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SUMMARY

Random effects are often used in generalized linear models to explain the serial dependence for longitudinal

categorical data. Marginalized random effects models (MREM) for the analysis of longitudinal binary data

have been proposed to permit likelihood-based estimation of marginal regression parameters. In this paper,

we propose a model to extend the MREM to accommodate longitudinal ordinal data. Maximum marginal

likelihood estimation is proposed utilizing Quasi-Newton algorithms with Monte Carlo integration of the

random effects. Our approach is applied to analyze quality of life data from a recent colorectal cancer clinical

trial. Dropout occurs at a high rate and is often due to tumor progression or death. To deal with events

due to progression/death, we used a mixture model for the joint distribution of longitudinal measures and

progression/death times and use principal stratification to draw causal inferences about survivors. Copyright

c© 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Longitudinal data are repeated measurements from the same subject observed over time. The within-

subject measurements (over time) are typically not independent. Although serial correlation may

not be of primary interest but it must be taken into account to make proper inferences. In marginal

models, the population-averaged effect of covariates on the longitudinal response is directly specified

[1, 2]. Thus, effects of interest are between-subject rather than within-subject and the regression

coefficients have interpretation for the population rather than for any individual [3]. In conditional

models, the effect of covariates on responses is specified conditional on random effects or previous

history of responses. So the population-averaged effect of covariates is indirectly specified [4, 5]. In

this paper, we consider marginal model approaches.

Properly specified probability models lead to efficient estimation even under missing at random

(MAR) [6] and nested models can be compared using likelihood ratio tests and non-nested models

by penalized criteria such as AIC [7] or BIC [8]. Recently, marginalized likelihood-based models
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have been developed for the analysis of longitudinal categorical data [9, 10, 11, 12, 13]. Heagerty

[9, 10] proposed marginally specified logistic-normal models and marginalized transition models

(MTM) for longitudinal binary data. In both models, a marginal logistic regression model is used

for explaining the average response. The models were specified by introducing random effects in the

logistic-normal models and Markov dependence for MTM to explain the within-subject dependence.

Miglioretti and Heagerty [12] developed marginalized multilevel models for longitudinal binary

data in the presence of time-varying covariates. Lee and Daniels [13] extended Heagerty’s work

to accommodate longitudinal ordinal data using Markov dependence. Marginalized models have

advantages over conditional models. First, the interpretation of regression coefficients does not

depend on specification of the dependence in the model unlike in conditional models. In addition,

estimation of covariate effects has been shown to be more robust to mis-specification of dependence

[10, 11, 13].

Models for correlated ordinal data typically fall into two classes based on how the dependence

is modeled: via the global odds ratio (GOR) [14, 15, 16, 17] or via random effects [18, 19, 20]. A

general overview of models for ordinal categorical data can be found in Liu and Agresti [21]. The

main contribution of this paper will be to introduce a new marginalized model for longitudinal

ordinal data.

A common issue in inference from longitudinal studies are potential biases introduced by missing

data. Classes of models to accommodate longitudinal data with dropout are summarized in Hogan

et al. [22]. Standard approaches to handle missing data implicitly ‘impute’ values of response after

dropout. For quality of life (QOL) data, if a subject drops out due to death, the QOL will not

be defined after the dropout time. One way to address the type of dropout is to model the joint

distribution of the longitudinal responses and progression/death times [23, 24, 25]. Hogan and Laird

[23] used a mixture model for the joint distribution of longitudinal measures and progression/death

times. Pauler et al. [24] proposed a pattern mixture model for longitudinal quality of life data with

nonignorable missingness due to dropout and censorship by death. Recently, Kurland and Heagerty

[25] explored regression models conditioning on being alive as a valid target of inference. They used

regression models that condition on survival status rather than a specific survival time. We will use

the ideas in Hogan and Laird [23] similar to previous work by Pauler et al. [24].

We will implement a principal stratification approach [26, 27] here to make inference on the causal

effect of the treatment on QOL among (potential) survivors on both treatment arms. Frangakis and

Rubin [26] discussed causal effects in studies where the outcome was recorded and unobserved due to

death. Rubin [28] and Hayden et al. [29] referred to the estimand in Frangakis and Rubin [26] as ‘the

survivors average causal effect (SACE)’. Egleston et al. [27] proposed assumptions to identify the

SACE and implemented a sensitivity analysis for some of those assumptions. Rubin [30] introduced

the causal effect of a treatment on a outcome that is censored by death in Quality of Life study. In

this paper, we describe an approach that can be used to obtain the causal effect of treatment in the

presence of death based on principal stratification for longitudinal ordinal outcomes.

The paper is arranged as follows. In Section 2, we describe the motivating example. We review

briefly marginalized random effects models for longitudinal binary data [9] in Section 3. In Section 4,

we propose an ordinal marginalized random effects models (OMREM) for the longitudinal data with

ignorable dropout. In Section 5, we conduct a simulation study to examine bias and efficiency in
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estimation of marginal mean parameters. In the context of QOL data collected in a recent colorectal

cancer clinical trial [31], we propose models for the OMREM under dropout due to progression/death

and illustrate them on this data in Section 6.

2. MOTIVATING EXAMPLE

We analyzed QOL data from a recent colorectal cancer clinical trial [31]. A total of 795 patients

with colorectal cancer were randomly assigned to one of three treatments (FOLFOX, IFL(Control),

IROX) between May 1999 and April 2001. The main objective of this trial was to find a better

treatment for colorectal cancer. The median survival for patients receiving IFL was 15.0 months

compared with 19.5 months for those receiving FOLFOX and 17.4 months for those receiving IROX.

Survival for patients receiving FOLFOX did not differ from those receiving IROX (See [31]).

However, given that the toxicity profiles were quite different on the 3 treatment arms, it was of

interest to see if there was a negative impact of ‘better’ treatments on patients QOL. We focus on

one QOL measure, fatigue. Fatigue is measured on a 5 point ordinal scale. Additional complications

for analyzing QOL are posed by patients dying during the trial.

The models and analysis to follow focus on two treatments, FOLFOX and IFL (Control) and

address appropriate analysis of QOL data in the presence of death.

3. REVIEW OF MARGINALLY SPECIFIED LOGISTIC-NORMAL MODELS FOR

LONGITUDINAL BINARY DATA

Now we review marginalized random effects models for longitudinal binary data [9]. Define µM
it =

P (Yit = 1|xit). The marginalized logistic-normal model (MLNM) is specified using the following

regressions,

mean model: logitµM
it = xT

itβ, (1)

dependence model: logitµc
it(bit) = △it + bit, (2)

where β is the p × 1 vector of regression coefficients and µc
it(bit) = E(Yit|bit, xit). We assume that

the response vector Yi is conditionally independent given bi = (bi1, · · · , bini
)T and that

bi ∼ N(0, A), (3)

The covariance matrix A is assumed to have a simple structure. Conditional on xi and bi, the

responses Yit are assumed to be conditionally independent. Parameters in A provide measures of

random variation both across individuals and over time.

The parameters △it in (2) are functions of both the marginal mean parameters and the random

effects variance and can be obtained using the following identity

P (Yit = 1|xit) =

∫

P (Yit = 1|bit, xit)f(bit)dbit, (4)

where f is the univariate normal density function. This model has several desirable features. First,

the mean model is specified separately from the dependence model. As a result, the interpretation
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of the regression parameter β is not dependent as we modify assumptions regarding the dependence

in equation (2). This is not true for classical generalized random effects models, which parameterize

µc
it directly as a function of covariates. Also, parameters in cov(bi) provides measures of random

variation both across individuals and over time. Second, the MLNM can be used with data where

subjects have variable lengths of follow-up, permitting likelihood analysis in settings where data may

be missing at random (MAR). Further details on MLNM are given in [9].

4. MARGINALIZED RANDOM EFFECTS MODELS FOR LONGITUDINAL ORDINAL DATA

In this section, we extend Heagerty’s MLNM to accommodate longitudinal ordinal data.

4.1. Proposed Models

Let Yi = (Yi1, · · · , Yini
) be a vector of longitudinal K-category ordinal responses on subject

i = 1, · · · , N at times t = 1, · · · , ni, ni ≤ T . We assume that associated exogenous but possibly

time-varying covariates, xit = (xit1, · · · , xitp), are recorded for each subject at each time, and

that the regression model properly specifies the full covariate conditional probability such that

P (Yit = yit|Xit) = P (Yit = yit|Xi1, · · · , Xini
). The marginalized random effects model for

longitudinal ordinal data, also called an ordinal marginalized random effects model (OMREM),

is specified using the following two regressions,

mean model: log
P (Yit ≤ k|xit)

1 − P (Yit ≤ k|xit)
= β0k + xT

itβ, (5)

dependence model: log
P (Yit ≤ k|bi, xit)

1 − P (Yit ≤ k|bi, xit)
= △itk + bit, (6)

where bT
i = (bi1, · · · , bini

) ∼ N (0, Σi) for i = 1, · · · , N and k = 1, · · · , K − 1. We assume the
variance-covariance matrix Σi of bi is an autoregressive covariance structure

Σi = σ2
i

0

B

B

B

B

B

B

B

@

1 e−α e−2α · · · e−(ni−1)α
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...
...
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. . .

...

e−(ni−1)α e−(ni−2)α e−(ni−3)α · · · 1

1

C

C

C

C

C

C

C

A

let
= σ2

i Σ∗, (7)

where log σi = zT
i λ, zi is a c × 1 vector, and λ is a c × 1 coefficient vector of zi. The regression

model for σi allows heterogeneity to depend on subject-level covariates such as treatment or gender.

In the conditional model, (6), we need to ensure the monotonicity of △ in k to guarantee the

validity of the cumulative odds model in (6).

Theorem 1. For the OMREM given by (5) and (6), if β01 < · · · < β0K−1, then △it1 < · · · <

△itK−1.

Proof 1. See Appendix.

The marginal mean model is a cumulative odds model [32]. Serial dependence is captured by the

random effects. The regression parameters in (5) have a marginal interpretations unlike generalized

linear mixed models [5]. An advantage of this model is the ability to use conditional models for
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association (6) while still structuring the marginal mean as a function of covariates directly (5). As

a result, the interpretation of the regression coefficients, (β0, β) does not depend on the specification

of the dependence model.

For longitudinal data with random effects bi, the marginal probability captures the systematic

variation in the marginal probability that is due to xit, whereas parameters in cov(bi) provide

a measure of random variation both across individuals and over time. Heagerty and Kurland [33]

investigated the impact on the estimates of regression coefficients of incorrect assumptions regarding

the random effects in generalized linear mixed models and marginalized models and found that

marginalized regression models are much less susceptible to bias resulting from random effects model

misspecification.

The marginal and conditional probabilities in (5) and (6) are related as follows

PM
itk =

∫

P c
itk(bit)f(bit)dbit, (8)

where PM
itk = P (Yit ≤ k|xit), P c

itk(bit) = P (Yit ≤ k|bit, xit) and f(·) is a univariate normal

distribution with mean 0 and variance var(bit). We use (8) to solve for △itk given β0k, β, and

λ.

Reparametrization of the random effects and their covariance matrix. From a computational

perspective, it is convenient to orthogonalize the random effects by setting bi = σiΣ
∗

1
2 ai where

Σ∗
1
2 , a lower triangular matrix with positive diagonal elements, is the Cholesky factor of the ni ×ni

matrix Σ∗ [34] and ai is a ni × 1 vector of independent standard normals. The reparameterized

conditional model is then given by

log
P (Yit ≤ k|ai, xit)

1 − P (Yit ≤ k|ai, xit)
= △itk + σis

(t)ai,

ai ∼ N(0, I),

where s(t) is the tth row vector of Σ∗
1
2 and I is the identity matrix of order T . This transformation

allows us to estimate the Cholesky factor Σ∗
1
2 instead of the covariance matrix Σ∗. Since the Cholesky

factor is the square root of the covariance matrix, it allows more stable estimation of near-zero

variance terms [35].

4.2. Maximum Likelihood Estimation

The likelihood function is the integral over random effects of a product of multinominals,

L(θ; y) =

N
∏

i=1

∫ ni
∏

t=1

K
∏

k=1

(

P c
itk(ai) − P c

itk−1(ai)
)yitk φ(ai)dai, (9)

where P c
itk(ai) = P (Yit ≤ k|ai, xit), P c

it0(ai) = 0, yitk is the set of K indicators with yitk = 1 if

yit = k; yitk = 0 otherwise, for k = 1, · · · , K, φ(·) is a multivariate normal density with mean

vector 0 and variance-covariance matrix I, and θ = (β0, β, λ, α). The marginalized likelihood in

(9) is not available in closed form. There are several approaches to (numerically) integrate out the

random effects. Gauss-Hermite quadrature is popular for low dimensional random effects models

such as random intercept models [35]; adaptive versions [36, 37] can increase efficiency. Monte Carlo

methods are often used for models with higher-dimensional integrals and use randomly sampled

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6

Prepared using simauth.cls



6 KEUNBAIK LEE AND MICHAEL DANIELS

points to approximate the integrals. In our model, we use Monte Carlo methods to evaluate the

integral in (9) since the dimension of ai is high.

Maximizing the log-likelihood with respect to θ yields the likelihood equation

N
∑

i=1

∂ log L(θ; yi)

∂θ
=

N
∑

i=1

L−1(θ; yi)

∫

∂L(θ, ai; yi)

∂θ
φ(ai)dai = 0

where

L(θ; yi) =

∫ ni
∏

t=1

K
∏

k=1

(

P c
itk(ai) − P c

itk−1(ai)
)yitk φ(ai)dai,

L(θ, ai; yi) =

ni
∏

t=1

K
∏

k=1

{

P c
itk(ai) − P c

itk−1(ai)
}yitk

. (10)

The (K − 1 + p + c + 1)-dimensional likelihood equations are given in Appendix.

The matrix of second derivatives of the observed data log-likelihood has a very complex form.

Fortunately, the sample empirical covariance matrix of the individual scores in any correctly specified

model is a consistent estimator of the information and involves only the first derivatives. So the

Quasi-Newton method can be used to solve the likelihood equations, using

θ(m+1) = θ(m) +
[

Ie

(

θ(m); y
)]−1 ∂ log L

∂θ(m)
,

where Ie (θ), an empirical and consistent estimator of the information matrix at step m, is given by

Ie (θ; y) =

N
∑

i=1

L−2(θ; yi)
∂L(θ; yi)

∂θ

∂L(θ; yi)

∂θT
.

At convergence, the large-sample variance-covariance matrix of the parameter estimates is then

obtained as the inverse of Ie

(

θ̂; y
)

.

For the explicit forms of the terms in the Quasi-Newton algorithm and the derivatives ∂△itk

∂β0
,

∂△itk

∂β
, and

∂△itg

∂λ
calculated using (8), see Appendix.

The intercepts △itk are a function of β0k, β, α, and λ and must be obtained within the Quasi-

Newton algorithm. Let f(△itk) =
∫

P c
itk(bit)φ(bit)dbit − PM

itk. Estimates of △itk can be obtained

using Newton-Raphson as follows,

△(n+1)
itk = △(n)

itk −
(

∂f(△itk)

∂△itk

)−1

f(△itk),

where

∂f(△itk)

∂△itk

=

∫

P c
itk(bit)(1 − P c

itk(bit))h(bit)dbit. (11)

Note that the integral in (11) is one-dimensional and we use Gauss-Hermite quadrature to evaluate

this integral.

5. SIMULATION STUDY

We conducted a simulation to examine the bias and efficiency for estimation of the marginal mean

parameters in the setting of misspecification of the dependence model under no missing data and
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under MAR missingness (common in longitudinal data). We also compared the efficiency of OMREM

to the independence proportional odds model (IPOM), given in (5).

We simulated longitudinal ordinal data under an OMREM. Covariates were time and group (2

levels). The marginal probability for OMREM was specified as

log

(

P (Yit ≤ k|xit)

1 − P (Yit ≤ k|xit)

)

= β0k + β1 · timeit + β2 · groupi,

β0 = (β01, β02, β03) = (−1.0, 0.5, 1.0); β = (β1, β2) = (−0.5, 0.5),

where t = 1, · · · , 6, timeit = (t− 1)/6, and groupi equals 0 or 1 with an approximately equal sample

size per group. The conditional probabilities were specified from (6) and (7) with (σi, α) = (1.1, 0.2)

if groupi = 0; (σi, α) = (1.5, 0.2) if groupi = 1. Note that α = 0.2 corresponds to a lag one correlation

of exp(−0.2) = 0.819. We simulated 500 data sets each with a sample size of 300. We then fit an

IPOM and the OMREM.

For the MAR missingness, we specified the following MAR dropout model,

logitP (dropout = t|dropout ≥ t) =

{

−1.5 + 0.3Yit−1, grpi = 0;

−1.5 + 0.1Yit−1, grpi = 1,
(12)

where Yit−1 ∈ {0, 1, 2, 3}.
Table I presents the point estimates, root mean squared error (

√
MSE), and 95% Monte Carlo error

intervals of the marginal mean parameters. When there were no missing data, the estimates were

essentially unbiased for both the OMREM and the IPOM. The root MSE’s in the IPOM were also

similar to those in the OMREM, but sometimes slightly larger (e.g., for β1 and β2). In the presence

of MAR missingness, the estimates in the OMREM were still essentially unbiased. However, for the

IPOM, we saw considerable biases; for example, the relative bias for the coefficient of time, β1 was

34% ((−0.33 + 0.5)/(−0.5)). In addition, the root MSEs were larger in the IPOM; for β1 and β2,

the root MSE’s were eight and three times as large as the OMREM, respectively.

Overall, the simulation shows the increased efficiency of the OMREM over the independence model

(IPOM) in complete data and the large biases that can occur in the marginal mean parameters when

the dependence is mis-modeled in the presence of MAR missingness.

6. QOL EXAMPLE WITH DROPOUT DUE TO PROGRESSION/DEATH

We focus on one QOL measure, fatigue, measured on a 5 point ordinal scale (1: I am usually not

tired at all; 2: I am occasionally rather tired; 3: There are frequently periods when I am quite tired;

4: I am usually very tired; 5: I feel exhausted most of the time). Because very few patients reported

category 5, we collapsed category 4 and 5 into one category. We used 707 subjects without missing

at baseline and focused on two treatments, FOLFOX and IFL (Control).

To examine treatment differences in fatigue levels, we included type of treatment, Tx,

Txi =

{

0, if subject i is assigned to IFL (control);

1, if subject i is assigned to FOLFOX (active),

and visit number(TIME=0.0, 0.1, · · · , 0.5) re-scaled. The patient’s visit corresponds to the time

period during which the survey was filled out (0=baseline, 1=1-84 days after going on study, 2=85-

168 days after going on study,..., 5=337-420 days after going on study). We will analyze the data
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from the first five windows (up to about one year). We assumed the missing responses (mostly due to

dropout) were missing at random (MAR) in our initial analysis. In subsection 6.2, we more carefully

handled the dropouts related to the reason for dropping out (including death).

The Quasi-Newton algorithm is not trivial computationally due to the need to obtain estimates

and derivatives of ∆it using the Gauss-Hermite quadrature for all subjects and at all times, within

each Quasi-Newton step. Each Quasi-Newton step (in which all the ∆it need to be computed) on

a Pentium with a 1.6GHz processor took about 3 minutes for the OMREM with MC sample size

of 10,000 and 40 point Gauss-Hermite quadrature. Using good initial values based on fitting an

independent proportional odds model in standard software results in a minimal number of iterations

until convergence. For example, in our analysis below, we obtained convergence in 20 iterations using

a fairly strict convergence criterion,
(

θ̂old − θ̂new
)T (

θ̂old − θ̂new
)

≤ 10−4 where θ̂new and θ̂old are

current and previous fitted values of parameters, respectively.

6.1. Model fit

We first fitted three OMREM’s and one independent proportional odds model (IPOM) under an

assumption of ignorable dropout. OMREM-1 allowed the random effects variance to depend on

treatment, log σi = λ0 + λ1 × Txi. OMREM-2 was a simpler model, with a constant variance,

log σi = λ0. Both had autoregression variance-covariance structures. OMREM-3 was the OMREM-2

with bit = bi0 ∼ N(0, σ2). Table II gives maximum likelihood estimates for all four models.

The inferences for some of the coefficients under the IPOM were very different from those for

the dependence models. For example, the interaction of treatment and visit was highly significant

under the IPOM, indicating an increase in fatigue over time for FOLFOX relative to IFL, while the

dependence models indicated a non-significant, decrease in fatigue over time.

Comparison of AIC for IPOM and OMREM-3 indicated that the OMREM-3 is fit much better

than the IPOM (2561.154 for OMREM-3, 2745.116 for IPOM). Point estimates and standard errors

for marginal mean parameters for the OMREM-1 and OMREM-2 were similar. To compare the fit

of the two models under MAR, we computed the likelihood ratio test. Comparison of deviances for

OMREM-2 and OMREM-1 which were nested yielded △D12 = 2 × (1267.623− 1266.112) = 3.022,

p−value= 0.082 on 1 d.f. This comparison indicated that the OMREM-1 did not provide a

significantly better fit than the OMREM-2. We also computed the likelihood ratio test to compare

OMREM-2 and OMREM-3. The deviance difference was △D23 = 2×(1273.577−1267.623) = 11.908

p−value< 0.01 on 1 d.f. This indicated that the OMREM-2 fit better than the OMREM-3.

The estimate of the correlation parameter ρ in OMREM-2 was significant and corresponded

to an estimated correlation of ρ̂ = exp(−α̂) = exp(−0.264) = 0.768. The ML estimate for σ

(exp(1.251) = 3.49) indicated large subject-to-subject variation in the odds of the cumulative

probability of fatigue. The coefficients of treatment and the interaction of treatment and visit in

the marginal mean model were not significant indicating fatigue (and its trajectory over time) did

not differ between the two treatments.

6.2. Dropout Due To Progression/Death

QOL responses not measured due to participant death do not exist whereas scheduled measurements

due to dropout for other reasons can be viewed as existing but unobserved. If we fit models using
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methods in Section 4 (as we did in Section 6.1), the missing data due to death is implicitly imputed

(under MAR). We outline a PMM approach to address this next.

6.2.1. Pattern mixture model (PMM) approach Define Si to be death time for subject i. To address

dropout due to death, we can specify the OMREM’s conditional on death time, S. The models are

given by

log
P (Yit ≤ k|xit, Si = j)

1 − P (Yit ≤ k|xit, Si = j)
= β0k(j) + xT

itβ(j), (13)

log
P (Yit ≤ k|bi, xit, Si = j)

1 − P (Yit ≤ k|bi, xit, Si = j)
= △itk(j) + bit(j),

bi(j)
T = (bi1(j), · · · , biT (j)) ∼ N (0, Σi(j)) ,

where xit is a vector of covariates including treatments, j = 1, · · · , J , and J is the number of patterns

(J ≤ T ). This approach implicitly assumes that for a given death time (pattern), that missing data

before the death time is MAR (conditional on pattern).

Now, suppress i without loss of clarity. One target of inference is P (Yt > k|S > j, x) [25] which is

recovered from the pattern-mixture model by summing over the survival distribution [38],

P (Yt > k|S > j, x) =

∑

g>j P (Yt > k|S = g, x)P (S = g|x)
∑

l>j P (S = l|x)
, (14)

where P (Yt > k|S = g, x) is estimated from (13) and is only defined for t < g. Unfortunately, this

approach only uses the ’survivors’ under each treatment and the corresponding inference is not the

causal effect of the treatment.

6.2.2. PMM approach applied A large number of subjects dropped out of this study due to tumor

progression or death (41%). Based on consultation with Mayo investigators for assessing QOL, we

grouped tumor progression and death together. When the dropout rates due to progression/death

are broken down by treatment arms, the rates were marginally higher in IFL arm. For subjects

randomized to IFL arm, 50% dropped out due to progression/death. Whereas, 29% dropped out

due to progression/death for subjects with FOLFOX arm (see Table III).

The number of subjects by progession/death windows by treatment groups is given in Table IV.

For a subject who dropped out for reason unrelated to death/progression, we still know when the

subject died or progressed if it happened before the study ended. For example, if a subject dropped

out for reason unrelated to death/progression after second visit and was alive until the study was

finished, the subject belonged to progession/Death window 6.

We specify the OMREM’s conditional on progression/death time, S as outlined in Section 6.2.1.

Due to the small sample sizes when conditioning on individual times, we assumed the parameters

were the same for S = 1, . . . , 5 (those who progressed/died before the end of the study) but different

for those who did not, S = 6.

In our analysis here, we compared three models, an ordinal marginalized random effects model

(OMREM) and an independent cumulative logit model (IPOM) under ignorable missingness, and a

mixture model (PMM) as outlined in Section 6.2.1. In the PMM, the target probabilities given in

(14) evaluated at j = 5 correspond to those who did not progress/die before the end of the study.

Table V presents the estimated target probabilities on the two treatment arms. Figure 1 indicates
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10 KEUNBAIK LEE AND MICHAEL DANIELS

maximum likelihood estimates of P (Yt > k|S > 5, Tx) for the PMM and those of P (Yt > k|Tx)

for the marginalized random effects model (OMREM) and the independent cumulative logit model

(IPOM) under ignorable missingness, respectively. In the PMM and OMREM, P (Yt > k|S > 5, Tx)

and P (Yt > k|Tx), which respectively evaluate the probability of fatigue for those who did not

progress/die before the end of study and that for all patients, were calculated. In the PMM, the

target probabilities for FOLFOX arm increased over time; whereas that for IFL arm did not change.

However, there were no significant differences over time between the treatment arms. In the OMREM,

we have similar pattern to in the PMM. In the IPOM, the target probabilities for the FOLFOX were

higher than those for the IFL unlike the other models as time increases because the estimate of

coefficient of interaction between Visit and Arm was positive and large compared with those in

the other models (1.059 for the IPOM; 0.469 for the OMREM). Because the PMM handled the

missingness due to progression/death properly, we focus on the PMM and conclude that patients’

fatigue was not affected by treatment like in the inappropriate ignorable models. However, because we

restrict the analyses for the QOL data to subgroup of patients who survived, the resulting treatment

comparisons will no longer have a causal interpretation. In the next section, we present a principal

stratification approach to address this.

6.2.3. Principal Stratification To define the causal effect of treatment, we start by introducing

potential outcomes. Potential outcomes are all the outcomes that would be observed if both

treatments had been applied to each of the subjects [39, 40, 41]. Frangakis and Rubin [26] used the

concept of potential outcomes in an approach called ‘principal stratification’. Principal stratification

partitions subjects into sets with respect to posttreatment variables. The principal strata are not

affected by treatment assignment and therefore can be used as any pretreatment covariate. Causal

effects are defined within these principal strata. In the following, the posttreatment variable of

interest is progression/death.

Let Tx be the treatment indicator as defined earlier. Let Yt(Tx), the potential outcome at time t,

be an ordinal QOL response. We only observe either Yt(1) or Yt(0) for each subject. Now, let Dt(Tx)

be tumor-progression/death indicator at visit t on treatment Tx,

Dt(Tx) =

{

0, alive;

1, tumor progressed or dead.

Obviously, if Dt(Tx) = 1, then Ds(Tx) = 1 for s > t. In this case, there are four principal strata

defined by the pairs of potential values of Dt(Tx),

1. At(0) = {i|(Dt(0), Dt(1)) = (0, 0)}: the subjects who would be alive under all two arms at visit

t.

2. At(1) = {i|(Dt(0), Dt(1)) = (1, 0)}: the subjects who would be alive under the active treatment

but not alive under the control treatment at visit t.

3. At(2) = {i|(Dt(0), Dt(1)) = (0, 1)}: the subjects who would be alive under control arm but not

alive under the treatment arm at visit t.

4. At(3) = {i|(Dt(0), Dt(1)) = (1, 1)}: the subjects who would not be alive under any treatment

at visit t.

Since we are interested in subjects who were alive until the end of study, At(3) is not of direct
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interest. The full set of potential outcomes at visit t is

Pt = {Dt(0), (Yt(0); Dt(0) = 0), Dt(1), (Yt(1); Dt(1) = 0)} ,

where, for treatment tx, Yt(tx) is the potential response if a subject is alive at visit t (Dt(tx) = 0).

If the patient is alive (Dit(Txi) = 0), define Rit to be the indicator that Yit = Yit(Txi) is observed.

In the following, we assume monotone dropout (Rit = 1 ⇒ Rit−1 = 1). So, the observed data for

individual i is

Oit = {Txi, Dit, (Rit; Dit = 0), (Yit; Dit = 0, Rit = 1)} .

Because we cannot determine in which strata individual i is, we formally define the causal effects of

interest and then state some additional assumptions that are necessary to estimate them.

Suppress i here for clarity and let T be the last visit in the study. We define the following causal

effect of interest [27] as

SACEk(1, 0) =
odds {YT (1) > k|(DT (0), DT (1)) = (0, 0)}
odds {YT (0) > k|(DT (0), DT (1)) = (0, 0)}

=
odds {YT (1) > k|AT (0)}
odds {YT (0) > k|AT (0)} .

SACEk(1, 0) is the odds ratios based on the probability that response at time T is larger than k for

subjects who would be alive under both treatments between the active treatment (FOLFOX) and

the control arm (IFL).

Now, define P̄t = (P1, · · · ,Pt) to be the history of potential outcomes up to and including the

outcomes at visit t. We make the following assumptions to identify the causal effect of interest:

Assumption 1 (Monotonicity): If Dt(1) = 1, then Dt(0) = 1; if Dt(0) = 0, then Dt(1) = 0.

Assumption 1 assumes the active treatment is effective. That is, if a patient is alive under the control

arm, then the patient will also be alive under active arm. Note that At(2) is empty from Assumption

1.

Assumption 2 (Ignorability): Tx ⊥ P̄T .

Note that P̄t is all the potential outcome up to and including time t. Assumption 2 states that the

treatment arm is unrelated to the set of potential outcomes.

Assumption 3: Rt ⊥ Yt|P̄t−1.

This assumption states that missingness of the outcome is independent of the the value of the

outcome given all the potential outcome up to and including time t−1. It is similar to an assumption

of sequential missing at random [42].

Assumption 4 (Proportional odds):

logitP (YT (1) > k|a) = α
(1)
0k + α

(1)
1 a1,

where α
(1)
01 ≥ α

(1)
02 ≥ · · · ≥ α

(1)
0K−1 and

a1 =

{

1, a subject in AT (1);

0, otherwise,

This assumption can be re-written as

odds(YT (1) > k|AT (1))

odds(YT (1) > k|AT (0))
= eα

(1)
1

let
= τ. (15)
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12 KEUNBAIK LEE AND MICHAEL DANIELS

We use this to reduce the number of sensitivity parameters. This will become apparent in what

follows.

In general, the goal here is to use the observed data, Ot, along with these assumptions to draw

inference about SACE. To identify SACE, we need to identify P (YT (0) > k|AT (0)), P (YT (1) >

k|AT (0)). We provide the details of this identification using Assumptions 1-4 in the Appendix.

6.2.4. Principal Stratification applied In our study, even though there is a known survival difference

between the groups, differential toxicity between the treatment arms leads us to examine QOL in a

manner not influenced by the survival difference.

The causal estimand of interest, SACE is a function of gT (Tx) and h
T,Tx(k) (see below and

Appendix for more details). For Tx = 0, 1,

N(tx)
∑

i=1

1 − DiT |Tx=tx ∼ Bin(N(tx), gT (tx))

where N(tx) is the number of subjects who had the treatment Tx=tx. The estimate of gT (tx) is

given by

ĝT (tx) = NT (tx)/N(tx), (16)

where NT (tx) is the number of subjects who were alive after the study was complete under Tx=tx.

To define h
T,Tx(k), we define S to be the progression/death time and specify the OMREM

conditional on progression/death time as in (13). Within this framework, h
T,Tx(k) is given by

h
T,Tx(k) = P (YT > k|S > T − 1, Tx)

=

∑

j>T−1 P (YT > k|S = j, Tx)P (S = j|Tx)
∑

j>T−1 P (S = j|Tx)
, (17)

where P (S = j|Tx) is a multinomial mass function for S, and P (YT > k | S = j, Tx) is calculated

from (14) given Tx and is only defined for t < j. To calculate standard errors for SACE, we use the

delta method.

The identification of the SACE relies on untestable assumptions. We implemented a sensitivity

analysis procedure to draw inference about SACE by varying the sensitivity parameter τ in (15)

(see Assumption 4). This is similar to the approach in [27]. The sensitivity parameter τ is the odds

ratio of the probability of fatigue under the FOLFOX arm among the group that is alive under the

FOLFOX arm but not alive under the control treatment at visit T as compared to the group that is

alive under both arms. A large value of τ means that the probability of fatigue under the FOLFOX

arm among patients in stratum AT (1) is higher than that among patients in stratum AT (0). Based

on Dr. Sargent’s knowledge of the trial, he told us it was very unlikely that τ was outside the range

(0.5, 2.0), corresponding to a two-fold or less change in either direction. Thus, we used this as the

range for our sensitivity analysis.

The causal effect of treatment may be estimated for principal stratum AT (0), patients who would

survive to the end of the study period regardless of treatment. Table IV shows the proportions of

patients who were alive after the study was finished (Progression/Death window=6). Using the data

in Table IV and (16), the MLE’s of gT (·) were ĝT (0) = .366 and ĝT (1) = .554.
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To estimate SACEK−1(1, 0) we also need to estimate P (DT (0) = 0|DT (1) = 0), P (YT (0) >

K−1|AT (0)), and P (YT (1) > K−1|AT (0)). All these probabilities are estimable given Assumptions

1-4. The estimate of P (DT (0) = 0|DT (1) = 0), the probability of surviving under the control arm

given survival under the FOLFOX arm, was 0.661. The estimate of P (YT (0) > K − 1|AT (0)) was

ĥT,0(K − 1) = 0.087 and P (YT (1) > K − 1|AT (0)) was ĥT,1(K − 1) = 0.141.

The estimated values of SACEK−1(1, 0) and associated confidence intervals over τ ranging

from 0.5 to 2.0 are given in Figure 2. As τ increased, the estimated values of SACEK−1(1, 0)

decreased. The estimated values of SACEK−1(1, 0) were always larger than 1. This indicated that

the probability of a patient’s fatigue on the FOLFOX treatment was larger than the probability of

a patient’s fatigue on the IFL treatment. However, there was no significant difference between the

two arms (at 95% level). Thus, we conclude that patients’ fatigue was not affected by the treatment.

7. CONCLUSION

We have proposed marginalized random effects models for longitudinal ordinal data that directly

model marginal probabilities as function of covariates while accounting for the longitudinal

correlation via random effects. To evaluate the marginalized likelihood, we used Monte Carlo

integration. Parameter estimation was based on maximum likelihood using a Quasi-Newton

algorithm.

As discussed in Section 6, about 40% of the patients dropped out due to tumor progression or

death. We adjusted for this using a pattern mixture approach with patterns defined based on the

observed progression/death times and then using a principal stratification approach. We plan on

extending this to a fully Bayesian approach and as such, using informative priors for the sensitivity

parameters to obtain a single inference that characterizes our uncertainty about the sensitivity

parameters. We also will consider an extension to three treatments (two active and one placebo)

and a weakening of the monotonicity assumptions.

We can extend marginalized ordinal models to allow both serial dependence via a Markov structure

and random effects [43]. These models are particularly useful in longitudinal analyses with a moderate

to large number of repeated measurements per subject. We are also working on extensions to

multivariate longitudinal ordinal responses which would be applicable to QOL data [44].

APPENDIX

Proof of Theorem 1

We know that β01 < · · · < β0K−1 implies that

PM
itk−1 < PM

itk

where

PM
itk =

∫

P (Yit ≤ k|bit, xi)f(bit)dbit.

So,
∫

P (Yit ≤ k|bit, xi)f(bit)dbit >

∫

P (Yit ≤ k − 1|bit, xi)f(bit)dbit,
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14 KEUNBAIK LEE AND MICHAEL DANIELS

for all k. We can rewrite this as

∫
(

e△itk+bit

1 + e△itk+bit
− e△itk−1+bit

1 + e△itk−1+bit

)

f(bit)dbit > 0. (18)

We now claim that △itk > △itk−1 for all k. We will show that if it is not true (i.e, △itk ≤ △itk−1

for some k), then condition (18) cannot be satisfied.

i) If △itk = △itk−1 for some k, then the left term of (18) is zero. This is a contradiction to (18).

ii) If △itk < △itk−1 for some k, then let △itk−1 = △itk + ǫ for some ǫ > 0. So (18) is given by

0 <

∫
(

e△itk+bit

1 + e△itk+bit
− e△itk+ǫ+bit

1 + e△itk+ǫ+bit

)

f(bit)dbit

=

∫

e△itk(ebit − eǫebit)

(1 + e△itk+bit) (1 + eǫe△itk+bit)
f(bit)dbit

≤
∫

e△itk(ebit − eǫebit)f(bitdbit

= e△itk

∫

ebit(1 − eǫ)f(bit)dbit.

Since Eb

{

ebit(1 − eǫ)
}

< 0, this is a contradiction to (18).

Detailed Calculations of Quasi-Newton under ignorability

The contribution of subject i to the log likelihood is given by

log L(θ; yi) = log

∫ ni
∏

t=1

K
∏

k=1

(

P c
itk(ai) − P c

itk−1(ai)
)yitk φ(ai)dai

= log

∫

exp

[{

T
∑

t=1

K−1
∑

k=1

(Ritkφitk − Ritk+1g(φitk))

}]

φ(ai)dai,

where Ritk = Yit1 + · · · + Yitk, φitk = log
(

P c
itk

P c
itk+1−P c

itk

)

, and g(a) = log {1 + exp(a)}.
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The forms of the derivatives for Quasi-Newton algorithm are

∂ log L

∂β0j

=
N

X

i=1

L(θ; yi)
−1

Z

L(θ, ai|yi)

(

ni
X

t=1

K−1
X

k=1

„

Ritk − Ritk+1
eφitk

1 + eφitk

«

×
„

∂φitk

∂P c
itk(ai)

∂P c
itk(ai)

∂△itk

∂△itk

∂β0j

+
∂φitk

∂P c
itk+1(ai)

∂P c
itk+1(ai)

∂△itk+1

∂△itk+1

∂β0j

«ff

φ(ai)dai,

∂ log L

∂β
=

N
X

i=1

L(θ; yi)
−1

Z

L(θ, ai|yi)

(

ni
X

t=1

K−1
X

k=1

„

Ritk − Ritk+1
eφitk

1 + eφitk

«

×
„

∂φitk

∂P c
itk(ai)

∂P c
itk(ai)

∂△itk

∂△itk

∂β
+

∂φitk

∂P c
itk+1(ai)

∂P c
itk+1(ai)

∂△itk+1

∂△itk+1

∂β

«ff

φ(ai)dai,

∂ log L

∂λ
=

N
X

i=1

L(θ; yi)
−1

Z

L(θ, ai|yi)

"

ni
X

t=1

K−1
X

k=1

„

Ritk − Ritk+1
eφitk

1 + eφitk

«

×


∂φitk

∂P c
itk(ai)

„

∂P c
itk(ai)

∂△itk

∂△itk

∂λ
+ P c

itk(ai)(1 − P c
itk(ai))s

(t)aizi

«

+
∂φitk

∂P c
itk+1(ai)

„

∂P c
itk+1(ai)

∂△itk+1

∂△itk+1

∂λ
+ P c

itk(ai)(1 − P c
itk(ai))s

(t)aizi

«ff–

φ(ai)dai,

∂ log L

∂α
=

N
X

i=1

L(θ; yi)
−1

Z

L(θ, ai|yi)

"

ni
X

t=1

K−1
X

k=1

„

Ritk − Ritk+1
eφitk

1 + eφitk

«

×


∂φitk

∂P c
itk(ai)

P c
itk(ai)(1 − P c

itk(ai))σi

∂s(t)

∂α
ai

+
∂φitk

∂P c
itk+1(ai)

P c
itk(ai)(1 − P c

itk(ai))σi

∂s(t)

∂α
ai

ff–

φ(ai)dai,

where L(θ, ai|yi) is given by (10) and reexpressed as

L(θ, ai|yi) = exp

[{

T
∑

t=1

K−1
∑

k=1

(Ritkφitk − Ritk+1g(φitk))

}]

,

for j = 1, · · · , K−1. The integrals are estimated using Monte Carlo integration. We simply generate

10,000 random vectors from multivariate standard normal distributions to compute the integrals.

To make the derivatives simpler, (8) can be reexpressed as

PM
itk =

∫

P c
itk(σia)φ(a)da, (19)

where φ(·) is the standard normal density function. Note that the integral in (19) is one-dimensional.

To compute the score vector and information matrix, we also need derivatives of △it with respect

to β0, β, and λ. They can be obtained from the relationship (19),

∂PM
itk

∂β
=

∫

∂P c
itk(σia)

∂△itk

∂△itk

∂β
φ(a)da,

⇒ ∂△itk

∂β
=

∂P M
itk

∂β
∫ ∂P c

itk
(σia)

∂△itk
φ(a)da

.

Similarly, we have

∂△itk

∂β0j

=

∂P M
itk

∂β0j

∫ ∂P c
itk

(σia)

∂△itk
φ(a)da

,

∂△itk

∂λ
= −

∫

P c
itk(σia)(1 − P c

itk(σia))ziaφ(a)da
∫ ∂P c

itk
(σia)

∂△itk
φ(a)da

,
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Identification of the causal effects

Based on observed data and Assumptions 1-4 in Section 5.1, we show how to estimate the causal

effects SACE. Assumptions 1 implies that

P (Yt(tx) > k|At(0)) = P (Yt(tx) > k|Dt(0) = 0),

for tx = 0, 1. Assumption 2 implies that

P (Dt(tx) = 0) = P (Dt = 0|Tx = tx)
let
= gt(tx), (20)

and

P (Yt(tx) > k|Dt(tx) = 0, D̄t−1(tx)) = P (Yt > k|Dt = 0, D̄t−1, Tx = tx),

for tx = 0, 1. From Assumptions 2 and 3, we have that

P (Yt(tx) > k|Dt(tx) = 0, D̄t−1(tx)) = P (Yt > k|Dt = 0, D̄t−1, Tx = tx, Rt = 1)

= P (Yt > k|Dt = 0, Dt−1, Tx = tx, Rt = 1),

and

P (Yt(tx) > k|Dt(tx) = 0) = P (Yt > k|Dt = 0, Tx = tx, Rt = 1)
let
= ht,tx(k),

for tx = 0, 1.
Recall we need to estimate P (YT (1) > k|AT (0)) to estimate SACEk(1, 0). To do this, we show

that P (YT (1) > k|DT (1) = 0) can be expressed as

P (YT (1) > k|DT (1) = 0)

= P (YT (1) > k|AT (0))P (AT (0)|DT (1) = 0) + P (YT (1) > k|AT (1))P (AT (1)|DT (1) = 0)

= P (YT (1) > k|AT (0))P (DT (0) = 0, DT (1) = 0|DT (1) = 0)

+ P (YT (1) > k|AT (1))P (DT (0) = 1, DT (1) = 0|DT (1) = 0)

= P (YT (1) > k|AT (0))P (DT (0) = 0|DT (1) = 0) + P (YT (1) > k|AT (1))P (DT (0) = 1|DT (1) = 0).

(21)

The original expressions P (YT (tx) > k|DT (tx) = 0) for tx = 0, 1 are identifiable. However, only
some of factors in (21) are identified. The mixing probabilities, P (DT (0) = 0|DT (1) = 0) and
P (DT (0) = 1|DT (1) = 0), are identifiable by (20) since

P (DT (0) = 0|DT (1) = 0) =
gT (0)

gT (1)
,

P (DT (0) = 1|DT (1) = 0) = 1 − P (DT (0) = 0|DT (1) = 0).

However, P (YT (1) > k|AT (0)) and P (YT (1) > k|AT (1)) in (21) are not identified. Given the identified

components, to identify these unidentified quantities, we only need to know their ratios. All three ratios are

identified via Assumption 4,

odds(YT (1) > k|AT (1))

odds(YT (1) > k|AT (0))
= eα

(1)
1

let
= τ. (22)

From (21) and (15), we can identify P (YT (1) > k|AT (0)) by solving the following quadratic equation,

gT (0)(1 − τ )x2 − {(1 − τ )(gT (0) + hT,1(k)gT (1)) + τgT (1)}x + hT,1(k)gT (1) = 0,

where x = P (YT (1) > k|AT (0)). When τ = 1,

P (YT (1) > k|AT (0)) = hT,1(k).
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When τ 6= 1, we have

P (YT (1) > k|AT (0)) = − b(τ ) +
p

b2(τ ) − 4a(τ )c(1)

2a(τ )
,

where a(τ ) = (1 − τ )gT (0), b(τ ) = (τ − 1)(hT,1(k)gT (1) + gT (0)) − τgT (1), and c(1) = hT,1(k)gT (1). Note

that the solution is a decreasing function of τ .
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Table I. Bias of OMREM maximum likelihood estimators. Displayed are the average regression

coefficient estimates, the
√

MSE, and 95% Monte Carlo error interval (β̄±1.96
p

var(β̄)/500). The true

conditional probabilities were specified with σi = 1.1 and α = 0.2 if groupi = 0; σi = 1.5 and α = 0.2

if groupi = 1. The fitted conditional probabilities were specified with random effects, bi ∼ N(0, σ2
i Σ∗)

with log σi = λ1 + groupiλ2 for OMREM.

Complete data MAR dropout

OMREM IPOM OMREM IPOM

para. truth mean
√

MSE mean
√

MSE mean
√

MSE mean
√

MSE

β01 -1.00 -0.99 0.01 -0.99 0.01 -1.01 0.01 -0.98 0.02

(-1.00,-0.98) (-1.00,-0.98) (-1.02,-0.99) (-0.99,-0.97)

β02 0.50 0.51 0.01 0.51 0.01 0.49 0.01 0.51 0.01

(0.50,0.51) (0.50,0.52) (0.48,0.50) (0.50,0.52)

β03 1.00 1.00 0.00 1.00 0.00 0.99 0.01 1.01 0.01

(0.99,1.01) (1.00,1.01) (0.98,1.00) (1.00,1.02)

β1(Time) -0.50 -0.51 0.01 -0.52 0.02 -0.48 0.02 -0.33 0.17

(-0.53,-0.49) (-0.54,-0.50) (-0.52,-0.45) (-0.36,-0.30)

β2 0.50 0.50 0.00 0.51 0.01 0.51 0.01 0.47 0.03

(0.49,0.51) (0.49,0.52) (0.49,0.52) (0.46,0.48)

Table II. Maximum likelihood estimates for marginalized random effects models under ignorable

missingness. OMREM-1 and OMREM-2 are OMREM’s with random effects variance log σi =

λ0 +λ1×Txi and log σi = λ0, respectively. Both had autoregressive covariance structures. OMREM-3

is the OMREM-2 with bit = bi0 ∼ N(0, σ2). IPOM is an independent proportional odds model. Tx is

an indicator for FOLFOX. Visit is the patient’s visit corresponding to the time period.

OMREM-1 OMREM-2 OMREM-3 IPOM.

Marginal Parameters

Int1 −1.099∗ (0.126) −1.093∗ (0.126) −1.119∗ (0.124) −1.163 (0.636)

Int2 0.839∗ (0.126) 0.839∗ (0.127) 0.816∗ (0.123) 0.796∗ (0.149)

Int3 2.280∗ (0.160) 2.277∗ (0.160) 2.261∗ (0.156) 2.277∗ (0.982)

Visit −0.334 (0.620) −0.367 (0.609) −0.166 (0.472) −0.424∗ (0.113)

Tx −0.073 (0.168) −0.072 (0.167) −0.069 (0.161) −0.003 (0.039)

Visit*Tx −0.607 (0.922) −0.469 (0.917) −0.541 (0.725) 1.059∗ (0.063)

Conditional Parameters

Int 1.086∗ (0.634) 1.251 (0.816) 0.664∗(0.144)

Tx 0.280 (0.897)

α 0.243∗ (0.076) 0.264∗ (0.081)

Max. Log L −1266.112 −1267.623 −1273.577 −1366.558

AIC 2550.224 2551.246 2561.154 2745.116
∗ indicates significance under 95 % confidence level.
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Table III. Break down of completers and dropouts by treatment groups for QOL data. Proportions in

parentheses

Dropouts by reason

Treatment Completer Progression/Death Other Total

IFL 10 (0.04) 117 (0.50) 108 (0.46) 235

FOLFOX 4 (0.02) 68 (0.29) 161 (0.69) 233

Total 14 (0.03) 185 (0.41) 269 (0.57) 468

Table IV. Break down of Progession/Death windows by treatment groups for QOL data. Proportions

in parentheses

Progression/Death window

Treatment 1 2 3 4 5 6 Total

IFL 35(0.15) 32(0.14) 38(0.16) 26(0.11) 18(0.08) 86(0.37) 235

FOLFOX 16(0.07) 28(0.12) 24(0.10) 17(0.07) 19(0.08) 129(0.55) 233

Total 51(0.11) 60(0.13) 62(0.13) 43(0.09) 37(0.08) 215(0.46) 468

Window 6 means ‘after study.’

Table V. Maximum likelihood estimates of P (Yt > k|S > 5, Tx) (standard errors) where S is

progression/death time. P (Yt > k|S > 5, Tx) evaluates probability of fatigue stress for those who

did not progress/die before the end of study.

Visit(t)

Trt k 1 2 3 4 5 6

1 0.753 0.754 0.754 0.755 0.755 0.756

(0.039) (0.034) (0.037) (0.047) (0.061) (0.077)

IFL 2 0.287 0.288 0.288 0.288 0.289 0.290

(0.044) (0.037) (0.040) (0.051) (0.066) (0.084)

3 0.086 0.086 0.087 0.087 0.087 0.087

(0.019) (0.017) (0.019) (0.023) (0.028) (0.035)

1 0.731 0.757 0.781 0.803 0.823 0.842

(0.033) (0.028) (0.032) (0.039) (0.047) (0.054)

FOLFOX 2 0.264 0.291 0.320 0.350 0.381 0.413

(0.034) (0.031) (0.038) (0.054) (0.073) (0.095)

3 0.078 0.088 0.099 0.112 0.126 0.141

(0.016) (0.016) (0.019) (0.026) (0.036) (0.049)
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Figure 1. Maximum likelihood estimates of P (Yt > k|S > 5, Tx) for the pattern mixture model

(PMM) and those of P (Yt > k|Tx) for the marginalized random effects model (OMREM) and

the independent cumulative logit model (IPOM) under ignorable missingness, respectively, and 95%

confidence intervals, where S is progression/death time. P (Yt > k|S > 5, Tx) evaluates probability of

fatigue for those who did not progress/die before the end of study. Solid line is for IFL; dashed line is

for FOLFOX. ◦, 2, and ⋄ are for k = 3, 2, 1, respectively.
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Figure 2. SACEK−1(1, 0) as a function of τ (Solid line). Dashed lines are 95% confidence intervals.
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