , c, j = 1, · · · , p,

Φ̂ =

[
c∑

i=1

ni

ni∑
`=1

Y′
i`ν

−1
i Yi`

]−1 [ c∑
i=1

ni

ni∑
`=1

Y′
i`ν

−1
i yi`

] (16)

where

yi` = Yi` −Xiα = (yi`1, · · · , yi`p)′

is the vector of regression residuals and the matrix

Yi` =


0 0 0 0 · · · 0 0 · · · 0

yi`1 0 0 0 · · · 0 0 · · · 0
0 yi`1 yi`2 0 · · · 0 0 · · · 0
...
0 0 0 0 · · · 0 yi`1 · · · yi`,p−1

 ,
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is of size p× p(p−1)
2 . Furthermore, it follows from (14) and the first equation in (16) that

tr(Σ−1
i Si) = p, i = 1, · · · , c.

Using the likelihood equations (16) one can devise an iterative three-step method for computing

the MLE of α, IVs ν2
ij and GARPs φij . For instance, under the assumption of common GARPs, a

vector of initial values for Φ can be obtained by suitably stacking up the nonredundant entries of

the matrix T0 obtained from the modified Cholesky decomposition of
c∑

i=1

Si. Using this, an initial

value for α and the first equation in (16) one obtains an estimate of IV’s, and iterates until a

convergence criterion is met.

Although the last formula in (16) seems to require inversion of a matrix of order p(p−1)/2, its

block diagonal structure can be exploited to save computation time. Specifically,

c∑
i=1

ni

ni∑
`=1

Y′
i`ν

−1
i Yi` = diag(B2, · · · , Bp), (17)

where

Bt =
c∑

i=1

ni

ni∑
`=1

ν−2
it y′i`(t)yil(t),

and

yi`(t) = (yi`1, · · · , yi`,t−1).

Thus, in computing Φ̂ the largest linear system to be solved is of order p− 1.

3.3.2 MLE of Structured “Dependence” and “Variance” Parameters

A natural way to reduce the number of covariance parameters is to use covariates and develop mod-

els for the “dependence” and “variance” components of the three decompositions. Some early ex-

amples based on the variance-correlation decomposition include the theory of multivariate GARCH

in finance (Bollerslev, 1990; Engle 2002) and the general location models (GLOM) where the mul-

tiplicative variance models (7) were used by Liu and Rubin (1998) and log-linear variance models

were proposed by Barnard et al. (2000), but not fitted. Boik’s (2002) spectral models for covariance

matrices appear to be the first to use regression models for the diagonal entries of the Λi’s.
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Note that modelling the “dependence” components in decompositions (2)-(3) is difficult because

of the positive-definiteness and orthonormality constraints on R and P , respectively. In sharp con-

trast, since the GARPs in (4) are unconstrained, covariates can be used to model the “dependence”

component with relative ease (Pourahmadi, 1999, 2000; Pourahmadi and Daniels, 2002). Further-

more, graphical diagnostics for model-formulation based on the regressogram are available. For a

single generic covariance matrix one may identify models of the form

φtj = z′tjδ, log ν2
t = z′tλ, (18)

where ztj and zt are vectors of covariates and δ and λ are q1 × 1 and q2 × 1 vectors of unknown

parameters for the “dependence” and “variance” components. Computation of MLE of δ and λ

and their asymptotic properties are fully studied in Pourahmadi (2000).

Interestingly, the estimation results presented in Section 3.3.1 for (M′′3) correspond to the

extreme case of the linear models for log ν2
ij and φtj in (18) where q1 = p(p−1)

2 , q2 = p and the

covariates are suitable columns of the identity matrices of sizes q1 and q2. Thus, the computational

and asymptotic results in Pourahmadi (2000) hold verbatim for this special case under mild reg-

ularity conditions. In addition, various models suggested by (M′′4)-(M′′6) for several covariance

matrices can also be written in the above form:

φi,tj = z′i,tjδ, log ν2
i,t = z′i,tλ, i = 1, · · · , c, (19)

with smaller q1, q2 and possibly nontrivial covariates representing various group conditions. As such,

MLE of the parameters in (19) and their asymptotic properties can be obtained by adapting the

techniques from Pourahmadi (2000). As an alternative computational approach to obtain the MLE

of the parameters in (19), one could use the iteratively reweighted least squares (IRLS) algorithm

in Daniels and Pourahmadi (2002).

3.4 Likelihood Ratio Tests

When the null hypothesis of equality of Σ1, · · · ,Σc is rejected the group-specific covariance matrices

could still have certain common features (components). This possibility can be assessed using the
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likelihood ratio test and a hierarchy of flexible covariance models. The likelihood ratio test statistic

for comparing two nested models (1 and 2) within the correlation, PC, or GARP hierarchies is

X2 = −2 log
L(Σ̂(1)

1 , · · · , Σ̂(1)
c , α̂(1))

L(Σ̂(2)
1 , · · · , Σ̂(2)

c , α̂(2))
. (20)

In the PC and GARP hierarchies, when the variance parameters are unrestricted, this can be

simplified to

−2 log

K
c∏

i=1

exp(−pni/2)|Σ̂(1)
i |−n1/2

K
c∏

i=1

exp(−pni/2)|Σ̂(2)
i |−n1/2

=
c∑

i=1

ni log
|Σ̂(1)

i |
|Σ̂(2)

i |
, (21)

where the maximum likelihood estimators of the covariance matrices Σ1, · · · ,Σc of models 1 and 2

above are computed using the methods described in Sections 3.2–3.3.

The null distribution of (20) for testing within the correlation, PC, or GARP hierarchies is

asymptotically χ2 with degrees of freedom equal to the difference between the number of covariance

parameters in the two models. The number of parameters in the correlation and PC models is given

in Section 2. For the GARP hierarchy, the number of parameters is (c − 1)p(p − 1)/2 for (M′′3),

(c − 1)(p − q − 1)(p − q − 2)/2 for (M′′4), and (c − 1)(p(p − 1)/2 − r) for (M′′5); the number of

parameters in (M′′6) is difficult to write in general form. For comparing non-nested models between

hierarchies, we can compare the maximized log-likelihoods directly (with appropriate modifications

for differing numbers of parameters).

4 Incomplete Data and the EM Algorithm

It is common for multivariate responses to have missing components, especially in longitudinal

settings (Diggle et al., 2002). The EM algorithm is often used to fill in the missing data and

obtain valid inferences (Little and Rubin, 2002). We will detail some of the specifics for the EM

algorithm here for the general case of Yit ∼ N(Xiα, Σi), where i = 1, . . . , c, t = 1, . . . , ni and Yit is

of dimension p. We also point out that the rate of convergence of the EM algorithm depends on

the fraction of missing observations; for details, see Chapter 3 in Schafer (1997).
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We will provide details for the case of data that is missing completely at random (MCAR) or

missing at random (Little and Rubin, 2002). Both these types of missing data are termed ignorable

since the missing data mechanism need not be specified (i.e., it can be “ignored”). However, these

results will easily generalize to non-ignorable missingness often addressed explicitly by specifying a

selection model (Diggle and Kenward, 1994) or implicitly through pattern mixture models (Little,

1994). For the latter, the procedures for modelling across groups discussed in Section 3 could be

used to model the covariance across the missing data patterns.

The EM algorithm is composed of an expectation and a maximization step. The expectation

step involves taking the expectation over the distribution of the missing data, conditional on the

observed data, of the log likelihood. In our setting, this involves expectations of Yit and YitY
′
it. The

latter can be written as E[Yit,mis|Yit,obs]E[Yit,mis|Yit,obs]′+Cit, where Cit = V ar[Yit,mis|Yit,obs]. The

maximization step involves maximizing the expected log likelihood over α and the parameters of

Σi, i = 1, . . . , c. This maximization can proceed by iterating between maximizing over α and Σi,

using

−1
2
tr[

c∑
i=1

Σ̂−1
i

ni∑
t=1

(Yit −Xiα)(Yit −Xiα)′] (22)

for α (which results in the generalized least squares estimate for α) and

−
c∑

i=1

ni

2
log|Σi| −

1
2
tr[

c∑
i=1

Σ−1
i C?

i ] (23)

for the Σi, where C?
i =

∑ni
t=1[(Yit − Xiα̂)(Yit − Xiα̂)′ + Cit]. In these, the missing values have

been filled in (during the E-step of the algorithm). The maximization over Σi will proceed as

in Sections 3.1 and 3.2 for the common correlation and CPC models. However, for the GARP

(Section 3.3) models, the maximization routines outlined need to be altered. The key idea behind

the maximization routine for the GARP models (see Appendix) involves using two representations

of the exponential terms in the likelihood: tr(Σ−1
i Si) and (Yit−Xiα)′Σ−1

i (Yit−Xiα). Unfortunately,

in the M step of the EM algorithm for estimating the components of Σi, we can only express the

expectation of the log likelihood in the former form.
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We provide details on a modified maximization step for the covariance matrix parameters for

the GARP models in the next subsection.

4.1 M-step for GARP

First, we rewrite (23) as

−
c∑

i=1

ni

2

p∑
j=1

log ν2
ij −

1
2
tr[

c∑
i=1

Σ−1
i C?

i ]. (24)

To maximize over the parameters of Σi, we iterate between maximizing over the innovation vari-

ances, ν2
ij and the GARP parameters, φi,tj . For the former, note that tr(Σ−1

i C?
i ) = tr(ν−1

i TiC
?
i T ′

i ).

Define Gi = TiC
?
i T ′

i , with jk element gijk. It is easy to show that the gradient of the expected log

likelihood with respect to ν2
ij is proportional to

− 1
(ν2

ij)2
gijj +

ni

ν2
ij

. (25)

When ν2
ij does not depend on covariates, we obtain ν̂2

ij = 1
ni

gijj , otherwise a simple Newton-

Raphson algorithm can be implemented employing the 2nd derivatives. When some of the ν2
ij are

shared across some of the groups, (25) can be modified by ’summing’ over i.

For the GARP parameters, a closed form solution can be obtained by recognizing that the

gradient is a linear function of the GARPs. Denote the jkth element of C?
i as cikj . The relevant

pieces of the expected log likelihood with respect to the GARP parameters, can be written as

c∑
i=1

p∑
t=2

1
ν2

it

t∑
j=1

t∑
k=1

φi,tjφi,tkcikj (26)

where φi,tt = −1. For illustration, we consider the common GARP model, where φi,tj ≡ φtj , so we

only need to compute derivatives with respect to φtj . In addition, the block diagonal structure in

(17) implies that we can estimate each set of GARP, i.e., φ(t) = (φt1, . . . , φt,t−1)′, independently.

The first derivative with respect to φtj can be expressed as

2
c∑

i=1

1
ν2

it

[
t∑

k=1

φtkcikj ]. (27)
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After setting this to zero and some algebra, we can show that φ(t) = A−1
t Ct,?, where the jth

row of At is

Atj = (2
c∑

i=1

1
ν2

it

ci1j , 2
c∑

i=1

1
ν2

it

ci2j , . . . , 2
c∑

i=1

1
ν2

it

ci,t−1,j), (28)

and Ct,? is a (t− 1) dimensional vector with jth component 2
∑c

i=1
1

ν2
it
citj .

Extension to the more general GARP models is straightforward. Writing the GARP parameters,

φi,tj as in (19), it is easy to show that δ = A−1b, where A =
∑c

i=1

∑p
t=2

1
ν2

it

∑t−1
j=1

∑t−1
k=1

cikj [Zi,tjZ
′
i,tk + Zi,tkZ

′
i,tj ] and b =

∑c
i=1

∑p
t=2

1
ν2

it
2
∑t−1

k=1 citkZi,tk. The orthogonality of the common

GARP model is lost when a structure is put on the GARP as in Section 3.3.2.

4.2 Likelihood Ratio Test

In the context of incomplete data, the relevant likelihood is the observed data likelihood. Thus, for

incomplete data, the ratio (20) of the complete data likelihoods will be replaced by the ratio of the

observed data log likelihoods and will not take the simple form given in the last line of (21). As an

example, in the setting of monotone missing data, the maximized likelihood will take the form

L(Σ̂1, · · · , Σ̂c, α̂) = K
c∏

i=1

ni∏
j=1

exp{−(1/2)(Ypij −Xpij α̂)′Σ̂i(pij)−1(Ypij −Xpij α̂)}|Σ̂i(pij)|−1/2

(29)

where pij is the number of observed responses, taking values 1, . . . .p for individual j in group i,

Σi(pij) is the upper pij dimensional block of Σi, Ypij is a vector composed of the first pij components

of Yij and Xpij is a matrix consisting of the first pij rows of Xij .

5 Application: Longitudinal Clinical Trials

An important application of simultaneous modelling of covariance matrices across groups is in

longitudinal clinical trials. The main inferential question of interest is often whether the longitudinal

trajectories (or some function of them) differ across treatments. However, little attention is typically

given to the covariance matrix itself (or particular components) differing across treatments. The

covariance matrix is typically assumed constant (across treatments), especially if the sample sizes
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per treatment are not large, or the entire covariance matrix may be allowed to differ across groups

(in larger sample sizes). In the longitudinal setting, a natural compromise would be to allow only

particular components to vary across treatments and the hierarchy of GARP models proposed

here would be well-suited for this situation. As an illustration of a typical setting where not all

components vary across treatments, consider the marginal variance of the response at baseline (the

first time point), σ2
1. Due to randomization, we might expect the marginal variance at baseline

to be the same across treatment groups, but after baseline, the variability and dependence within

treatments might differ across treatments.

Obviously, by carefully modelling commonality of components of the covariance matrix across

groups, we will obtain both more precise and accurate inferences. In addition, in the presence of

MAR or non-ignorable missing data and dropouts, incorrectly modelling the covariance matrix can

result in biased inferences on the mean (trajectory) parameters as the information matrix for α

and Σ will no longer be orthogonal. So, to properly integrate over (and/or impute) the missing

values, the covariance structure within treatments needs to be correctly specified (Daniels and

Hogan, working paper). The GARP models also would allow a sensible parameterization on which

to conduct sensitivity analyses in the presence of informative dropout, particularly in the context

of pattern mixture models (Daniels and Hogan, 2000); this will be reported on elsewhere.

Example. Growth Hormone Longitudinal Clinical trial

We illustrate the application of our methodology to data from a recent longitudinal clinical

trial of growth hormone for maintaining muscle strength in the elderly. Details of the trial can be

found in Kiel et al. (1998). Previous analyses of this trial is reported in Daniels and Hogan (2000).

One hundred sixty subjects entered the trial and were randomized into one of four treatment

groups: placebo (P), growth hormone only (GH), exercise plus placebo (EP), and exercise plus

growth hormone (EGH). The placebo and growth hormone treatments were administered daily via

injections. Various muscle strength measures were recorded at baseline (0 months), 6 months, and

12 months. For this analysis, we will focus on mean quadriceps strength as the outcome of interest.
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The dropout rates in the four treatment groups were 11/41 (P), 13/41 (GH), 9/40 (EP), and 16/38

(EGH).

We will conduct our analysis under an assumption of random dropout (MAR) for illustration of

the methods here. We note, however, to conduct a sensitivity analysis under informative dropout,

the GARP models would be quite useful, especially in the context of pattern mixture models (Little,

1994).

Let Yij = (Yij1, Yij2, Yij3) denote the vector of longitudinal responses for subject j = 1, . . . , ni in

treatment group i = 1, . . . , 4. We assume Yij ∼ N(µi,Σi) and consider the correlation and GARP

models of Section 2 for modelling Σi across the treatment groups. We do not report on the CPC

models from Section 2 as they are somewhat less interpretable in the present longitudinal context.

Groups T D

1 1 0 0 622.14
-0.97 1 0 453.18
-0.45 -0.65 1 175.73

2 1 0 0 497.97
-0.90 1 0 150.38
-0.26 -0.61 1 72.71

3 1 0 0 668.17
-0.88 1 0 168.09
-0.21 -0.59 1 65.64

4 1 0 0 560.76
-0.73 1 0 172.79
0.01 -0.78 1 120.54

Table 1: GARP and IV parameters for the growth hormone data fitting a distinct Σ for each of
the four treatment groups.

Tables 1 and 2 show the GARP-IV and the correlation-variance components, by fitting the mul-

tivariate normal model under MAR, separately for each treatment group, using the EM algorithm.

Such decompositions can help elucidate local differences in the dependence/variance structure that

can be hard to detect when just looking at the estimated variances and covariances. They can
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also provide intuition into how the dependence/variance actually differs by choosing parameteriza-

tions/decompositions most appropriate for the application. The estimated φ31 look very different

in treatment groups 1 and 4 versus their values in groups 2 and 3. In addition, the innovation vari-

ances at time 2 and time 3 in treatment group 1 are much larger than the corresponding variances in

the other three treatment groups. We will fit the common GARP model below, but it appears that

a specialized model of the class (M ′′6) will be more suitable (see Table 3). The common correlation

model would appear to be reasonable with the only correlation appearing to differ significantly

across the four groups being the correlation between 0 and 12 months in treatment group 4, which

is much lower than the other correlations. In terms of the variances, the marginal variance at 6

and 12 months in treatment group 1 appear much larger than the corresponding variances in the

other three treatment groups.

Groups R D

1 1 0.75 0.81 622.1
0.75 1 0.89 1038.6
0.81 0.89 1 1094.7

2 1 0.85 0.85 498.0
0.85 1 0.91 556.5
0.85 0.91 1 456.8

3 1 0.87 0.86 668.2
0.87 1 0.92 690.3
0.86 0.92 1 485.3

4 1 0.80 0.66 560.8
0.80 1 0.84 474.8
0.66 0.84 1 405.8

Table 2: Correlation and variance estimates for the growth hormone data fitting a distinct Σ for
each of the four treatment groups.

Table 4 gives the log likelihoods and number of parameters to conduct likelihood ratio tests

within the classes of GARP and correlation models, respectively. A test of common Σ vs. unre-

stricted Σi, i = 1, . . . , 4 is rejected, X2 = 34.2 on 18 degrees of freedom. This is not surprising
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Groups T D

1 1 0 0 σ2
1

φ21 1 0 σ2
1,2

φ1,31 φ32 1 σ2
1,3

2 1 0 0 σ2
1

φ21 1 0 σ2
2

φ31 φ32 1 σ2
3

3 1 0 0 σ2
1

φ21 1 0 σ2
2

φ31 φ32 1 σ2
3

4 1 0 0 σ2
1

φ4,21 1 0 σ2
2

φ4,31 φ32 1 σ2
3

Table 3: Specialized GARP/IV model, (Ti, νi)?

given the treatment specific GARP/IV and Corr/D given in Tables 1 and 2. A LRT of common

GARP versus unrestricted Σi does not reject the common GARP model (X2 = 10.2 on 9 degrees

of freedom). Neither does a LRT of common correlations versus unrestricted Σi reject the common

correlation model (X2 = 8.8 on 9 degrees of freedom). The log likelihood of the specialized GARP

model (Table 3), labelled as (Ti, νi)?, was almost 4 units larger than that of the common GARP

model, even though it has 4 fewer parameters. This appears to be the best fitting model of all

considered.

We also examine the estimated means for the treatment groups at month 12 under the different

models for Σi to examine the importance of correctly modelling Σi in the presence of missing data

in this example. We point out that under MAR missing data, Σi, impacts the estimates of the

mean parameters, even under a saturated mean model as was fit here. This can be clearly seen in

the E-step of the EM algorithm as described in Section 4. Table 5 shows the month 12 means under

several models for Σ. The most obvious differences are between the month 12 means for treatment

group 1, which differ by as much as 2.3 units over the four models; in addition, the standard errors
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can differ by more than 30%. The amount of difference in means and standard errors ultimately

depends on two features of the distributions: 1) how much the Σi differ across groups and 2) how

much the means before dropout differ among those who complete the study and those who drop

out (Daniels and Hogan, working paper).

Model log likelihood No. of parameters in Σi’s
Σi -1664.0 24
Σi = Σ -1681.1 6
Ri = R -1668.4 15
Ti = T -1669.1 15
(Ti, νi)? -1665.4 11

Table 4: Log likelihoods for several GARP and correlation models

treatment group
Model 1 2 3 4
Σi 78.9 (7.05) 65.1 (3.9) 72.7 (4.0) 63.1 (3.8)
Σi = Σ 81.2 (5.10) 65.1 (4.4) 72.7 (4.3) 62.7 (4.5)
Ri = R 79.3 (7.3) 65.1 (3.7) 72.7 (3.6) 62.7 (4.3)
(Ti, νi)? 79.2 (6.7) 65.1 (4.0) 72.7 (4.0) 62.9 (3.7)

Table 5: Month 12 means (standard errors).

6 Discussion and Future Work

Because it does not require special constraints, the Cholesky decomposition for parsimonious mod-

elling of several covariance matrices offers a fairly straightforward modelling and estimation proce-

dure relative to the alternative variance-correlation and spectral decompositions. Flexibility of this

procedure is demonstrated with a dataset from a growth hormone clinical trial which has a high

percentage of missing values. A suitable EM algorithm for modelling the Cholesky factors in the

presence of missing values is developed.

A drawback of modelling the Cholesky factors is that this parameterization depends on the

ordering of the data. Longitudinal data poses no problem because it has a natural ordering. For

unordered data, one strategy is to find the ordering of the data that is most consistent with the

models under consideration. To avoid the evaluation of all p! possible orderings, a sequential
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approach might be used. For example, consider this algorithm for fitting the common GARP

model. Step 1: Fit all simple linear regressions of Yj on Yk for k 6= j for each group. Choose the

pair whose regression is closest to a single common GARP (i.e.,φi,jk = φjk). Step 2: Conditional

on the first two, add in the third variable that provides the closest fit for the common GARP of the

regression of this variable on the previous two. . . . Step (p-2): Conditional on first (p−2) variables,

choose the (p− 1)st variable that is closest to common GARP for the regression of this variable on

the p− 1 already included. The result will likely be an ordering of the data for which the common

GARP model fits well.

There are several other open computational problems in the context of simultaneous modelling

of several covariance matrices. For the (M ′′6) class of models, the model space is quite large and

model search techniques are needed to move through the complex space of models when p or c is big.

A fully Bayesian analysis using MC3 approaches might be a good option here; some exploration of

the models discussed here in a Bayesian setting can be found in Daniels (2005).

For the common correlation model (M3), finding fast and reliable algorithms remains a challenge.

The constrained-step Newton algorithm mentioned in Section 3.1 has fast local convergence, but

may take time to reach the vicinity of the maximizer if started from a distant point. Because of its

high computational cost per step (compared to methods that do not use second derivatives), the

Newton algorithm is particularly slow when used in conjunction with the EM algorithm, which can

require many iterations to converge. (Only an approximate maximization is needed in EM, so the

M-step can usually be performed with a single Newton step. But even one step can be costly in

high dimensions.) Perhaps direct maximization of the observed-data likelihood would be preferable

to using EM in this case.

Specialized algorithms for orthogonality-constrained optimization (like those of Edelman, Arias,

and Smith (1998)) may provide better options for fitting the common PC models (M′3), (M′4),

and (M′5). In fact, if the mean and variance (eigenvalue) parameters are unconstrained, such

algorithms can be directly applied to (12) after further profiling over α. Efficient application in the
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constrained case awaits generalization of these algorithms to simultaneous optimization over both

the orthogonal matrix and unconstrained parameters.

Appendix

Derivation of (16)

To obtain the likelihood equations for the common GARPs, since the first j − 1st and the jth

entries of T̃j are zero and 1, respectively, and the rest are unconstrained, direct computation of the

partial derivatives of `(·) with respect to T̃j in (15) could lead to complicated equations. Fortunately,

due to the role of φtj ’s as regression coefficients, we are able to rewrite `(·) as a quadratic form

involving only the unconstrained entries of T and consequently reduce their estimation to that of

solving a weighted least-squares problem.

To express trΣ−1
i Si in (8) as a quadratic form involving the nonredundant entries of T , recall

that

niSi =
ni∑

`=1

(Yi` −Xiα)(Yi` −Xiα)′,

consequently,

nitrΣ−1
i Si =

ni∑
`=1

trT ′ν−1
i T (Yi` −Xiα)(Yi` −Xiα)′

=
ni∑

`=1

trν−1
i T (Yi` −Xiα)[T (Yi` −Xiα)]′

=
ni∑

`=1

(Tyi`)′ν−1
i (Tyi`),

(A1)

where yi` = Yi`−Xiα, ` = 1, · · · , ni. It is known (Pourahmadi, 2000) that the unit lower triangular

matrix T transforms any mean-zero random vector with the covariance matrix Σi to its vector of

successive prediction errors. More specifically,

Tyi` = yi` − ŷi`, (A2)

where ŷi` = (ŷi`1, · · · , ŷi`p) and

ŷi`t =
t−1∑
j=1

φtjyi`j , t = 1, · · · , p, (A3)
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with the convention that
0∑

j=1

= 0. Substituting from (A2)-(A3) into (A1) leads to

nitrΣ−1
i Si =

ni∑
`=1

p∑
t−1

ν−2
it (yi`t − ŷi`t)

2

=
ni∑

`=1

p∑
t=1

ν−2
it

yi`t −
t−1∑
j=1

φtjyi`j

2

=
ni∑

`=1

p∑
t=1

ν−2
it

(
yi`t − φ′

(t)yi`(t)

)2

=
ni∑

`=1

Z ′
i`ν

−1
i Zi`,

(A4)

where

φ(t) = (φt1, · · · , φt,t−1), yi`(t) = (yi`1, · · · , yi`,t−1)

and
Zi` =

(
yi`1 − φ′

(1)yi`(1), · · · , yi`p − φ′
(p)yi`(p)

)
= yi` −

(
φ′

(1)yi`(1), · · · , φ′
(p)yi`(p)

)

= yi` −


0 0 0 0 · · · 0 0 · · · 0

yi`1 0 0 0 · · · 0 0 · · · 0
0 yi`1 yi`2 0 · · · 0 0 · · · 0
...
0 0 0 0 · · · 0 yi`1 · · · yi`,p−1




φ21

φ31

φ32
...

φp,p−1


= yi` −Yi`Φ,

(A5)

with the obvious definitions for the p× p(p−1)
2 matrix Yi` and the p(p−1)

2 -dimensional column vector

Φ. Thus, from (8), (A1)-(A5) we have

`(Σ1, · · · ,Σc, a) =
c∑

i=1

[
−ni

2
log |ν i| −

ni

2

ni∑
`=1

(yi` −Yi`Φ)′ν−1
i (yi` −Yi`Φ)

]
, (A6)

and
∂`

∂Φ
=

c∑
i=1

ni∑
`=1

niY′
i`ν

−1
i {yi` −Yi`Φ}

gives an estimator for Φ with a familiar formula:

Φ̂ =

(
c∑

i=1

ni∑
`=1

niY′
i`ν

−1
i Yi`

)−1( c∑
i=1

ni∑
`=1

niY′
i`ν

−1
i yi`

)
. (A7)
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