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Summary.

In longitudinal clinical trials, when outcome variables at later time points are only

defined for patients who survive to those times, the evaluation of the causal effect of

treatment is complicated. In this paper, we describe an approach that can be used to

obtain the causal effect of three treatment arms with ordinal outcomes in the presence

of death using a principal stratification approach. We introduce a set of flexible assump-

tions to identify the causal effect and implement a sensitivity analysis for non-identifiable

assumptions which we parameterize parsimoniously. Methods are illustrated on quality

of life data from a recent colorectal cancer clinical trial.
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1. Introduction

In longitudinal clinical trials, outcome variables at later time points are only defined for

patients who survive to those times. This complicates analyses, since those who survive on

each treatment arm to any given time point are not a random sample of those randomized

to each treatment arm. Standard approaches to account for missing data in the literature

implicitly ‘impute’ values of outcome after dropout. For quality of life (QOL) data, if a

subject drops out due to deteriorating disease status or death, the QOL will not be defined

after the dropout time. If we restrict the analyses to subgroup of patients who survived,

the resulting estimate of the treatment effect will no longer have a causal interpretation.

One way to conduct analyses in this circumstance is to construct the joint distribution

of the longitudinal responses and death times (Hogan and Laird, 1997; Pauler et al., 2003;

Kurland and Heagerty, 2005; Lee and Daniels, 2007). Hogan and Laird (1997) proposed

a likelihood-based mixture model approach to model the joint distribution for incomplete

repeated measurements and right-censored event times. Pauler et al. (2003) proposed a

pattern mixture model for longitudinal quality of life data with nonignorable missingness

due to dropout and censorship by death. Recently, Kurland and Heagerty (2005) explored

regression models conditioning on being alive as a valid target of inference using regression

models that condition on survival status rather than a specific survival time. Lee and

Daniels (2007) used a pattern mixture approach with patterns defined on the observed

tumor progression or death times which is similar to ideas in Hogan and Laird (1997) and

Pauler et al. (2003). Each of these approaches to drawing inference in the presence of

death, in effect, stratify the analysis using events that occur after randomization and do

not maintain the causal interpretation of the treatment effect.

To obtain the causal effect of treatment, we start by defining potential outcomes. Po-

tential outcomes are all the outcomes that would be observed if each of the treatments
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had been applied to each of the subjects (Rubin, 1974, 1978; Holland, 1986). Frangakis

and Rubin (2002) used the concept of potential outcomes in an approach called ‘prin-

cipal stratification’. Principal stratification partitions subjects into sets with respect to

posttreatment variables. For example, consider two treatments, Tx = 0, 1 and a bi-

nary response Y (Tx). The causal effect of the treatment on response is Y (1) − Y (0).

However, we only observe either Y (1) or Y (0) for each subject. Let D(Tx) be a binary

posttreatment variable. In this case, there are four principal strata defined by the pairs

of potential values of D(Tx), (i) ({i|D(0) = 0, D(1) = 0}), (ii) ({i|D(0) = 0, D(1) = 1}),
(iii) ({i|D(0) = 1, D(1) = 0}), and (iv) ({i|D(0) = 1, D(1) = 1}). The principal strata are

not affected by treatment assignment. Causal effects are defined within these principal

strata.

Frangakis and Rubin (2002) discussed causal effects in studies where the outcome does

not exist due to death. Rubin (2000) and Hayden et al. (2005) referred to the estimand

in Frangakis and Rubin (2002) as ‘the survivors average causal effect (SACE)’. Egleston

et al. (2007) proposed assumptions to identify the SACE among survivors at a fixed time

point in a cohort study of older adults and implemented a sensitivity analysis for some

of those assumptions. Rubin (2006) introduced the causal effect of a treatment on an

outcome that is censored by death in a Quality of Life study. Recently, Lee and Daniels

(2008) used a ‘principal stratification’ approach to estimate the SACE for ordinal data in

a two treatment arm setting.

The identification of the SACE relies on untestable assumptions. For example, the

widely used monotonicity assumption (in the context of death) states that “no subject

would be dead if randomized to an active treatment, but would be alive if randomized

to a control treatment”. This assumption (and variations) has been used in a variety of

settings, including death and noncompliance (Zhang and Rubin, 2003; Gilbert et al., 2003;
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Cheng and Small, 2006; Egleston et al., 2007; Lee and Daniels, 2008; Cheng, 2009; Imai

2008; Jin and Rubin, 2008). Stochastic monotonicity assumptions have been developed

recently as a weaker and more realistic alternative in the context of compliance (Roy et

al., 2008) and instrumental variables (Small and Tan, 2008).

In this paper, we describe an approach that can be used to obtain the causal effect of

treatment in the presence of death in a setting of three treatment arms with longitudinal

ordinal outcomes. We replace the common deterministic monotonicity assumption with

a more flexible set of assumptions that allows incorporation of subject specific covariates

to increase its applicability to our setting. Overall, we provide a realistic framework that

has only four sensitivity parameters for longitudinal ordinal data involving comparisons

among three treatments. Although our main interest will be treatment differences at the

end of the study, we will make efficient use of all available longitudinal data which is

essential due to the high rate of dropouts unrelated to death.

The paper is arranged as follows. In section 2, we describe the clinical trial that

motivated our analyses. In section 3, we formally define the causal effects of interest,

provide some assumptions that are necessary to identify them, and then derive how the

causal effects can be estimated from these assumptions along with modeling assumptions

for the observed data in this complex setting. We also propose a sensitivity analysis

procedure for some of these untestable assumptions. Methods are illustrated on the

quality of life data in section 4. Section 5 contains conclusions and a discussion.

2. Quality of Life Data in Clinical Trials

As a secondary outcome, many clinical trials measure aspects of a patient’s sense of

well-being and ability to perform various tasks to assess the effects that cancer and its

treatment have on the patient. Such quality of life (QOL) outcomes in clinical trials are

generally obtained repeatedly over time using questionnaires that can be completed by
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the patient without direct supervision. These standardized questionnaires rate factors

such as pain, treatment side-effects, mood, energy level, family and social interactions,

sexual function, ability to work, and ability to maintain routine daily activities. Here, we

describe the QOL data set with which we will work.

We analyze QOL data from a recent colorectal cancer clinical trial (Trial N9741,

Goldberg et al., 2004). The trial randomized patients with advanced colorectal cancer to

compare three different two drug combinations. The main objective of the trial was to

find a better treatment for colorectal cancer. The trial led to a new standard of care.

A total of 795 patients with colorectal cancer were randomly assigned to one of three

treatments between May 1999 and April 2001. Patients received either irinotecan and

bolus fluorouracil plus leucovorin (IFL arm), oxaliplatin and infused fluorouracil plus leu-

covorin (FOLFOX arm), or irinotecan and oxaliplatin (IROX arm). At the time the trial

was initiated, the IFL regimen was the FDA approved standard of care (Saltz et al., 2000).

Based on the primary endpoints of time to progression and overall survival, the FOLFOX

arm was identified as the superior treatment and FOLFOX was also comparatively safe

relative to the other treatments.

However, given that the toxicity profiles were quite different on the three treatment

arms, it was of interest to see if there was a negative impact of the ‘better’ treatment

(FOLFOX) on patient’s QOL. In this paper we compare the quality of life data on the

three treatments.

2.1 QOL outcomes

The QOL outcomes measured here included fatigue, nausea, vomiting, diarrhea, and

dehydration. Previous analyses split the QOL scores into 12 week windows. The patient’s

visit is the window number during which the survey was filled out (0=baseline, 1=1-84

days after going on study, 2=85-168 days after going on study,..., 5=337-420 days after
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going on study). We will analyze the data from the first five windows (up to about one

year).

For illustration, we focus on one QOL measure, fatigue. Fatigue is measured on a 5

point ordinal scale (1: I am usually not tired at all; 2: I am occasionally rather tired; 3:

There are frequently periods when I am quite tired; 4: I am usually very tired; 5: I feel

exhausted most of the time). Because very few patients reported category 5, we collapsed

category 4 and 5 into one category.

2.2 Dropouts

Similar to other longitudinal studies, the QOL data collection in this clinical trial had

substantial dropout. The overall dropout rates were similar in the three treatment groups

(96% for IFL; 98% for IROX; 98% for FOLFOX). About 95% of dropouts occurred between

baseline and the fourth visit. Dropout was related to whether cancer had progressed,

death, toxicity, and other factors. A large number of subjects dropped out due to tumor

progression or death (40.5%). The dropout rates due to progression/death were marginally

higher on the IFL and IROX arms than on the FOLFOX arm. An interesting feature of

this dataset is that we have the actual progression/death times for all subjects including

those who dropped out for other reasons. More detailed description of the pattern of

dropouts in this study is given in Lee and Daniels (2007).

We will use this data to illustrate the models and methods introduced in the subsequent

sections.

3. Principal Stratification Approach

Consider a three-arm trial. In our application the three treatments were IFL (standard of

care) and FOLFOX and IROX (both experimental). Let Txi be the treatment indicator
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for subject i = 1, · · · , N ,

Txi =





0, if subject i is assigned to IFL;
1, if subject i is assigned to IROX;
2, if subject i is assigned to FOLFOX,

and let Dit(Txi) be tumor-progression/death indicator for subject i at visit t = 1, · · · , T ,

Dit(Txi) =

{
0, alive;
1, tumor progressed or dead.

Note T is last visit. Obviously, if Dit(Txi) = 1, then Dis(Txi) = 1 for s > t. To maintain

clarity, we will refer to the tumor progression/death indicator Dit(·) as the death indicator

for rest of this paper.

We define the following eight (principal) strata:

1. At(0) = {i|(Dt(0), Dt(1), Dt(2)) = (0, 0, 0)}: the subjects who would be alive under

all three arms at visit t.

2. At(1) = {i|(Dt(0), Dt(1), Dt(2)) = (1, 0, 0)}: the subjects who would be alive under

the two experimental treatments but not alive under the standard of care (IFL) at

visit t.

3. At(2) = {i|(Dt(0), Dt(1), Dt(2)) = (1, 1, 0)}: the subjects who would be alive under

FOLFOX but not alive under the standard of care (IFL) and IROX at visit t.

4. At(3) = {i|(Dt(0), Dt(1), Dt(2)) = (1, 0, 1)}: the subjects who would be alive under

IROX but not alive under the standard of care (IFL) and FOLFOX at visit t.

5. At(4) = {i|(Dt(0), Dt(1), Dt(2)) = (0, 0, 1)}: the subjects who would be alive under

the standard of care (IFL) and IROX but not alive under FOLFOX at visit t.

6. At(5) = {i|(Dt(0), Dt(1), Dt(2)) = (0, 1, 0)}: the subjects who would be alive under

the standard of care (IFL) and FOLFOX but not alive under IROX at visit t.
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7. At(6) = {i|(Dt(0), Dt(1), Dt(2)) = (0, 1, 1)}: the subjects who would be alive under

standard of care (IFL) but not alive under the two experimental treatments at visit

t.

8. At(7) = {i|(Dt(0), Dt(1), Dt(2)) = (1, 1, 1)}: the subjects who would not be alive

under any treatment at visit t.

Now, let Yit(Txi) be the potential ordinal outcome (Yit(Txi) = k for k = 1, · · · , K) for

subject i at time t. The full set of potential outcomes at visit t is

Pt = {Dt(0), (Yt(0); Dt(0) = 0), Dt(1), (Yt(1); Dt(1) = 0), Dt(2), (Yt(2); Dt(2) = 0)} ,

where, for treatment tx, Yt(tx) is the potential outcome if a subject is alive at visit

t (Dt(tx) = 0). If the patient is alive (Dit(Txi) = 0), define Rit to be the indicator

that Yit = Yit(Txi) is observed. In the following, we assume monotone dropout (Rit =

1 ⇒ Rit−1 = 1). Wi and Si respectively denote the vector of baseline covariates and

progression/death time (Si = j ⇔ {Dij = 1, Dij−1 = 0}). So, the observed data for

individual i is

Oit = {W i, Txi, Si, Dit, (Rit; Dit = 0), (Yit; Dit = 0, Rit = 1)} .

Unfortunately, given Oit alone, we cannot determine to which stratum individual i be-

longs.

In the next section, we formally define the causal effects of interest and then state

some additional assumptions that are necessary to estimate them.

3.1 Defining the Causal Effects

Suppress i here for clarity. We assume each individual at visit T (last visit) belongs

to one of 8 basic principal strata (Frangakis and Rubin, 2002) defined by the unique
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combinations of (DT (0), DT (1), DT (2)). Some of these strata will be empty because of

the monotonicity assumptions (Assumption I in Section 3.2).

For each pairwise treatment comparison, we define the three causal effects of interest

at time T (last visit) for k = 1, · · · , K − 1,

1.

SACEk,1(1, 0) =
odds {YT (1) > k|(DT (0), DT (1), DT (2)) = (0, 0, 0)}
odds {YT (0) > k|(DT (0), DT (1), DT (2)) = (0, 0, 0)}

=
odds {YT (1) > k|AT (0)}
odds {YT (0) > k|AT (0)} ,

SACEk,2(1, 0) =
odds {YT (1) > k|(DT (0), DT (1), DT (2)) = (0, 0, 1)}
odds {YT (0) > k|(DT (0), DT (1), DT (2)) = (0, 0, 1)}

=
odds {YT (1) > k|AT (4)}
odds {YT (0) > k|AT (4)} ,

SACEk,3(1, 0) =
odds {YT (1) > k|AT (0) ∪ AT (4)}
odds {YT (0) > k|AT (0) ∪ AT (4)} ,

2.

SACEk,1(2, 0) =
odds {YT (2) > k|(DT (0), DT (1), DT (2)) = (0, 0, 0)}
odds {YT (0) > k|(DT (0), DT (1), DT (2)) = (0, 0, 0)}

=
odds {YT (2) > k|AT (0)}
odds {YT (0) > k|AT (0)} ,

SACEk,2(2, 0) =
odds {YT (2) > k|(DT (0), DT (1), DT (2)) = (0, 1, 0)}
odds {YT (0) > k|(DT (0), DT (1), DT (2)) = (0, 1, 0)}

=
odds {YT (2) > k|AT (5)}
odds {YT (0) > k|AT (5)} ,

SACEk,3(2, 0) =
odds {YT (2) > k|AT (0) ∪ AT (5)}
odds {YT (0) > k|AT (0) ∪ AT (5)} ,
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3.

SACEk,1(2, 1) =
odds {YT (2) > k|(DT (0), DT (1), DT (2)) ∈ (0, 0, 0)}
odds {YT (1) > k|(DT (0), DT (1), DT (2)) ∈ (0, 0, 0)}

=
odds {YT (2) > k|AT (0)}
odds {YT (1) > k|AT (0)} ,

SACEk,2(2, 1) =
odds {YT (2) > k|(DT (0), DT (1), DT (2)) ∈ (1, 0, 0)}
odds {YT (1) > k|(DT (0), DT (1), DT (2)) ∈ (1, 0, 0)}

=
odds {YT (2) > k|AT (1)}
odds {YT (1) > k|AT (1)} ,

SACEk,3(2, 1) =
odds {YT (2) > k|AT (0) ∪ AT (1)}
odds {YT (1) > k|AT (0) ∪ AT (1)} ,

There are three SACEs for comparing IROX and IFL, three for comparing FOLFOX and

IFL, and three for comparing IROX and FOLFOX. The SACEk,1(1, 0) is the odds ratio

that the outcome at time T is larger than k for comparing IROX and IFL for subjects

who would be alive under all three treatment arms. The SACEk,2(1, 0) is the odds ratio

that the outcome at time T is larger than k for comparing IROX and IFL for subjects who

would be alive under IROX and IFL but not alive under FOLFOX. The SACEk,3(1, 0) is

the odds ratio that the outcome at time T is larger than k for comparing IROX and IFL

for subjects who would be alive either under all three treatment arms or only under IROX

and IFL. The SACEk,·(2, 0) and SACEk,·(2, 1) are defined similarly for comparisons of

FOLFOX and IFL, and FOLFOX and IROX, respectively.

3.2 Assumptions for Identifiability of a Causal Effect

Define P t = (P1, · · · ,Pt) to be the history of potential outcomes up to and including

the outcomes at visit t. Before introducing the assumptions, it is convenient to define

some additional quantities. Let gT (tx, w) = P (DT (tx) = 0|w) for tx = 0, 1, 2 where w is
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the vector of baseline covariates. We assume that

logitgT (tx,w) = wT ψtx. (1)

That is, the probability of being alive on the treatments tx = 0, 1, 2 is a function of

baseline covariates with coefficients depending on treatment tx. Also, let

p∗T (1,w) = P (DT (1) = 0|DT (0) = 0,w), (2)

p∗T (2,w) = P (DT (2) = 0|DT (0) = 0,w), (3)

q∗T (w) = P (DT (2) = 1|DT (1) = 1, DT (0) = 1); (4)

thus, p∗T (1, w) is the probability of a patient with baseline covariates w being alive on

IROX at time T , given that they would be alive on IFL at time T. Similarly, p∗T (2,w)

represents the probability of being alive on FOLFOX at time T , given that they would

be alive on IFL at time T for a patient with baseline covariates, w. The q∗T (w) is the

probability of a patient with baseline covariates w being dead on FOLFOX at time T

given that they would be dead on the other two arms at time T . Finally, let

hT,tx(k) = P (YT > k|S > T, tx). (5)

The hT,tx(k) is the probability that the (ordinal) QOL response is greater than k for a

subject on treatment tx that has not died or progressed by time T . We now describe the

assumptions.

We first make the common Stable Unit Treatment Value Assumption (SUTVA, Rubin,

1978) which states that a patient’s potential outcomes are unrelated to the treatment

status of other patients. Next, we list the assumptions necessary to identify the causal

effect of interest:

Assumption 1 (Monotonicity) :
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a) Deterministic: The assumption that

P (DT (1) = 1|DT (0) = 0, DT (2) = 1) = 0, (6)

implies that there will be no subjects who die on both experimental treatments and

survive on the standard of care.

b) Stochastic I: We assume p∗T (j, w) for j = 1, 2 are given by

p∗T (j, w) = gT (j, w) + ρ {Uj(w)− gT (j, w)} , 0 ≤ ρ ≤ 1, (7)

where Uj(w) = min
{

1, gT (j,w)
gT (0,w)

}
. To understand Uj(w), note that given gT (j, w),

we have the following bounds on the conditional distribution,

gT (j, w) ≤ p∗T (w) ≤ min

{
1,

gT (j, w)

gT (0, w)

}
.

This modeling assumption was used in Roy et al. (2008) in the context of compliance

in a smoking cessation trial. Note that if ρ = 0, then p∗T (j, w) = gT (j, w), which

implies that DT (1) is independent of DT (0) and DT (2) is also independent of DT (0).

If ρ = 1, then p∗T (j, w) = Uj(w), which is the largest possible probability that is

compatible with the marginal distributions. The assumption states that being alive

on FOLFOX (or IROX) is positively correlated with being alive on IFL (standard of

care); i.e., if a subject is alive on IFL, they are more likely to be alive on FOLFOX

(or IROX).

c) Stochastic II: We assume q∗T (w) is given by

q∗T (w) = (1− gT (2,w)) + ν {U3(w)− (1− gT (2,w))} , 0 ≤ ν ≤ 1, (8)

where U3(w) = min
{

1, 1−gT (2,w)
P (DT (1)=1,DT (0)=1)

}
. Similarly, we have

(1− gT (2,w) ≤ q∗T (w) ≤ min

{
1,

(1− gT (2,w))

P (DT (1) = 1, DT (0) = 1)

}
.
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This assumption is similar to b) above, but addresses all three treatments. It says

that dying on FOLFOX is positively correlated with dying on both IROX and IFL;

that is, patients who would die on IROX and IFL (standard of care) would be more

likely to die on FOLFOX.

Both stochastic monotonicity assumptions address the concern of a deterministic mono-

tonicity assumption not being reasonable between two treatment arms and implicitly

allows the assumption to vary with subject specific covariates, w. In addition, they both

imply a positive covariance (correlation) between the event on the left and right of the

conditioning. The sensitivity parameters in Assumption I are ρ and ν.

Assumption 2 (Ignorability): Tx ⊥ P̄T .

Recall P̄t is all the potential outcome up to and including time t. Assumption 2 states

that the treatment arm is unrelated to the set of potential outcomes; this holds by ran-

domization of the treatments.

Assumption 3 (Sensitivity Parameter Reduction via Proportional odds): For

k = 1, · · · , K − 1,

odds(YT (0) > k|AT (j))

odds(YT (0) > k|AT (0))
= τ, if j = 4, 5 (9)

odds(YT (1) > k|AT (j))

odds(YT (1) > k|AT (0))
= τ, if j = 1, 4 (10)

odds(YT (2) > k|AT (j))

odds(YT (2) > k|AT (0))
= τ, if j = 1, 5 (11)

odds(YT (1) > k|AT (3))

odds(YT (1) > k|AT (0))
= λ, (12)

and

odds(YT (2) > k|AT (2))

odds(YT (2) > k|AT (0))
= λ, (13)

Note that AT (1), AT (4), or AT (5) in equations (9)-(11) are the principal strata in which

subjects would be dead under one of three arms. In contrast, AT (2) or AT (3) in equations
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(12)-(13) are the principal strata in which subjects would be dead under two of three

arms. The sensitivity parameters, τ and λ correspond to the odds ratios formed from

conditioning on the subjects dying on either one or two treatment arms respectively

(vs. surviving on all three arms). More specifically, the first sensitivity parameter, τ ,

corresponds to the ratio of odds of fatigue, for a given treatment, for a patient in a

principal stratum in which they would survive on only two arms to the odds for a patient in

a principal stratum in which they would survive on all three arms. The second sensitivity

parameter, λ corresponds to the ratio of odds of fatigue, for a given treatment, for a

patient in a principal stratum in which they would survive on only one arm to the odds

for a patient in a principal stratum in which they would survive on all three arms.

Note also that the two sensitivity parameters, τ and λ, do not depend on k. As

such, the assumption is referred to as proportional odds. In total, Assumption 3 has two

sensitivity parameters.

Assumptions like Assumption 3, which involve a few sensitivity parameters, are fun-

damental to the ability to reasonably elicit sensitivity parameters to conduct inference

(Egleston et al., 2009). The semiparametric models of Robins and colleagues (Robins

et al., 1995; Rotnitzky et al., 1998; Scharfstein et al., 1999) for MNAR missingness also

make simplifying assumptions to reduce the sensitivity parameters (in that context, in the

missing data mechanism). Egleston et al. (2007) and Lee and Daniels (2008) use similar

assumptions to Assumption 3 in much simpler contexts. Other variations on Assumption

3 are possible and would be specific to the application. The assumptions in this case

were carefully formulated with the expertise and guidance of Dr. Sargent, who was the

statistician on the N9741 clinical trial.
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3.3 Identification and Estimation of the SACE

Our goal in the following will be to use the observed data, Ot, along with the three

assumptions in Section 3.2 to draw inference about the SACE. For clarity of presentation,

we demonstrate the identification of the SACE in two parts. First, we identify the joint

distribution of DT = (DT (0), DT (1), DT (2)); and second, we identify the conditional

distribution of YT given DT.

3.3.1 Identification and Calculation of Joint Distribution of DT We identify the

marginal and joint distributions of DT using Theorem I.

Theorem I (Identification of the joint distribution of DT): Under Assumptions 1 and 2,

P (DT) is identified.

A detailed proof of this result can be found in the Appendix.

Using Theorem I, the marginal and joint probabilities of DT can be written as functions

of (1)-(4) as follows:

• The marginal distributions, P (DT (tx) = 0) for tx = 0, 1, 2 can be expressed as

P (DT (tx) = 0) = P (DT (tx) = 0) = Ew {gT (tx,w)} , (14)

• The joint distribution, P (DT), which corresponds to P (AT (j)) for j = 0, · · · , 6 can
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be expressed as

P (AT (0)) = Ew {p∗T (2,w)gT (0,w)} − P (AT (5)),

P (AT (1)) = Ew {gT (2,w)− gT (0,w)p∗T (2,w)} − P (AT (2)),

P (AT (2)) = Ew [(1− q∗T (w)) {1− gT (0,w) (1− p∗T (1,w))− gT (1,w)}] ,

P (AT (3)) = Ew {gT (1,w)− p∗T (1,w)gT (0,w)} − P (AT (1)),

P (AT (4)) = Ew {p∗T (1,w)gT (0,w)} − P (AT (0)),

P (AT (5)) = Ew [gT (0, w) {1− p∗T (1, w)}] ,

P (AT (6)) = 0.

These expressions are used for the identification and estimation of the causal effects in

the subsequent sections.

3.3.2 Identification of SACE We now consider identification of the conditional dis-

tributions of YT given DT. Note that Assumption 2 implies

P (YT (tx) > k|DT (tx) = 0) = P (YT > k|DT = 0, Tx = tx)
let
= hT,tx(k),

for tx = 0, 1, 2. We demonstrate the identification of the SACEs using this result,

Theorem I, and Assumption 3.

Theorem II: Under assumptions 1, 2, and 3, SACEk,·(1, 0) is identified.

A simple proof of this result starts by showing that the numerators and denominators

of SACEk,·(1, 0) can all be written as functions of P (YT (0) > k|AT (0)) and P (YT (1) >

k|AT (0)) using Assumption 3. We show this next.
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From Assumption 3, we have

P (YT (0) > k|AT (4)) =
τP (YT (0) > k|AT (0))

1 + (τ − 1) P (YT (0) > k|AT (0))
, (15)

P (YT (1) > k|AT (4)) =
τP (YT (1) > k|AT (0))

1 + (τ − 1) P (YT (1) > k|AT (0))
. (16)

By identifying P (YT (0) > k|AT (0)), we identify (15) and by identifying P (YT (1) >

k|AT (0)), we identify (16).
For SACEk,3(1, 0), we need

P (YT (0) > k|AT (0) ∪AT (4)) =
P (YT (0) > k|AT (0))P (AT (0)) + P (YT (0) > k|AT (4))P (AT (4))

P (AT (0) ∪AT (4))
, (17)

P (YT (1) > k|AT (0) ∪AT (4)) =
P (YT (1) > k|AT (0))P (AT (0)) + P (YT (1) > k|AT (4))P (AT (4))

P (AT (0) ∪AT (4))
, (18)

which are functions of P (AT (0) ∪ AT (4)), P (AT (0)), and P (AT (4)) (all identified by

Theorem I). We showed above that P (YT (0) > k|AT (4)) and P (YT (1) > k|AT (4)) can

be written as functions of P (YT (0) > k|AT (0)) and P (YT (1) > k|AT (0)). The details on

the identification of P (YT (0) > k|AT (0)) and P (YT (1) > k|AT (0)) can be found in the

Appendix.

Similar arguments can be used to identify SACEk,·(2, 0) and SACEk,·(2, 1). We state

this formally in the following two corollaries.

Corollary I: Under assumptions 1, 2, and 3, SACEk,·(2, 0) is identified.

Given the identification results in Theorems I and II and following a similar argument to

Theorem I, all the relevant numerators and denominators can be written as a function of

the quantities necessary to compute SACEk,·(1, 0) except for P (YT (2) > k|AT (0)). The

appendix contains a proof of the identification of this probability.

Corollary II: Under assumptions 1, 2, and 3, SACEk,·(2, 1) is identified.

The entire proof is in the appendix.
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3.4 Estimation and modeling of gT (tx,w), p∗T (j, w), q∗T (w), and hT,tx(k)

As shown in the previous two subsections (and the Appendix), the SACE is a function

of gT (tx,w), p∗T (j, w), q∗T (w), and hT,tx(k). The parameters for gT (tx,w), ψtx, can

be estimated using maximum likelihood based on NT (tx) subjects, where NT (tx) is the

number of subjects who were alive after the study was complete under Tx = tx (see Table

1). We estimate p∗T (j, w) in Assumption 1 using ĝT (1, w), ĝT (2,w), and ĝT (0,w) with

fixed ρ. We estimate q∗T (w) using ĝT (·,w) with fixed ν.

Note that we can use the empirical expectation to estimate Ew {f(w; tx)} for an

arbitrary function f(·) which is given by

Êw {f(w; tx)} =
1

N

N∑
i=1

f̂(wi; tx).

For example, Ew {gT (tx, w)} and Ew {p∗T (j, w)gT (tx, w)} for j = 1, 2; tx = 0, 1, 2 can be

estimated by

Êw {gT (tx,w)} =
1

N

N∑
i=1

ĝT (tx,wi),

Êw {p∗T (j, w)gT (tx,w)} =
1

N

N∑
i=1

p̂∗T (j, wi)ĝT (tx,wi).

To estimate hT,tx(k), given in (5), we need to specify models for the observed data

and missing data due to loss to follow-up (not progression/death). Before stating the

models, we specify one additional assumption that allows us to estimate the above quan-

tities from the observed data. Recall that S is the progression/death time. So, S =

j ⇔ {Dj = 1, Dj−1 = 0}.
Assumption 4 (Conditional MAR): Rt ⊥ {Yt, . . . , Yj−1}|S = j, Ȳt−1, Tx for t < j.

This assumption states that missingness of outcome is independent of the value of the out-

come given the previous history of outcomes and Tx for all subjects with progress/death
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time j. It is MAR conditional on progression/death time. Missingness assumptions like

this have recently been termed partially ignorable (Harel and Schafer, 2009). This as-

sumption will allow us to use all the available data on survivors for the analysis.
We specify marginalized transition models of order two, IOMTM(2) (Lee and Daniels,

2007), conditional on progression/death time as follows, S,

log
P (Yt > k|S = j, tx)

1− P (Yt > k|S = j, tx)
= β0k(j) + β(j, tx), (19)

log
P (Yt = k|Yi,t−1, Yit−2, S = j, tx)
P (Yt = K|Yi,t−1, Yi,t−2, S = j, tx)

= 4itk(j, tx)

+ γ
(k)
11 (j, tx)Yi,t−1 + γ

(k)
12 (j, tx)Y 2

i,t−1 + γ
(k)
21 (j, tx)Yi,t−2 + γ

(k)
22 (j, tx)Y 2

i,t−2, (20)

where β(j, tx) are the coefficients of treatment arm tx, β01(j) > · · · > β0K−1(j) and

γ
(k)
1l (j, tx), γ

(k)
2l (j, tx) for l = 1, 2 are the linear and quadratic coefficients of of the lag

one and two responses, respectively. Model (19) is a cumulative logit model, a common

model for ordinal data. However, the link function in the conditional probabilities (20) is

a multinomial logit because we expect the K − 1 (here, K = 4) conditional probabilities

to have different coefficients γ
(k)
1l (·, ·), depending on k.

Clearly, for models (19) and (20) to form a coherent probability model, the 4itk(j, tx)

will be constrained. The 4itk(j, tx) is found using the following identity

P (Yit = k|S = j, tx) =
K∑

g1=1

K∑
g2=1

P (Yit = k|Yit−1 = g1, Yit−2 = g2, S = j, tx)×

P (Yit−1 = g1, Yit−2 = g2|S = j, tx).

We refer the reader to Lee and Daniels (2007) for more details on these models. Within

this modeling framework, hT,tx(k) is given by

hT,tx(k) = P (YT > k|S > T, tx)

=

∑
j>T P (YT > k|S = j, tx)P (S = j|tx)∑

j>T P (S = j|tx)
, (21)
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where P (S = j|tx) is a multinomial mass function for S, and P (YT > k | S = j, tx) is

calculated from (19) given tx and is only defined for t < j. Via Assumption 4, we assume

that for a given progression/death time (pattern), that missing data before the progres-

sion/death time is MAR (conditional on pattern); this situation occurs when dropout is

not due to progression/death. These models were chosen since they were shown to fit the

observed data well for non-causal inference in Lee and Daniels (2007).

3.5 Standard Errors for SACE

To calculate standard errors for SACE, we use the delta method. Let

θT = (ψT
0 , ψT

1 , ψT
2 , βT

0 (·), βT (·)),

where βT
0 (·) = (βT

0 (0), βT
0 (1), βT

0 (2))T and βT (·) = (βT (0), βT (1), βT (2)). The variance of

the SACEK−1(Tx, Tx’) for Tx 6= Tx’ is given by

Var(SACEK−1(Tx, Tx’)) = ∆SACET
K−1(Tx, Tx’)Var(θ̂)∆SACEK−1(Tx, Tx’),

where ∆SACEK−1(Tx, Tx’) is the gradient of SACEK−1(Tx, Tx’) with respect to θ.

Writing θT
1 = (ψT

0 , ψT
1 ,ψT

2 ) and θT
2 = (βT

0 (·),βT (·)), we have

var(θ̂) =

(
var(θ̂1(·)) 0

0 var(θ̂2(·))
)

.

Details on computing the gradient and variance of θ̂ are given in the Supplemental web

materials (http://www.amstat.org/publications/jasa/supplemental materials).

3.6 Sensitivity Analysis

The identification of the SACE relies on untestable assumptions (in particular, As-

sumptions 1 and 3). We will use a sensitivity analysis procedure to draw inference about

SACE by varying the sensitivity parameters (τ, λ) in Assumption 3, and (ρ, ν) in As-

sumption 1. We discuss reasonable ranges for the former two sensitivity parameters in

Section 4.1.

19



4. Analysis of the QOL Data

We use the approach proposed in Section 3 to analyze the QOL data from Section 2.

We start out with a discussion of the elicitation of reasonable ranges for the sensitivity

parameters.

4.1 Elicitation of Sensitivity Parameters

Dr. Sargent, the primary statistician for this clinical trial, provided the expertise on

the sensitivity parameters for the analysis (including the expertise needed for the specifi-

cation of Assumption 3). Dr. Sargent is both a PhD level statistician and a professor of

oncology. Having both the quantitative and clinical knowledge is an important asset in

eliciting values for sensitivity parameters. The feasibility of the eliciting of sensitivity pa-

rameters in general has been discussed in Shepherd et al. (2007). The following decisions

regarding reasonable values for the sensitivity parameters were elicited through extensive

discussion. The sensitivity parameters τ and λ are unlikely to be outside the range of

(1/2, 1.5); that is, τ, λ ∈ [1/2, 1.5]. The key to these ranges is that it was thought very

unlikely for more than a 50% increase or decrease in these odds ratios.

We conduct a sensitivity analysis and draw inferences in the next section.

4.2 Causal inference results

We are interested in subjects who would be alive on at least two treatment arms until

the end of the study. Table 1 gives the number of patients alive at the end of the study

by treatment.

4.2.1 Estimation of survival and fatigue probabilities Baseline covariates related to

survival, w, included in the analyses were age (AGE), patient performance status (PS),

and number of sites of metastatic disease (NOSITE). These three factors are well estab-

lished to impact patient survival in this setting. To simplify computations of the empirical
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expectations in Section 3.4, we categorized each of the covariates. The cutpoints were

chosen by Dr. Sargent using his extensive experience with the trial and the disease. Age

was discretized as < 70 (AGE = 0) and ≥ 70 (AGE = 1). Performance status (PS) is a

measurement of the patient’s ability to carry out activities of daily living, measured on

a 5 point ordinal scale, where 0 represents full health and 4 represents death. Thus a

higher PS indicates worse health. We discretized performance status into high {0 or 1}
(PS = 0) vs. low {2, 3, 4} (PS = 1). The number of sites of metastatic disease was bro-

ken into three categories, {1, 2, > 2} and coded using two indicator variables, NOSITE1

and NOSITE2, respectively as {(0, 0), (1, 0), (0, 1)}.
We fit the logistic regression models in (1) using these covariates. The regression

coefficient estimates, ψ̂, are given in Table 2. For FOLFOX, the estimated coefficients of

performance status and number of metastatic sites were significant; for IFL, performance

status was significant and for IROX, number of metastatic sites was significant. For all

three arms, the coefficients indicated that the estimated survival probability decreased

for patients with lower performance status and decreased for patients with more sites of

metastases.

[Table 1 about here.]

[Table 2 about here.]

The MLE’s of hT,·(K − 1) based on the IOMTM(2) (specified in (19) and (20)) are

given in Table 3. The probability of fatigue for survivors under IROX was highest among

the three arms. The probability under IFL was the lowest.

[Table 3 about here.]
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4.2.2 Estimation of SACE In the following, we present inferential results and sen-

sitivity analyses for log SACEK−1,·(1, 0), log SACEK−1,·(2, 0), and log SACEK−1,·(2, 1).

Note that under Assumption 3, we have following equalities

log SACEK−1,1(1, 0) ≡ log SACEK−1,2(1, 0),

log SACEK−1,1(2, 0) ≡ log SACEK−1,2(2, 0),

log SACEK−1,1(2, 1) ≡ log SACEK−1,2(2, 1).

As such, we only focus SACEK−1,1(·, ·) and SACEK−1,3(·, ·) in the following. For each

given set of sensitivity parameters, log SACEk,1(1, 0) and log SACEk,3(1, 0) are the log

odds ratios that the fatigue score at time T is larger than k for comparing IROX and IFL

(standard of care) for subjects who would be alive under all three treatment arms and who

would be alive either under all three treatment arms or only under IFL (standard of care)

and IROX. The log SACEk,1(2, 0) and log SACEk,3(2, 0) are the log odds ratios similarly

defined for comparing IFL and FOLFOX; and log SACEk,1(2, 1) and log SACEk,3(2, 1),

for comparing the two experimental treatments, IROX and FOLFOX.

The estimated values of log SACEK−1,1(1, 0) and associated p-values testing whether

they are different from zero over the range of τ and λ elicited in Section 4.1 are given in

Figure 1 for various values of ρ and ν. When (ρ, ν) = (0, 0), which corresponds to dying

on IROX being independent of dying on IFL, dying on FOLFOX being independent of

dying on IFL, and dying on FOLFOX being independent of dying on both IROX and IFL,

the estimated values of log SACEK−1,1(1, 0) increased as τ and λ respectively increased

and decreased. The estimated values of log SACEK−1,1(1, 0) were greater than 0 for all τ

and λ (Figure 1(a)), implying that the probability of fatigue on the IROX treatment was

greater than the probability of a patient’s fatigue on the IFL treatment. The estimated

values of log SACEK−1,1(1, 0) increased as λ decreased for (ρ, ν) = (0.5, 0.5) which corre-
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sponds to a moderate correlation between death probabilities on the two treatments and

three treatments, respectively (Figure 1(c)). In contrast, when (ρ, ν) = (1, 1) (highest

correlation), the log SACEK−1,1(1, 0) decreased as τ increased (Figure 1(e)). However,

for all values of (ρ, ν) there were no significant differences between IROX and IFL. (Figure

1(b), 1(d), 1(f)).

[Figure 1 about here.]

Figure 2 presents estimated values of log SACEK−1,3(1, 0) and corresponding p-values.

The pattern was similar for log SACEK−1,1(1, 0) (Figure 2(a), 2(c), 2(e)) and there were

no significant differences between the two treatment arms for all values of (ρ, ν) (Figure

2(b), 2(d), 2(f)). We note that the plots for estimated values of log SACEK−1,1(1, 0) and

log SACEK−1,3(1, 0) looked similar. However, there were small difference between these

estimated values.

[Figure 2 about here.]

Figures 3 and 4 show similar results for log SACEK−1,1(2, 0) and log SACEK−1,3(2, 0).

The estimated values of log SACEK−1,1(2, 0) and log SACEK−1,3(2, 0) were greater than

0 for all values of (ρ, ν). However, there were no significant differences between FOLFOX

and IFL.

[Figure 3 about here.]

[Figure 4 about here.]

Figure 5 and 6 give the estimated values of log SACEK−1,1(2, 1) and log SACEK−1,3(2, 1)

and the corresponding p-values. The estimated values of SACEK−1,1(2, 1) were less than

0 for all values of (ρ, ν), implying that the probability of fatigue on IROX was larger than

the probability of fatigue on FOLFOX. However, again the differences were not significant.
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[Figure 5 about here.]

[Figure 6 about here.]

5. Summary

In this paper, we have proposed a principal stratification approach to estimate the causal

effect of treatment in the presence of death for a three arm study with two active treat-

ments and a longitudinal ordinal outcome. Our formulation of sensitivity parameters in

Assumption 3 is very much context specific. Based on this approach, we concluded that

patients’ fatigue levels were not influenced by treatment, an important finding that allows

the use of the treatment with the most favorable anti-cancer activities. However, we note

that the power was low for this comparison with few patients still on study at one year.

In our approach, instead of just using the data YT observed at the end of the study, we

used all available longitudinal data using the models in Section 3.4 along with Assumption

4. This was essential to the viability of our approach as only 18 subjects in total had the

QOL measure at time T , but more than 45% of the subjects were alive at the end of the

study. Assumption 4 (Conditional MAR) could be weakened by including covariates in

the model specified in (19)-(20).

A key assumption in our proposed approach is deterministic monotonicity, Assump-

tion Ia, which assumes that there are no patients who would die on both experimental

arms but survive on the control arm. While this is weaker than a more typical assumption

that no patient would die on either experimental arm but be alive on the control arm, it

still requires justification. In this trial, both experimental arms were superior for overall

survival compared to the control, and were also less toxic. In addition, despite exten-

sive analyses of both baseline clinical and blood-based predictors (pharmacogenomics)

reported elsewhere (Sanoff et al., 2008; McLeod et al., 2003), no predictors of differential
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treatment efficacy between the three treatments has been identified. Thus, while person-

alized medicine has the hope to identify the optimal therapy for each patient (which for

some patients may be the control), at the present time for this trial, Assumption Ia is not

unreasonable.

A difficult research problem is the best way to ’honestly’ elicit sensitivity parameters in

causal inference problems, often from physicians. Here we had the benefit of a statistician,

Dr. Sargent, who is also a professor of oncology and was intimately involved in this trial.

However eliciting from experts without this dual expertise remains a challenge.

In the current approach, we compute the large sample variance of SACE using the delta

method. We plan in future work to examine its operating characteristic in small samples.

We also plan to explore a fully Bayesian approach and as such, use informative priors

for the sensitivity parameters, (τ, λ, ρ, ν), to obtain a single inference that characterizes

our uncertainty about the sensitivity parameters. This will also allow us to easily make

non-large sample inferences. This is ongoing work.
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We know that the marginal distributions, P (DT (j) = 0) for j = 0, 1, 2 are identified

via Assumption 2 and (1),

P (DT (tx) = 0) = P (DT = 0|Tx = tx) = Ew {P (DT = 0|Tx = tx,w)} = Ew {gT (tx, w)} .

(22)

Now we move to identification of the bivariate distributions P (DT (j) = l, DT (j
′
) = l

′
),

l, l
′ ∈ {0, 1}, j, j

′ ∈ {0, 1, 2}. From Assumption 1 and (2), we have the following results

P (DT (1) = 0, DT (0) = 0) = P (DT (1) = 0|DT (0) = 0)P (DT (0) = 0)
= Ew {p∗T (1,w)gT (0, w)} ,

P (DT (1) = 1, DT (0) = 0) = P (DT (1) = 1|DT (0) = 0)P (DT (0) = 0)
= Ew {(1− p∗T (1, w)) gT (0,w)} .

Therefore, both P (DT (1) = 0, DT (0) = 0) and P (DT (1) = 1, DT (0) = 0) are identified.
Since

P (DT (1) = 0)
= P (DT (0) = 0, DT (1) = 0) + P (DT (0) = 1, DT (1) = 0)
= P (DT (0) = 0, DT (1) = 0) + P (DT (1) = 0|DT (0) = 1)P (DT (0) = 1),

P (DT (1) = 0|DT (0) = 1) is identified. From the following result

∑

j,j′
P (DT (1) = j,DT (0) = j

′
) = 1,

P (DT (1) = 1, DT (0) = 1) is identified.

We now show that

P (DT (2) = j, DT (0) = j
′
) for j, j

′
= 0, 1,

are identified. From Assumption 1 and (3), we have the following results

P (DT (2) = 0, DT (0) = 0) = P (DT (2) = 0|DT (0) = 0)P (DT (0) = 0)
= Ew {p∗T (2, w)gT (0, w)} ,

P (DT (2) = 1, DT (0) = 0) = {1− P (DT (2) = 0|DT (0) = 0)}P (DT (0) = 0)
= Ew {(1− p∗T (2,w)) gT (0, w)} .
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Therefore, both P (DT (2) = 0, DT (0) = 0) and P (DT (2) = 1, DT (0) = 0) are identified.

Since

P (DT (2) = 0)

= P (DT (2) = 0, DT (0) = 0) + P (DT (2) = 0|DT (0) = 1)P (DT (0) = 1),

P (DT (2) = 0|DT (0) = 1) is identified. Finally, P (DT (2) = 1|DT (0) = 1) is identified

since

∑

j,j′
P (DT (2) = j,DT (0) = j

′
) = 1.

Now we will prove P (AT (j)) for j = 0, 1, · · · , 6 are identified. More specifically, we

just need to show that

P (DT (0) = j,DT (1) = l, DT (2) = k),

for j, l, k = 0, 1 are identified (except (j, l, k) = (1, 1, 1)). We first identify P (AT (5)) =

P (DT (0) = 0, DT (1) = 1, DT (2) = 0),

P (DT (0) = 0, DT (1) = 1, DT (2) = 0)

= P (DT (0) = 0)− P (DT (0) = 0, DT (1) = 0)

= P (DT (0) = 0)− P (DT (1) = 0|DT (0) = 0)P (DT (0) = 0)

= Ew [gT (0, w) {1− p∗T (1, w)}] . Assumption Ib.

We now identify P (AT (0)) = P (DT (0) = 0, DT (1) = 0, DT (2) = 0).

P (DT (0) = 0, DT (1) = 0, DT (2) = 0)
= P (DT (0) = 0, DT (2) = 0)− P (DT (0) = 0, DT (1) = 1, DT (2) = 0)
= P (DT (2) = 0|DT (0) = 0)P (DT (0) = 0)− P (AT (5))
= Ew {p∗T (2, w)gT (0,w)} − P (AT (5)).
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To identify P (AT (2)) = P (DT (0) = 1, DT (1) = 1, DT (2) = 0), we have

P (DT (0) = 1, DT (1) = 1, DT (2) = 0)

= P (DT (2) = 0|DT (0) = 1, DT (1) = 1)P (DT (0) = 1, DT (1) = 1)

= P (DT (2) = 0|DT (0) = 1, DT (1) = 1) {1− P (DT (0) = 0, DT (1) = 0)

− P (DT (0) = 0, DT (1) = 1)− P (DT (0) = 1, DT (1) = 0)}

= P (DT (2) = 0|DT (0) = 1, DT (1) = 1) [1− P (DT (1) = 0|DT (0) = 0)P (DT (0) = 0)

− P (DT (1) = 1|DT (0) = 0)P (DT (0) = 0)

− {P (DT (1) = 0)− P (DT (1) = 0|DT (0) = 0)P (DT (0) = 0)}]

= Ew [(1− q∗T (w)) {1− gT (0,w)− gT (1,w) + p∗T (1,w)gT (0,w)}] . Assumption 1c).

To identify P (AT (1)) = P (DT (0) = 1, DT (1) = 0, DT (2) = 0), we need the following
equation

P (DT (0) = 1, DT (1) = 0, DT (2) = 0)
= P (DT (2) = 0, DT (0) = 1)− P (DT (0) = 1, DT (1) = 1, DT (2) = 0)
= {1− P (DT (0) = 0|DT (2) = 0)}P (DT (2) = 0)− P (AT (2))
= P (DT (2) = 0)− P (DT (0) = 0)P (DT (2) = 0|DT (0) = 0)− P (AT (2))
= Ew {gT (2,w)− gT (0,w)p∗T (2, w)} − P (AT (2)).

To identify P (AT (4)) = P (DT (0) = 0, DT (1) = 0, DT (2) = 1), we use the following

relations,

P (DT (0) = 0, DT (1) = 0, DT (2) = 1)

= P (DT (0) = 0, DT (1) = 0)− P (DT (0) = 0, DT (1) = 0, DT (2) = 0)

= P (DT (1) = 0|DT (0) = 0)P (DT (0) = 0)− P (AT (0))

= Ew {p∗T (1,w)gT (0,w)} − P (AT (0)).

To identify P (AT (3)) = P (DT (0) = 1, DT (1) = 0, DT (2) = 1), we have the following
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equalities

P (DT (0) = 1, DT (1) = 0, DT (2) = 1)
= P (DT (0) = 1, DT (1) = 0)− P (DT (0) = 1, DT (1) = 0, DT (2) = 0)
= {1− P (DT (0) = 0|DT (1) = 0)}P (DT (1) = 0)− P (AT (1))
= P (DT (1) = 0)− P (DT (1) = 0|DT (0) = 0)P (DT (0) = 0)− P (AT (1))
= Ew {gT (1,w)− p∗T (1, w)gT (0, w)} − P (AT (1)).

Finally, to identify P (AT (6)) = P (DT (0) = 0, DT (1) = 1, DT (2) = 0), we use the

following equality

P (DT (0) = 0, DT (1) = 1, DT (2) = 1)

= P (DT (1) = 1|DT (0) = 0, DT (2) = 1)P (DT (0) = 0, DT (2) = 1) = 0. Assumption 1a).

Proof of Theorem II

In addition to (15) and (16), we have from Assumption 3

P (YT (0) > k|AT (5)) =
τP (YT (0) > k|AT (0))

1 + (τ − 1) P (YT (0) > k|AT (0))
, (23)

P (YT (1) > k|AT (1)) =
τP (YT (1) > k|AT (0))

1 + (τ − 1) P (YT (1) > k|AT (0))
, (24)

P (YT (1) > k|AT (3)) =
λP (YT (1) > k|AT (0))

1 + (λ− 1) P (YT (1) > k|AT (0))
. (25)

To identify P (YT (0) > k|AT (0)), we use the following equality,

P (YT (0) > k|DT (1) = 0) = P (YT (0) > k|AT (0))P (AT (0)|DT (0) = 0)

+ P (YT (0) > k|AT (4))P (AT (4)|DT (0) = 0) + P (YT (0) > k|AT (5))P (AT (5)|DT (0) = 0).

Now we replace P (YT (0) > k|AT (4)) and P (YT (0) > k|AT (5)) with (15) and (23), respec-
tively. Then we have the following equality,

A0P
3(YT (0) > k|AT (0)) + B0P

2(YT (0) > k|AT (0)) + C0P (YT (0) > k|AT (0))− hT,0(k) = 0,
(26)
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where

A0 = P (AT (0)|DT (0) = 0) (τ − 1)2 ,

B0 = P (AT (0)|DT (0) = 0) (2τ − 2)− hT,0(k) (τ − 1)2 ,

+ τ (τ − 1) P (AT (4)|DT (0) = 0) + τ (τ − 1)P (AT (5)|DT (0) = 0)
C0 = P (AT (0)|DT (0) = 0) + τP (AT (4)|DT (0) = 0) + τP (AT (5)|DT (0) = 0)

− (2τ − 2)hT,0(k).

The probabilities P (AT (j)|DT (0) = 0) for j = 0, 4, 5 are identified by Theorem I so the

coefficients (A0, B0, C0) are identified. Here, we need a solution of the cubic equation (26)

in [0, 1]. In our example, only one solution was in this range.

To identify P (YT (1) > k|AT (0)), we use following equation

P (YT (1) > k|DT (1) = 0)

= P (YT (1) > k|AT (0))P (AT (0)|DT (1) = 0) + P (YT (1) > k|AT (1))P (AT (1)|DT (1) = 0)

+P (YT (1) > k|AT (3))P (AT (3)|DT (1) = 0) + P (YT (1) > k|AT (4))P (AT (4)|DT (1) = 0).

We replace P (YT (1) > k|AT (1)), P (YT (1) > k|AT (3)), and P (YT (1) > k|AT (4)) with (24),

(25) and (16), respectively. Then we have the following equation,

A1P
4(YT (1) > k|AT (0)) + B1P

3(YT (1) > k|AT (0)) + C1P
2(YT (1) > k|AT (0))

+D1P (YT (1) > k|AT (0))− hT,1(k) = 0, (27)

where

A1 = P (AT (0)|DT (1) = 0) (τ − 1)2 (λ− 1) ,

B1 = P (AT (0)|DT (1) = 0) {(τ − 1) (λ− 1) + (τ + λ− 2) (τ − 1)}
+P (AT (1)|DT (1) = 0)τ (λ− 1) (τ − 1) + P (AT (3)|DT (1) = 0)λ (τ − 1)2

+P (AT (4)|DT (1) = 0)τ (τ − 1) (λ− 1)− hT,1(k) (τ − 1)2 (λ− 1) ,

C1 = P (AT (0)|DT (1) = 0) (2τ + λ− 3)
+P (AT (1)|DT (1) = 0)τ (τ + λ− 2) + P (AT (3)|DT (1) = 0)λ (2τ − 2)
+P (AT (4)|DT (1) = 0)τ (τ + λ− 2)
−hT,1(k) {(τ − 1) (λ− 1) + (τ + λ− 2) (τ − 1)} ,

D1 = P (AT (0)|DT (1) = 0) + P (AT (1)|DT (1) = 0)τ + P (AT (3)|DT (1) = 0)λ
+P (AT (4)|DT (1) = 0)τ − hT,1(k) (2τ + λ− 3) .
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The probabilities P (AT (0)|DT (0) = 0), P (AT (4)|DT (0) = 0), P (AT (1)|DT (0) = 0),

P (AT (5)|DT (0) = 0), P (AT (0)|DT (1) = 0), P (AT (1)|DT (1) = 0), P (AT (3)|DT (1) = 0),

and P (AT (4)|DT (1) = 0) are identified by Theorem I so the coefficients (A1, B1, C1, D1)

are identified. Similarly to the solution to (26), we have only one solution in [0, 1].

Identification of SACEk,·(2, 0)

Via the following equations,

P (YT (0) > k|AT (0) ∪AT (5)) =
P (YT (0) > k|AT (0))P (AT (0)) + P (YT (0) > k|AT (5))P (AT (5))

P (AT (0) ∪AT (5))
, (28)

P (YT (2) > k|AT (0) ∪AT (5)) =
P (YT (2) > k|AT (0))P (AT (0)) + P (YT (2) > k|AT (5))P (AT (5))

P (AT (0) ∪AT (5))
, (29)

and the fact that P (AT (0)∪AT (5)), P (AT (0)), and P (AT (5)) are identified from Theorem

1, the identification of P (YT (0) > k|AT (0) ∪ AT (5)) and P (YT (2) > k|AT (0) ∪ AT (5))

only requires the additional identification of P (YT (2) > k|AT (0)) for SACEk,1(2, 0), and

P (YT (2) > k|AT (5)) for SACEk,2(2, 0), respectively.

From Assumption 3, we have following relations

P (YT (2) > k|AT (1)) =
τP (YT (2) > k|AT (0))

1 + (τ − 1) P (YT (2) > k|AT (0))
, (30)

P (YT (2) > k|AT (2)) =
λP (YT (2) > k|AT (0))

1 + (λ− 1) P (YT (2) > k|AT (0))
, (31)

P (YT (2) > k|AT (5)) =
τP (YT (2) > k|AT (0))

1 + (τ − 1) P (YT (2) > k|AT (0))
. (32)

Therefore, we can identify P (YT (2) > k|AT (1)), P (YT (2) > k|AT (2)), and P (YT (2) >

k|AT (5)) by identifying P (YT (2) > k|AT (0)). The identification of this final quantity is

given in Corollary I, whose proof follows.

Proof of Corollary I
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To identify P (YT (2) > k|AT (0)), we have following equation

P (YT (2) > k|DT (2) = 0)

= P (YT (2) > k|AT (0))P (AT (0)|DT (2) = 0) + P (YT (2) > k|AT (1))P (AT (1)|DT (2) = 0)

+ P (YT (2) > k|AT (2))P (AT (2)|DT (2) = 0) + P (YT (2) > k|AT (5))P (AT (5)|DT (2) = 0).

Now we replace P (YT (2) > k|AT (1)) and P (YT (2) > k|AT (5)) with (11) and P (YT (2) >
k|AT (2)) with (13), respectively. Then we have the following equations,

A2P
4(YT (2) > k|AT (0)) + B2P

3(YT (2) > k|AT (0)) + C2P
2(YT (2) > k|AT (0))

+D2P (YT (2) > k|AT (0))− hT,2(k) = 0, (33)

where

A2 = P (AT (0)|DT (2) = 0) (τ − 1)2 (λ− 1) ,

B2 = P (AT (0)|DT (2) = 0) {(τ − 1) (λ− 1) + (τ + λ− 2) (τ − 1)}
+P (AT (1)|DT (2) = 0)τ (λ− 1) (τ − 1) + P (AT (2)|DT (2) = 0)λ (τ − 1)2

+P (AT (5)|DT (2) = 0)τ (τ − 1) (λ− 1)− hT,2(k) (τ − 1)2 (λ− 1) ,

C2 = P (AT (0)|DT (2) = 0) (2τ + λ− 3)
+P (AT (1)|DT (2) = 0)τ (τ + λ− 2) + P (AT (2)|DT (2) = 0)λ (2τ − 2)
+P (AT (5)|DT (2) = 0)τ (τ + λ− 2)
−hT,2(k) {(τ − 1) (λ− 1) + (τ + λ− 2) (τ − 1)} ,

D2 = P (AT (0)|DT (2) = 0) + P (AT (1)|DT (2) = 0)τ + P (AT (2)|DT (2) = 0)λ
+P (AT (5)|DT (2) = 0)τ − hT,2(k) (2τ + λ− 3) .

The probabilities P (AT (0)|DT (2) = 0), P (AT (1)|DT (2) = 0), P (AT (2)|DT (2) = 0), and

P (AT (5)|DT (2) = 0) are identified from Theorem 1. In the application, we only found

one solution to the quartic equation in [0, 1].

Identification of SACEk,·(2, 1) (Corollary II)

Similar to (17), (18), (28), and (29), we have following expressions for SACEk,3(2, 1),

P (YT (1) > k|AT (0) ∪AT (1)) =
P (YT (1) > k|AT (0))P (AT (0)) + P (YT (1) > k|AT (1))P (AT (1))

AT (0) ∪AT (1)
, (34)

P (YT (2) > k|AT (0) ∪AT (1)) =
P (YT (2) > k|AT (0))P (AT (0)) + P (YT (2) > k|AT (1))P (AT (1))

AT (0) ∪AT (1)
. (35)

32



In the process of identifying SACEk,3(1, 0) and SACEk,3(2, 0), we identified P (YT (1) >

k|AT (0)), P (YT (1) > k|AT (1)), P (YT (2) > k|AT (0)), and P (YT (2) > k|AT (5)). In addi-

tion, the mixing probabilities were identified in Theorem I.
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(a) log SACEK−1,1(1, 0) with (ρ, ν) = (0, 0) (b) p-values with (ρ, ν) = (0, 0)

(c) log SACEK−1,1(1, 0) with (ρ, ν) = (0.5, 0.5) (d) p-values with (ρ, ν) = (0.5, 0.5)

(e) log SACEK−1,1(1, 0) with (ρ, ν) = (1, 1) (f) p-values with (ρ, ν) = (1, 1)

Figure 1. Maximum likelihood estimates of log SACEK−1,1(1, 0) with ρ, ν ∈ {0, 0.5, 1.0},
respectively, and corresponding p-values for log SACEK−1,1(1, 0).
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(a) log SACEK−1,3(1, 0) with (ρ, ν) = (0, 0) (b) p-values with (ρ, ν) = (0, 0)

(c) log SACEK−1,3(1, 0) with (ρ, ν) = (0.5, 0.5) (d) p-values with (ρ, ν) = (0.5, 0.5)

(e) log SACEK−1,3(1, 0) with (ρ, ν) = (1, 1) (f) p-values with (ρ, ν) = (1, 1)

Figure 2. Maximum likelihood estimates of log SACEK−1,1(1, 0) with ρ, ν ∈ {0, 0.5, 1.0},
respectively, and corresponding p-values for log SACEK−1,3(1, 0).

39



(a) log SACEK−1,1(2, 0) with (ρ, ν) = (0, 0) (b) p-values with (ρ, ν) = (0, 0)

(c) log SACEK−1,1(2, 0) with (ρ, ν) = (0.5, 0.5) (d) p-values with (ρ, ν) = (0.5, 0.5)

(e) log SACEK−1,1(2, 0) with (ρ, ν) = (1, 1) (f) p-values with (ρ, ν) = (1, 1)

Figure 3. Maximum likelihood estimates of log SACEK−1,1(2, 0) with ρ, ν ∈ {0, 0.5, 1.0},
respectively, and corresponding p-values for log SACEK−1,1(2, 0).
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(a) log SACEK−1,3(2, 0) with (ρ, ν) = (0, 0) (b) p-values with (ρ, ν) = (0, 0)

(c) log SACEK−1,3(2, 0) with (ρ, ν) = (0.5, 0.5) (d) p-values with (ρ, ν) = (0.5, 0.5)

(e) log SACEK−1,3(2, 0) with (ρ, ν) = (1, 1) (f) p-values with (ρ, ν) = (1, 1)

Figure 4. Maximum likelihood estimates of log SACEK−1,3(2, 0) with ρ, ν ∈ {0, 0.5, 1.0},
respectively, and corresponding p-values for log SACEK−1,3(2, 0).
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(a) log SACEK−1,1(2, 1) with (ρ, ν) = (0, 0) (b) p-values with (ρ, ν) = (0, 0)

(c) log SACEK−1,1(2, 1) with (ρ, ν) = (0.5, 0.5) (d) p-values with (ρ, ν) = (0.5, 0.5)

(e) log SACEK−1,1(2, 1) with (ρ, ν) = (1, 1) (f) p-values with (ρ, ν) = (1, 1)

Figure 5. Maximum likelihood estimates of log SACEK−1,1(2, 1) with ρ, ν ∈ {0, 0.5, 1.0},
respectively, and corresponding p-values for log SACEK−1,1(2, 1).
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(a) log SACEK−1,3(2, 1) with (ρ, ν) = (0, 0) (b) p-values with (ρ, ν) = (0, 0)

(c) log SACEK−1,3(2, 1) with (ρ, ν) = (0.5, 0.5) (d) p-values with (ρ, ν) = (0.5, 0.5)

(e) log SACEK−1,3(2, 1) with (ρ, ν) = (1, 1) (f) p-values with (ρ, ν) = (1, 1)

Figure 6. Maximum likelihood estimates of log SACEK−1,3(2, 1) with ρ, ν ∈ {0, 0.5, 1.0},
respectively, and corresponding p-values for log SACEK−1,3(2, 1).
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Table 1
Breakdown of subjects who were alive by treatment group at the time of study

completion. Proportions are in parentheses

Alive Prog/Death Total
IFL 86 (0.37) 149 (0.63) 235
IROX 105 (0.44) 134 (0.56) 239
FOLFOX 129 (0.55) 104 (0.45) 233
Total 320 387 707
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Table 2
Maximum likelihood estimates of ψtx. Standard errors are in parentheses.
AGE=I{age < 70}; PS=I{performance status ∈ (2, 3, 4)}; NOSITE1 =

I{# of sites = 2}; NOSITE2 = I{# of sites > 2}.
IFL IROX FOLFOX

Intercept 0.51 (0.23) 1.03 (0.25) 1.318 (0.28)
AGE −0.39 (0.33) −0.011 (0.33) −0.29 (0.35)
PS −2.41∗ (1.06) −0.91 (0.60) −1.53∗ (0.66)

NOSITE1 −0.037 (0.32) −0.99∗ (0.33) −0.55 (0.35)
NOSITE2 −0.67 (0.34) −0.60 (0.34) −0.91∗ (0.36)

∗ indicates significance with 95% confidence level.
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Table 3
Maximum Likelihood Estimates of hT,tx(K − 1)) (standard errors) where

Tx ∈ {IFL, IROX, FOLFOX}.
Tx IFL IROX FOLFOX

hT,tx(K − 1) 0.073 0.114 0.103
(0.028) (0.046) (0.041)
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