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Abstract

The correlation matrix (denoted by R) plays an important role in many statistical models.

Unfortunately, sampling the correlation matrix in MCMC algorithms can be problematic. In

addition to the positive definite constraint of covariance matrices, it has diagonal elements fixed

at 1. In this paper, we propose an efficient two-stage parameter expanded re-parameterization

and Metropolis-Hastings (PX-RPMH) algorithm for simulating R. The theory of the PX-

RPMH algorithm and sufficient conditions to implement it are shown in detail. Using this

algorithm, we draw all elements of R simultaneously by first drawing a covariance matrix from

an inverse Wishart distribution, and then translating it back to a correlation matrix through

a reduction function and accepting it based on a Metropolis-Hastings acceptance probability.

This algorithm is illustrated using multivariate probit (MVP) models and multivariate regres-

sion (MVR) models with a common correlation matrix across groups. A simulation study and

a real data example are done to compare the performance of the PX-RPMH algorithm with

those of other common algorithms. The results show that our algorithm is more efficient than

other methods for sampling a correlation matrix.

Key Words: Data Augmentation, Parameter Expansion, Correlation Matrix, Candidate

Prior, Target Prior, PX-RPMH Algorithm.
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1 Introduction

The correlation matrix is directly involved in a variety of statistical models. For example, in

multivariate probit models, it is common to restrict the covariance matrix to be a correlation

matrix for identifiability (Chib and Greenberg, 1998). In multivariate regression models, where the

variances, but not correlations, are assumed to differ across some categorical covariates, common

correlation models are often fit (Manly and Rayner, 1987; Pourahmadi, Daniels and Park, 2005).

Sampling the correlation matrix in these models is necessary and can be problematic due to the

two constraints on a correlation matrix: positive definiteness and fixed diagonal elements. In

addition, the number of unknown elements in the correlation matrix increases quadratically with

the dimension p. These facts make simulating a correlation matrix difficult.

Barnard, McCulloch and Meng (2000) suggested using the Griddy Gibbs sampler (Ritter and

Tanner, 1992) to draw the components of a correlation matrix one at a time in the context of a

hierarchical shrinkage model for the marginal variances of a covariance matrix. Although the Griddy

Gibbs sampler is simple to implement, it is not computationally efficient. Chib and Greenberg (1998)

sampled the correlation matrix in the multivariate probit model using a random walk Metropolis-

Hastings (RW-MH) algorithm. This algorithm is computationally more efficient than Griddy Gibbs

sampler as it samples more than one component at a time. However, a disadvantage is that the values

sampled from the proposal density are not guaranteed to be positive definite. In addition, it has the

problem of potentially slow mixing associated with most RW-MH algorithms. Liechty, Liechty and

Muller (2004) provide another approach to simulate all the components of the correlation matrix

one by one through introduction of a latent variable. Other approaches have been discussed in
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Nandram and Chen (1994), Nobile (1998), Daniels and Kass (1999) and Wong, Carter and Kohn

(2003).

Parameter expansion has been explored by several authors for simulating a correlation matrix. Liu

(2001) considered simulating a correlation matrix through re-parameterization in the multivariate

probit regression model. This method is restricted to a particular prior for R. Zhang, Boscardin and

Belin (2004) proposed a parameter-extended Metropolis-Hastings algorithm (PX-MH) for sampling

R in Bayesian models with correlated latent variables. The seminal idea in their method is that

instead of a marginal prior for R, they specified a joint prior for R and D (unidentified marginal

variances) derived from some inverse Wishart distribution of Σ = DRD in model estimation. Then

sampling (R, D) jointly was accomplished through a Metropolis Hastings algorithm by first drawing

Σ from a pre-specified Wishart distribution with degrees of freedom being the sample size and the

scale matrix being the current value of Σ. Using this method, all components of R are drawn at one

time. However, this algorithm is similar to random walk algorithms since they are sampling Σ from

a candidate distribution ’centered’ at the previous value. Though they sample all the components

at once, the random walk aspect can slow down mixing and convergence.

In this paper, building on previous work, we propose a two-stage parameter expanded re-parameterization

and Metropolis-Hastings (PX-RPMH) algorithm for simulating a correlation matrix from its con-

ditional distribution. In stage 1, using the idea of parameter expanded re-parameterization in Liu

(2001), R can be transformed into a less constrained covariance matrix, say Σ = DRD, through

four steps such that the posterior distribution of Σ is an inverse Wishart distribution. Here D is the

expansion parameter (more details later). In the second stage, simulating R in the original model

is equivalent to first simulating Σ from the inverse Wishart distribution in the new model, and then
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translating it back to R through the reduction function (R = D−1ΣD−1) and accepting it based on

a Metropolis-Hastings (M-H) acceptance probability. The major contributions of this paper over

previous work are as follows. First, we expand on the idea in Liu (2001) to provide a general frame-

work for deriving the parameter expanded candidate density of Σ = DRD for correlation matrices

and emphasize the intuition behind how these steps are related so that the algorithm can be easily

extended to the more general model settings that involve sampling correlation matrices. Second,

the M-H step allows the prior for R needed for the algorithm to be implemented to be different

from the prior for R we use for inference. Unlike in Liu (2001), there is no restriction on the prior

for R for Bayesian inference. Third, the family of inverse Wishart distributions used as proposal

densities in the M-H step of our algorithm are derived based on the data model. The degrees of

freedom and the scale matrix vary with different models. This differs from the approach in Zhang

et al (2004).

The rest of the article is organized as follows. In Section 2, we review multivariate probit (MVP)

models and multivariate regression models (MVR) with a common correlation matrix across groups

and techniques to sample from their respective posterior distributions. In Section 3, we propose

a parameter expanded re-parameterization and Metropolis-Hastings algorithm (PX-RPMH) for

simulating a correlation matrix. This algorithm is derived both for MVP models and for MVR

models with a common correlation matrix. Its implementation and properties are explained in

detail. A simulation study is reported on in Section 4 and a real data example in Section 5.
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2 Multivariate probit models and regression models

In this section, we review two models in which simulating a correlation matrix is necessary:

multivariate probit (MVP) models and multivariate regression (MVR) models with a common

correlation matrix across groups.

2.1 Multivariate probit models

The MVP model was first proposed by Ashford and Sowden (1970). Later, Chib and Greenberg

(1998) provided a unified simulation-based inferential methodology for overcoming the problems in

fitting MVP models. Let Qi = (Qi1, · · · , QiT ) (i = 1, · · · , n) denote a T-dimensional longitudinal

vector of binary responses. Let Yi = (Yi1, · · · , YiT ) denote a longitudinal vector of latent variables

with distribution Yi ∼ N(Xiβ, Σ), where Xi is a T ×p design matrix, β is a p×1 vector of unknown

regression coefficients and Σ is the covariance matrix of Yi. The MVP model has the following

relationship between Yi and Qi: Qij = I(Yij) where I is the indicator function such that I(Y ) = 1

if Y > 0 and I(Y ) = 0 otherwise (i = 1, · · · , n; j = 1, · · · , T ). Thus the probability of Qi = qi,

conditional on parameters β and Σ, is given by

P (Qi = qi|β, Σ) =

∫

AiT

· · ·
∫

Ai1

1√
2π|Σ| 12

exp

{

−1

2

n
∑

i=1

(Yi − Xiβ)′Σ−1(Yi − Xiβ)

}

dYi, (2.1)

where Aij is the interval (0,∞) if Qij = 1 and the interval (−∞, 0] if Qij = 0. As noted by Chib

and Greenberg (1998), the parameters (β, Σ) are not identifiable from the observed-data model. To

ensure identifiability of the model parameters, it is common to restrict the covariance matrix Σ to

be a correlation matrix R.
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To sample from the posterior distribution of (β, R), a combination of Gibbs sampling (Gelfand

and Smith, 1990) and data augmentation (Tanner and Wong, 1987) is typically used. This can be

conceptualized as two steps: an imputation (I) step and a posterior (P) step as follows

I step Impute the latent values Y = {Yi : i = 1, · · · , n} by drawing Yij from the full

conditional f(Yij|Yi(−j), β, R), where Yij is the jth element of Yi and Yi(−j) is the vector

containing all the elements of Yi except Yij (i = 1, · · · , n; j = 1, · · · , T ).

P step Generate (β, R) from π(β, R|Y ) using a Gibbs sampler by first drawing β

from π(β|Y, R) and then drawing R from π(R|Y, β).

2.2 Multivariate regression models

We now consider modelling multivariate continuous responses from several groups. Let Yij be a

T -dimensional response vector for the jth individual in group i (i = 1, · · · , c; j = 1, · · · , ni). The

following linear regression model is considered

Yij ∼ N(Xijβ, Σi), (2.2)

where Xij is a T × p design matrix, β is a p × 1 vector of regression coefficients and Σi is the

covariance matrix of Yij. This is a multivariate regression model with the same effect of covariates

across responses.

When there are not enough data to estimate a separate correlation matrix Ri for each group in

(2.2), we might consider the model with a common correlation matrix in which Σi can be decomposed

as ViRVi, with Vi = diag(σi1, · · · , σiT ) and σik the standard deviation of the k-th response in group i
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(i = 1, · · · , c; k = 1, · · · , T ). Thus, variances are allowed to differ across groups, but the correlation

matrix is assumed constant.

The parameters β in MVP models and (β(γ), Vi) in MVR Models can be sampled from their full

conditionals using the straightforward techniques as those in other standard MCMC algorithms. We

will not provide details in this paper. In what follows, we will show that the PX-RPMH algorithm

provides a simple way to sample a correlation matrix in general and specifically in these models.

3 The PX-RPMH algorithm

We propose a parameter expanded re-parameterization and Metropolis-Hastings (PX-RPMH)

algorithm to sample a correlation matrix. We derive the algorithm for both MVP models and MVR

Model I.

3.1 Overview of algorithm

The PX-RPMH algorithm can be viewed as a two-stage algorithm. We call the first stage param-

eter expanded re-parameterization (PXRP) and the second stage parameter expanded Metropolis-

Hastings (PXMH). The goal at the first stage is to derive a candidate density which is close to the

target density and from which it is easy to simulate; at the second stage, we implement a modified

parameter expanded Metropolis-Hastings step to ensure that the correlation matrix is sampled from

the correct posterior.

The PXRP stage has four steps. Step 1 is to find the expansion parameters. The scale parameters

of a correlation matrix R are fixed to be one and the off-diagonal elements are restricted to a convex
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region V ⊂ [−1, 1]−
T (T−1)

2 . The first constraint makes drawing R more difficult than drawing a

covariance matrix Σ. This difficulty can be overcome by transforming R into a less constrained

covariance matrix Σ, by borrowing the scale from some (matrix valued) expansion parameter (D).

The correlation matrix R can be converted into a covariance matrix Σ such that the conditional

distribution of Σ has a standard distribution (e.g. inverse Wishart distribution). The expansion of

the parameter space with the scale parameters, however, must be done to preserve the observed-

data model in the following sense: there is a many-to-one mapping, called the reduction function,

θ = P (θ∗), such that f(Yobs|θ) = f(Yobs|θ∗), where Yobs is the observed data, θ is the parameter

vector in the original model and θ∗ is the parameter vector in the expanded model. For example,

in MVP models, Yobs = Q, θ = (β, R), θ∗ = (β, Σ) and P (θ∗) = (β, D−1ΣD−1). We refer to this

step as ‘expansion parameter mining’ or ‘XP mining’.

Once we find the appropriate set of parameters for parameter expansion, we need to find a

candidate transformation T, which maps the standard parameter space to the constrained expanded

parameter space. Under this transformation, the joint posterior distribution indexed by the standard

parameters can be converted into the one indexed by the expanded parameters. The standard

parameter space has lower dimension than the expanded parameter space because R here has

fewer parameters than Σ. Constraints on the expanded space are needed since our candidate

transformation needs to be a one-to-one mapping. These constraints vary with the candidate

transformation and depend on the specific models or designs. We refer to this step as ‘candidate

transformations mining’ or ‘CT mining’. CT mining comprises the second step of the PXRP stage.

In the third step, we derive a candidate prior for R. We introduce this prior, based on the

candidate transformation in step 2 so that the conditional distribution of R can be transformed
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into the parameter expanded conditional distribution of Σ from which Σ is easy to sample. This prior

for R is not pre-specified or fixed. It is derived based on the CT in step 2, the likelihood function

and the priors for parameters, except R, to obtain the candidate density of Σ derived below, from

which it is easy to sample. Typically, the candidate prior chosen in this step is different from

the prior for R we pre-specify for posterior inference. To distinguish them, we call the latter the

target prior for R. We refer to this step as ‘candidate prior mining’ or ‘CP mining’.

The final step is to derive the parameter expanded candidate density (PXCD) of Σ based on the

CT in step 2 and the CP in step 3. This density will be used as the proposal density to sample R.

It is usually an inverse Wishart distribution with degrees of freedom and scale matrices varying in

different model settings. We refer to this step as parameter expanded candidate density deriving

(PXCD deriving).

Once we obtain the PXCD of Σ, we go to the second stage, i.e, the PXMH stage. In this stage,

we first simulate (R, D) from the PXCD of Σ and then according to a M-H acceptance probability,

we decide whether to keep the candidate R.

3.2 The PX-RPMH algorithm for MVP models

Recall the MVP models in Section 2.1. For Bayesian inference, we specify independent priors for

β and R as

π(β) ∝ exp{−1

2
(β − β0)

′Ψ−1
β (β − β0)} (3.1)

π(R) ∝ I{Rkl : |Rkl| ≤ 1 and R is pos. def., k, l = 1, · · · , T}, (3.2)
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where Rkl is the element in the kth row and lth column of R. We will weaken this independence

assumption in Section 4. Note that (3.2) is the joint uniform prior defined in Barnard, McCulloch

and Meng (2000).

For this model, the PX-RPMH algorithm is derived as follows,

XP mining: The expanded parameter vector is θ∗ = (β, Σ) where Σ = DRD and the reduction

function is P (θ∗) = (β, D−1ΣD−1) with expansion parameter D satisfying R = D−1ΣD−1.

CT mining: Based on P (θ∗) from the XP mining, we find the following one-to-one mapping from

{Yi, R} to {Y ∗
i , Σ} for creating draws of the correlation matrix,



















Yi = Xiβ + D−1Y ∗
i

R = D−1ΣD−1

(i = 1, · · · , n), (3.3)

where Σ is a T × T positive definite matrix and
∑n

i=1 Y ∗2

it = 1 for any t = 1, · · · , T . Note that β

in (3.3) is fixed and not involved in the transformation. Given β, the step that draws Yi implicitly

draws Y ∗
i and D because

∑n

i=1(Yit − x′
itβ)2 = D−1

tt

∑n

i=1 Y ∗2

it = D−1
tt , where Dtt is the tth element

of D and x′
it is the tth row of Xi. The space for (Y ∗

i , Σ) is higher dimensional than that for (Yi, R)

since R has fewer parameters than Σ. The constraints,
∑n

i=1 Y ∗2

it = 1 for any t = 1, · · · , T , are

needed, to make the candidate transformation a one-to-one mapping.

CP mining: Based on (2.1) and (3.3), to obtain the PXCD of Σ, we first need to find the

candidate prior for R, given by

π(R) ∝ |R|−T+1
2 I{Rkl : |Rkl| ≤ 1 and R is pos. def.}, (3.4)

where T is the dimension of R. We note that (3.4) is different from (3.2).
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PXCD deriving: The parameter expanded candidate density of Σ is given in the following propo-

sition.

Proposition 1. If we choose priors (3.1) and (3.2) for β and R, respectively, then from likelihood

function (2.1), transformation (3.3) and candidate prior (3.4), we obtain

π(Σ|Y ∗, β) ∝ |Σ|− ν+T+1
2 exp

{

− 1

2
tr(SΣ−1)

}

(3.5)

where ν = n, S =
∑n

i=1 Y ∗
i Y ∗′

i , Y ∗ = (Y ∗
1 , · · · , Y ∗

n ) and Y ∗
i = D(Yi −Xiβ). That is, Σ|Y ∗, β has an

inverse Wishart distribution with degrees of freedom ν and scale parameter S.

Proof: In Appendix I.

All the proofs of other Propositions and Theorems in the paper are also placed in Appendix I

without further mention.

Proposition 1 gives the PXCD of Σ to use as the proposal density in the PXMH stage. In

this stage, we first simulate Σ from (3.5) and then obtain the correlation matrix R through the

reduction function P (β, Σ) = (β, D−1ΣD−1). Second, we keep the candidate R with probability α

(the acceptance rate in the M-H algorithm). The entire PX-RPMH algorithm for MVP models is

given in the following theorem.

Theorem 1. Assume that β and R are, a priori, independent, i.e., π(β, R) = π(β)π(R). If we

specify (3.1) and (3.2) as priors for β and R, respectively, then under transformation (3.3) and

candidate prior (3.4), simulating R is equivalent to simulating Σ first from the inverse Wishart

distribution (3.5), and then translating it back to R through R = D−1ΣD−1 in (3.3) and ac-

cepting the candidate R using a Metropolis-Hastings step with some acceptance rate α, where

α = min
{

1, exp
(

T+1
2

(log |R| − log |R(k)|)
)}

at iteration k + 1.
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Theorem 1 provides a simple way to simulate the correlation matrix in MVP models.

3.3 The PX-RPMH algorithm for MVR Models

Recall MVR Models in Section 2.2. We specify the priors for β and R as in (3.1) and (3.2) and

the prior for Vi as

π(diag(Vi)) ∝
T

∏

t=1

(σ2
it)

−(rit+1) exp

{

−λit

σ2
it

}

, i = 1, · · · , c (3.6)

where diag(Vi) is the vector of the diagonal elements of Vi.

We derive the PX-RPMH algorithm as follows. In the PXRP stage, XP mining is similar to that in

MVP models. In CT mining, we consider the following one-to-one mapping T1 : {Yij, R} → {εij, Σ}


















Yij = Xijβ + D−1εij

R = D−1ΣD−1

(i = 1, · · · , c; j = 1, · · · , ni) (3.7)

where β is fixed and not involved in T1, and εij is a T × 1 vector satisfying
∑c

i=1

∑ni

j=1 ε2
ijt =

1 (t = 1, · · · , T ). Note that given β, the step that draws Yij implicitly draws εij and D because

∑c

i=1

∑ni

j=1(Yijt − x′
ijtβ)2 = D−2

tt

∑c

i=1

∑ni

j=1(ε
2
ijt) = D−2

tt for any t = 1, · · · , T , where Dtt is the t-th

diagonal element of D and xijt is the vector of covariates associated with the tth response of subject

j in group i. Based on (2.2) and (3.7), the candidate prior for R is the same as (3.4) given in MVP

models. The following proposition gives the PXCD of Σ

Proposition 2. If we specify (3.1), (3.2), and (3.6) for β, R and Vi, respectively, then under T1

(3.7) and candidate prior (3.4), the posterior distribution of Σ given εij and Vi (i = 1, · · · , c; j =
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1, · · · , ni) is an inverse Wishart with degrees of freedom ν1 and scale covariance matrix S1 , i.e.

π(Σ|ε, β, V1, · · · , Vc) ∝ |Σ|−
ν1+T+1

2 exp
{

− 1

2
tr(S1Σ

−1)
}

(3.8)

where ν1 =
∑c

i=1 ni, S1 =
∑c

i=1

∑ni

j=1 V −1
i εijε

′
ijV

−1
i , ε = (ε′11, · · · , ε′cnc

)′ and εij = D(Yij − Xijβ).

For the PXMH stage, the M-H step will be implemented as in MVP models. The PX-RPMH

algorithm for MVR Model I is given in the following theorem

Theorem 2. Assume that β, R and Vi are, a priori, independent, i.e., π(β, R, Vi) = π(β)π(R)π(diag(Vi)).

If we specify (3.1), (3.2), and (3.6) for β, R and Vi, respectively, then under transformation

(3.7)and candidate prior (3.4), simulating R is equivalent to simulating Σ first from the inverse

Wishart distribution (3.8), and then translating it back to R through R = D−1ΣD−1 in (3.7)

and accepting the candidate R through a Metropolis-Hastings step with acceptance rate α, where

α = min
{

1, exp
(

T+1
2

(log |R| − log |R(k)|)
)}

at iteration k + 1.

We conclude this section with several remarks

Remark 1. Extending the idea in Liu (2001), we provide a general framework for deriving the PXCD

of Σ through the four steps in the PXRP stage. We used the phrase ‘mining’ in the first three steps,

a term borrowed from the ‘data mining’ and ‘statistical methods mining’ literature (Berry and

Linoff, 2000).

Remark 2. XP mining, CT mining, CP mining and PXCD deriving are highly dependent. The first

three steps, the likelihood function, and the candidate/target priors for the parameters (besides

R) in the model determine the last step. The PXCD derived in the fourth step varies with the

candidate transformation found in the second step and the candidate prior in the third step. In CT
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mining, the candidate transformation may vary with the likelihood and the priors for θ(−R), where

θ(−R) is the parameter vector except R.

Remark 3. In the algorithm, we discussed two different terms: the target prior and the candidate prior.

They play different roles in our algorithm. The target prior is the prior we specify for posterior infer-

ence. The candidate prior is used to derive the PXCD which will be used as the proposal density in

the PXMH stage of the algorithm. We also point out that the target prior and the candidate prior

for the parameters except R are the same. However, this condition is not necessary.

Remark 4. The parameters were a priori independent in MVP models and MVR Model I. This

algorithm can also be applied to cases where these priors are not independent (Liu, 2001; Liu and

Sun, 2000). In addition, the target and candidate priors for θ(−R) can be different.

Remark 5. PXCD deriving is the bridge between the PXRP stage and the PXMH stage. Under

some mild conditions, the PX-RPMH algorithm can be reduced to a simpler algorithm. If the

candidate prior and the target prior for R are same, the acceptance probability α in the second

stage of the PX-RPMH is equal to 1. We call this simpler algorithm parameter expanded re-

parameterization (PX-RP) algorithm.

Remark 6. In the PXMH stage, we draw the expansion parameter D and correlation matrix R

simultaneously. The draws of latent data and other parameters in the model can be then adjusted

based on the current draw of D using the transformation in CT mining. Thus, as mentioned in

Liu (2001), by re-drawing the scale parameter D, the MCMC sampling scheme contains a way to

adjust the current draws of the latent data and the other parameters, and therefore has a faster

convergence rate than the standard Gibbs sampler.

Remark 7. Since the likelihood function does not change and the target prior(s) and the candidate prior(s)
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for the parameters except R are the same, the acceptance probability in the PXMH stage depends

only on the target prior (3.2) and the candidate prior (3.4) for R.

Remark 8. We can also use a more general candidate prior for R

π(R) ∝ |R|−a+1
2 exp

{

−1

2
tr(WR−1)

}

I{Rkl : |Rkl| ≤ 1 and R is pos. def.} (3.9)

where a is a constant and W = PΛP ′ is a T × T positive semi-definite tuning parameter matrix,

where Λ is a diagonal matrix containing the eigenvalues of W and P is an orthogonal matrix with

eigenvectors as columns. (3.9) is a more general version of (3.4). When W = 0, it reduces to the

candidate prior used here, π(R) ∝ |R|−a+1
2 . Note that when a ≤ −1, the reduced prior is proper,

but when a > −1, it is improper. The advantage of the more general specification in (3.9) is that

we can tune W if necessary to increase the acceptance rate in the M-H step. This will be helpful if

the target prior for R is informative (e.g. Zhang et al (2004)).

4 A simulation study

The Griddy-Gibbs sampler (Barnard et al, 2000) and the random walk Metropolis-Hastings (RW-

MH) algorithm (Chib and Greenberg, 1998) are two common methods for sampling from the dis-

tribution of a correlation matrix. We compare the performance of the PX-RPMH algorithm with

these two algorithms.

We simulated data under MVP models with n = 200 subjects at T = 7 time points. The 6-

dimensional columns of the design matrix were set as: Xit = (1, t, t2, bi, bi ∗ t, bi ∗ t2) where bi is a

binary covariate and t is the time point (i = 1, · · · , n; t = 1, · · · , T ). Without loss of generality, we
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set β to be a vector of 1’s and R to be

R =

















































1 0.8 0.6 0.4 0.2 0 0

0.8 1 0.8 0.6 0.4 0.2 0

0.6 0.8 1 0.8 0.6 0.4 0.2

0.4 0.6 0.8 1 0.8 0.6 0.4

0.2 0.4 0.6 0.8 1 0.8 0.6

0 0.2 0.4 0.6 0.8 1 0.8

0 0 0.2 0.4 0.6 0.8 1

















































.

The target priors for β and R were specified as

π(β) ∝ 1 and π(R) ∝ I{Rjk : |Rjk| ≤ 1 and R is pos. def.}.

Using results from Chen and Shao (1999), it can be shown that the joint posterior distribution for

this model is proper.

The observed data, Qi, were specified as Qij = 1 if Yij > 0 and 0 otherwise. Define Y =

(Y1, · · · , Y200) and Q = (Q1, · · · , Q200). We used the DA algorithm from Section 2.1 to sample from

the posterior. Some more details of the full conditional distributions are given next. Y |Q, β, R is a

truncated multivariate normal with density

f(Y |Q, β, R) ∝ exp
{

−1
2

∑n

i=1(Yi − Xiβ)′R−1(Yi − Xiβ)
}

|R|n
2

∫

C
exp

{

−1
2

∑n

i=1(Yi − Xiβ)′R−1(Yi − Xiβ)
}

dY
, (4.1)

where C is the truncation region defined as C = {Y : Yij ≥ 0 if Qij = 1 and Yij < 0 if Qij = 0}.

β|Y, R has a normal distribution

π(β|Y, R) =
1

|Σβ|
1
2

exp

{

−1

2
(β − µβ)′Σ−1

β (β − µβ)

}

, (4.2)
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where µβ =
(

∑n

i=1 X ′
iR

−1Xi

)−1(
∑n

i=1 X ′
iR

−1Yi

)

and Σβ =
(

∑n

i=1 X ′
iR

−1Xi

)−1

. The full condi-

tional distribution for R is

π(R|Y, β) ∝ |R|−n
2 exp

{

− 1

2
tr

[

n
∑

i=1

(

Yi − Xiβ
)(

Yi − Xiβ
)′

R−1
]}

×

I{Rjk : |Rjk| ≤ 1 and R is pos. def.}.

(4.3)

We sampled from the full conditional distribution of R using the PX-RPMH algorithm, the

Griddy-Gibbs sampling algorithm and the RW-MH algorithm. For the RW-MH algorithm, we chose

as the proposal density a normal distribution with mean r(k) and covariance τW , where r(k) is the

vector of the components of R(k) from the current iteration k defined as r(k) = (R
(k)
12 , · · · , R

(k)
(T−1)T )

(T = 7), W is the inverse of the negative of the Hessian matrix of log L(R|Y, β̂), where Y is the

true values from the simulated data (unknown in a real dataset), β̂ is the MLE of β, and τ is a

tuning constant. Let r be the candidate value from the proposal density q(r|r(k), Y, β). The RW-MH

algorithm, at iteration k + 1, is given by

Step 1 Generate a proposal value r from the normal density q(r|r(k), Y (k), β(k)).

Step 2 Set

r(k+1) =



















r with probability α

r(k) with probability1 − α

where α = min
{

f(Y (k)|β(k),R)

f(Y (k)|β(k),R(k))
, 1

}

.

The Metropolis-Hastings step was applied to r = (r1, r2, r3, r4) in four blocks since R has 21 elements,

where r1, r2 and r3 each consist of six components and r4 of three components in a row-wise

expansion of R. We chose τ = 1.5 for the first three blocks and τ = 2.0 for the fourth block such

18



that the acceptance rate (a percentage of times a move to a new point is made) was equal to 0.21

(Roberts, Gelman and Gilks, 1997; Roberts and Rosenthal, 2001).

To compare the running time of the PX-RPMH algorithm, the Griddy-Gibbs sampler and the

RW-MH algorithm, we generated 5000 samples from (4.3). For the Griddy-Gibbs sampler, for

simplicity, we discretized the domain of π(rij|r(−ij), Y, β) uniformly using the m points r1, · · · , rm

(set m = 20). The sampling required 991 seconds for the Griddy-Gibbs sampler; for the RW-MH

algorithm, the running time was 11 seconds; for the PX-RPMH, it was 6 seconds, which is more

than 150 times faster than the Griddy-Gibbs sampler.

Second, we examined graphically the mixing of the PX-RPMH algorithm and the random walk

Metropolis-Hastings algorithm. We used the DA algorithm to iteratively generate Y , β and R from

(4.1), (4.2) and (4.3), respectively. A chain of 50,000 iterations was generated and only the last

2000 samples were retained. We randomly chose 5 components of R: R15, R27, R35, R47 and R56

and examined the trace plots (see Figure 1). The first column is from the PX-RPMH algorithm

and the second is from the RW-MH algorithm. It is clear that the PX-RPMH algorithm is mixing

better than the RW-MH algorithm.

5 A real data example

We illustrate the performance of the algorithm using data from a longitudinal clinical trial of

growth hormone for maintaining muscle strength in the elderly. Details of the trial can be found

in Kiel et al. (1998) and Daniels and Hogan (2000). One hundred sixty subjects were recruited

and randomized to one of four treatments: 1) Placebo; 2) Growth hormone only; 3) Exercise plus
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placebo; 4) exercise plus growth hormone. The placebo and growth hormone treatments were

administered daily via injections. Various muscle strength measures were recorded at baseline (0

months), 6 months and 12 months. We are interested in the outcome of mean quadriceps strength.

The dropout rates in the four treatment groups were 11/41, 13/41, 9/40 and 16/38, respectively.

We will conduct our analysis under an assumption of random dropout (MAR) for illustration of our

method (Rubin, 1976).

Let Yij = (Yij1, Yij2, Yij3) denote the vector of longitudinal responses for subject j in group i

(i = 1, · · · , 4; j = 1, · · · , ni). Xij is specified such that each component of β corresponds to a

time/treatment specific mean. We use the model described in Section 2.2, Yij ∼ N(Xijβ, Σi), with

Σi = ViRVi. We specify priors for β, Vi and R as follows,

π(β) ∝ exp{−1

2
(β − β0)

′Ψ−1
β (β − β0)} (5.1)

π(diag(Vi)) ∝
T

∏

t=1

(σ2
it)

−(rit+1) exp

{

−λit

σ2
it

}

(i = 1, · · · , 4) (5.2)

π(R) ∝ I{Rkl : |Rkl| ≤ 1 and R is pos. def., k, l = 1, · · · , T}. (5.3)

Details on sampling (Ymis, β, Vi) can be found in the Appendix. The full conditional distribution

of R is given by

π(R|Y, β) ∝ |R|−
ni
2 exp

{

− 1

2
tr

[

4
∑

i=1

ni
∑

j=1

Vi

(

Yij − Xijβ
)(

Yij − Xijβ
)′

ViR
−1

]}

×

I{Rjk : |Rjk| ≤ 1 and R is pos. def.}.

(5.4)

To sample R, we use the PX-RPMH algorithm as described in Section 3.3. For comparison, we

also sample R using the RW-MH algorithm as described in Section 4.
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We ran a chain of 10,000 iterations using the two different methods to sample R and examined

trace plots of the last 2000 samples (see Figure 2). It is clear that the PX-RPMH algorithm is

mixing better than the RW-MH algorithm as was the case with the simulations in Section 4. Table

1 contains the posterior mean and 95% credible intervals for the elements of the common correlation

matrix (R), the group-specific variances (Vi), and the mean parameters based on the chain run using

the PX-RPMH algorithm. The ease with which this model can be fit using the PX-RPMH algorithm

should encourage its consideration.

6 Discussion

We have proposed a PX-RPMH algorithm for sampling R. This method does not restrict the

choice of the prior for R as previous methods and is easy to implement. Our comparisons show

that the PX-RPMH algorithm is superior to a RW-MH algorithm and the Griddy-Gibbs sampler

in terms of computational time and mixing.

The PX-RPMH algorithm can also be applied to the other cases in which sampling a correlation

matrix is necessary, such as shrinkage models for normal regression (Barnard, McCulloch and Meng,

2001), scale mixtures of multivariate normal link models (Chen and Dey, 1998, 2000) and joint

models for longitudinal binary and continuous responses (Gueorguieva and Agresti, 2001); for the

final case, the PX-RPMH algorithm has been implemented (Liu and Daniels, 2005). The same

family of inverse Wishart distributions should be able to be derived for these models as the parameter

expanded candidate density (PXCD) in the PXRP stage, but the degrees of freedom and the scale

matrix of the PXCD will vary and more expansion parameters, in addition to the scale parameters
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D, may be needed to implement the algorithm for certain models. This will make the PXRP stage

more complex. As one referee pointed out, we need to be careful when we apply this algorithm to

models in which the dimension of the responses and the correlation matrix are not the same. In

this case, deriving the parameter expanded candidate density can be difficult. We will address this

issue in the future research.

The expansion parameters play an important role in our algorithm. If the same expansion pa-

rameters also make the DA algorithm converge faster, then we may unify the DA algorithm and the

PX-RPMH algorithm and make the MCMC algorithm more efficient. In general model settings,

whether the expansion parameters used in our algorithm can also accelerate the DA algorithm needs

further study.
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Appendix

Proof of Proposition 1

Extending the idea in Liu (2001), based on transformation (3.3), we derive the Jacobian. The

following five determinants are needed

∣

∣

∣

∣

∂(Y1, · · · , Yn)
′

∂(σ21, · · · , σT,T−1)

∣

∣

∣

∣

= 0

∣

∣

∣

∣

∂(r21, · · · , rT,T−1)
′

∂(σ21, · · · , σT,T−1)

∣

∣

∣

∣

=
T

∏

j=1

(σ−1
jj )T−1 = |D−1|T−1

∣

∣

∣

∣

∂(σ−1
11 , · · · , σ−1

T,T )′

∂(σ2
11, · · · , σ2

T,T )

∣

∣

∣

∣

= (−1

2
)T

T
∏

j=1

(σ−2
jj )

3
2 ∝ |D−1|3

∣

∣

∣

∣

∂(Y1, · · · , Yn)
′

∂(Y ∗
1 , · · · , Y ∗

n−1)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

In−1

⊗

D−1
)

P1

∣

∣

∣

∣

∝ |D−1|n−1

∣

∣

∣

∣

∂(Y1, · · · , Yn)
′

∂(σ−1
11 , · · · , σ−1

T,T )

∣

∣

∣

∣

= |P2|
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where P1 and P2 are matrices, not depending on D. Then the Jacobian is

J =

∣

∣

∣

∣

∂(Y1, · · · , Yn, R)

∂(Y ∗
1 , · · · , Y ∗

n−1, Σ)

∣

∣

∣

∣

+

=

∣

∣

∣

∣

∂(Y1, · · · , Yn, r21, · · · , rT,T−1)
′

∂(Y ∗
1 , · · · , Y ∗

n−1, σ
2
11, · · · , σ2

T,T , σ21, · · · , σT,T−1)

∣

∣

∣

∣

+

=

∣

∣

∣

∣

∣

∣

∣

∣

∂(Y1,··· ,Yn)′

∂(Y ∗

1 ,··· ,Y ∗

n−1,σ2
11,··· ,σ2

T,T
)

∂(r21,··· ,rT,T−1)′

∂(Y ∗

1 ,··· ,Y ∗

n−1,σ2
11,··· ,σ2

T,T
)

∂(Y1,··· ,Yn)′

∂(σ21,··· ,σT,T−1)

∂(r21,··· ,rT,T−1)′
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D−1 0
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∣

∣
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∣
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+

=|D−1|T+2|D−1|m−1 = |D−1|n+T+1

where n is the sample size, T is the number of time points and | |+ means the absolute value of the

corresponding determinant. Using prior (3.4), the joint distribution of Y and R given β is

p(Y, R|β) ∝ |R|−n+T+1
2 exp

{

−1

2

n
∑

i=1

(Yi − Xiβ)′ R−1 (Yi − Xiβ)

}

(A.1)
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Through the one-to-one mapping T : (Y, R) → (Y ∗, Σ), we have

p(Y ∗, Σ|β) ∝|R|−n+T+1
2 × J × exp

{

−1

2

n
∑

i=1

Y ∗′

i Σ−1Y ∗
i

}

=|R|−n+T+1
2 |D−1|n+T+1 exp

{

−1

2

n
∑

i=1

Y ∗′

i Σ−1Y ∗
i

}

=|Σ|−n+T+1
2 exp

{

−1

2

n
∑

i=1

Y ∗′

i Σ−1Y ∗
i

}

(A.2)

So,

π(Σ|Y ∗, β) ∝ p(Y ∗, Σ|β) ∝ |Σ|− ν+T+1
2 exp

{

−1

2
SΣ−1

}

(A.3)

where ν = n, S =
∑n

i=1 Y ∗
i Y ∗′

i , Y ∗ = (Y ∗
1 , · · · , Y ∗

n ) and Y ∗
i = D(Yi − Xiβ).

Proof of Theorem 1

By the candidate transformation T given in (3.3), and (A.1) and (A.2) in the proof of Proposition

1, drawing Y and R given β is equivalent to drawing Y ∗ and Σ first, and then translating back

to Y and R through T. R = D−1ΣD−1 will be used as the candidate value. It is accepted in

the Metropolis-Hastings step with probability α. The α can be derived as follows. Let π1 denote

the prior or full conditional distribution of R and π2 denote the corresponding candidate prior or

proposal density. Then

π1(R|Y, β) ∝ π1(R)f(Y |β, R)

and

π2(R|Y, β) ∝ π2(R)f(Y |β, R)

where π1(R), π2(R) and f(Y |β, R) are given by (3.2), (3.4) and (2.1), respectively. The probability
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of acceptance at iteration k + 1 is

α = min

{

1,
π1(R|Y, β)π2(R

(k)|Y, β)

π1(R(k)|Y, β)π2(R|Y, β)

}

= min

{

1,
π1(R)π2(R

(k))

π1(R(k))π2(R)

}

= min

{

1,
π2(R

(k))

π2(R)

}

= min

{

1,
|R(k)|−T+1

2

|R|−T+1
2

}

= min

{

1,

( |R(k)|
|R|

)−T+1
2

}

= min

{

1, exp

(

T + 1

2
(log |R| − log |R(k)|)

)}

(A.4)

Proof of Proposition 2

Similar to the proof of Proposition 1, the Jacobian can be shown to be J = |D−1|
Pc

i=1 ni+T+1, where

ni is the number of individuals in group i and T is the dimension of R. Using prior (3.4), the joint

distribution of Y and R given β and Vi is

p(Y, R|β, V1, · · · , Vc) ∝ |R|−
Pc

i=1 ni+T+1

2 exp

{

−1

2

c
∑

i=1

ni
∑

j=1

(Yij − Xijβ)′ V −1
i R−1V −1

i (Yij − Xijβ)

}

(A.5)

Define ε to be ε = (ε′11, · · · , ε′cnc
)′, where εij = D(Yij − Xijβ) given in (3.7). Through the transfor-

mation (3.7), we have

p(ε, Σ|β, V1, · · · , Vc) ∝|R|−
Pc

i=1 ni+T+1

2 × J × exp

{

−1

2

c
∑

i=1

ni
∑

j=1

ε′ijV
−1
i Σ−1V −1

i εij

}

=|R|−
Pc

i=1 ni+T+1

2 |D−1|
Pc

i=1 ni+T+1 exp
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−1

2

c
∑

i=1

ni
∑

j=1

ε′ijV
−1
i Σ−1V −1

i εij

}

=|Σ|−
Pc

i=1 ni+T+1

2 exp

{

−1

2

c
∑

i=1

ni
∑

j=1

ε′ijV
−1
i Σ−1V −1

i εij

}

(A.6)

Hence,

π(Σ|ε, β, V1, · · · , Vc) ∝ p(ε, Σ|β, V1, · · · , Vc) ∝ |Σ|−
ν1+T+1

2 exp

{

−1

2
S1Σ

−1

}

(A.7)

29



where ν1 =
∑c

i=1 ni and S1 =
∑c

i=1

∑ni

j=1 V −1
i εijε

′
ijV

−1
i .

Proof of Theorem 2

By the candidate transformation T1 given in (3.7), and (A.5) and (A.6) in the proof of Proposition

2, drawing Y and R given β and Vi (i = 1, · · · , c) is equivalent to drawing ε and Σ first, and then

translating back to Y and R through T1. R = D−1ΣD−1 will be used as the candidate value. It

is accepted in the Metropolis-Hastings step with probability α. The α can be derived similarly to

that in the Proof of Theorem 1.

Sampling algorithm details for data example in Section 5

We provide some details on the data augmented Gibbs sampling algorithm for the (β, Vi, Ymis).

We start with Ymis. If we partition Yij µij and Σi as Yij =









Yij,mis

Yij,obs









, µij =









µij,mis

µij,obs









and

Σi =









Σi11 Σi12

Σi21 Σi22









, then the data augmentation step is implemented by sampling Ymis from

f(Ymis|Yobs, β, Vi, R) ∝ exp

{

−1

2

4
∑

i

ni
∑

j=1

(Yij,mis − µ
(c)
ij,mis)

′Σ
(c)−1

i,mis(Yij,mis − µ
(c)
ij,mis)

}

, (6.1)

where µ
(c)
ij,mis and Σ

(c)
i,mis are the conditional mean and covariance of Yij,mis given Yij,obs for subject j

in group i. They can be formulated as

µ
(c)
ij,mis = µij,mis + Σi12Σ

−1
i22(Yij,obs − µij,obs) and Σ

(c)
i,mis = Σi11 − Σi12Σ

−1
i22Σ

′
i12.

Once we sample Ymis from (6.1), we obtain complete data Y , Y = (Y ′
mis, Y

′
obs)

′. The full conditional
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distribution for β, β|Y, Vi, R is normally distributed as

π(β|Y, Vi, R) ∝ exp

{

−1

2
(β − µβ)′Σ−1

β (β − µβ)

}

, (6.2)

where

µβ =
(

4
∑

i=1

ni
∑

j=1

X ′
ij(ViRVi)

−1Xij

)−1(
4

∑

i=1

ni
∑

j=1

X ′
ij(ViRVi)

−1Yij

)

and

Σβ =
(

4
∑

i=1

ni
∑

j=1

X ′
ij(ViRVi)

−1Xij

)−1

.

The full conditional distribution of each component of Vi is given by

π(
1

σit

|Y, β, R, σi(−t)) ∝ σ
−(ni+2rit−1)
it exp

{

−ait

σ2
it

− bit

σit

}

(i = 1, · · · , 4; t = 1, · · · , 3), (6.3)

where ait = λit+
1
2
Ctt

∑ni

j=1 ε2
ijt and bit =

∑T

l=t+1 Ctlσ
−1
il (

∑ni

j=1 εijtεijl). Here Ctl is the (t, l)th element

of R−1. The components of Vi can be sampled one by one from (6.3), using the Metropolis-Hastings

algorithm (for details, see Liu (2006)).
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Table 1: Posterior means and 95% credible intervals for the correlations, variances, and regression

parameters for the growth hormone data.

Groups (i) R diag(Vi) β

0.81(0.75,0.86) 634(462,855) 68.9(60.8,76.7)

1 0.79(0.72,0.85) 937(662,1355) 80.5(69.9,90.6)

0.89(0.83,0.91) 913(644,1273) 79.1(68.3,89.6)

514.03(384,742) 68.4(61.4,75.2)

2 - 589.(448,822) 66.0(58.6,73.7)

492.(357,672) 65.1(58.0,72.0)

606 (465,775) 65.6(58.1,73.0)

3 - 640(507,818) 81.0(73.0,88.7)

465(350,601) 72.4(65.6,79.2)

689(517,932) 65.2(57.4,73.2)

4 - 628 (477,868) 62.1(54.5,69.8)

554 (407,782) 62.6(55.0,70.4)
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Figure 1: Trace plots of 5 components of R over the last 2000 iterations of 50,000 iterations for the

PX-RPMH algorithm and RW-MH algorithm in the simulation study.
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Figure 2: Trace plots of the three components of R over the last 2000 iterations of 10,000 iterations

for the PX-RPMH algorithm and RW-MH algorithm in the real data example in Section 5.
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