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1. Introduction

Quality of life (QOL) data in clinical trials is generally obtained repeatedly over time

using questionnaires that can be completed by the patient without direct supervision.

We will analyze QOL data from a recent colorectal cancer clinical trial (Goldberg et al,

2004). The main objective of this trial was to find a better treatment for colorectal cancer.

However, given that the toxicity profiles were quite different on the 3 treatment arms, it

was of interest to see if there was a negative impact of ‘better’ treatments on patients

QOL. In this paper we compare the quality of life on the 3 treatments. We will introduce

a new regression model to answer this question using a full likelihood based approach.

Generalized linear models for longitudinal data can be classified into directly specified

(marginal) models and indirectly specified (conditional) models. In marginal models, the

population-averaged effect of covariates on the longitudinal response is directly specified.

(Liang and Zeger, 1986; Fitzmaurice and Laird, 1993). In conditional models, the effect

of covariates on responses is specified conditional on random effects or previous history

of responses. So the population-averaged effect of covariates is indirectly specified (Zeger

and Karim, 1991; Breslow and Clayton, 1993). Here, we focus on marginal models.

Marginalized likelihood-based models describe the correlation among observations by

embedding the marginal mean structure within a complete multivariate probability model

with dependence, modelled via random effects or a Markov structure. We will extend pre-

vious work using a Markov structure (Azzalini, 1994; Heagerty, 2002) to ordinal categorical

data. Related models for binary data can be found in Heagerty (1999) and Miglioretti

and Heagerty (2004). This class of likelihood-based directly specified marginal models

have several advantages over conditional models. First, the interpretation of regression

coefficients is invariant with respect to specification of the dependence in the model unlike

in conditional models. In addition, they can be much less susceptible to bias resulting
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from random effects model mis-specification (Heagerty and Zeger, 2000; Heagerty and

Kurland, 2001).

Next, we provide a brief review of models for ordinal data on which our work will

build. McCullagh (1980) proposed the cumulative logit model for independent ordinal

data. A general overview of models for ordinal categorical data can be found in Liu

and Agresti (2005). Most of the models for correlated ordinal data fall into two classes:

those modelling dependence using the global odds ratio (GOR) (Dale, 1986) and those

modelling dependence via random effects. The GOR is an extension of the simple odds

ratio for a 2 × 2 contingency table formed when adjacent rows and columns of a K × K

contingency table (K > 2) are collapsed into a 2 × 2 table. Molenberghs and Lesaffre

(1994) specified the joint probability of multivariate observations through the first and

higher-order marginal parameters. Williamson et al. (1995) developed marginal mean

regression techniques based on the global odds ratios as a measure of association and

also considered latent variable models and maximum likelihood estimation for bivariate

ordinal responses. Heagerty and Zeger (1996) proposed marginal regression models for

clustered ordinal data by specifying marginal means and marginal pairwise global odds

ratios and used estimating equations and alternating logistic regressions for inference. In

terms of random effects, Gibbons and Hedeker (1997) developed random-effects ordinal

regression models for the probit and logistic links. Todem et. al. (2003) and Liu and

Hedeker (2006) proposed models for multiple ordinal outcomes in longitudinal settings

using random effects.

All these approaches to modelling dependence have a goal of reducing the number

of dependence parameters, thereby implicitly reducing the number of probabilities that

need to be estimated. For example, a saturated model (with no covariates) for a five

category ordinal response measured at six occasions would require the estimation of 15, 625
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multinomial probabilities. Our approach to reducing this estimation problem will be

to introduce a proportional odds model for the marginal means (probabilities) and a

Markov transition structure for the temporal dependence. The use of a likelihood based

approach will have advantages for longitudinal data that is missing at random (MAR)

and in particular, ignorable. Likelihood based inference is valid under ignorability and

the missing data mechanism (mdm) need not be explicitly specified. Semiparametric

GEE approaches require explicit specification of the mdm for MAR. In addition, the re-

weighting based approaches (based on the mdm) to handle MAR in GEEs only ’impute’

missing values at the observed data points. Likelihood based approaches do not have this

restriction and allow ’imputation’ of values outside the range of the observed data points

via parametric distributional assumptions.

The paper is arranged as follows. In section 2, we briefly review marginalized transition

models for longitudinal binary data. In section 3, we consider two marginalized transition

models for the longitudinal ordinal data. Methods are illustrated on the quality of life

data in section 4.

2. Review of Marginalized Transition Model

In this section, we review Heagerty’s marginalized model for the analysis of longitudinal

binary data (Heagerty, 2002). Let Yi = (Yi1, · · · , Yini
) be binary data observed on subject

i = 1, · · · , N at times t = 1, · · · , ni. We assume that associated exogenous but possibly

time-varying covariates, xit = (xit1, · · · , xitr), are recorded for each subject at each time.

Define µM
it = E(Yit|Xit). We assume that the regression model properly specifies the full

covariate conditional mean such that E(Yit|Xit) = E(Yit|Xi1, · · · , Xini
). The pth-order
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marginalized transition model, MTM(p), can be expressed through the pair of regressions

mean model: logit{µM
it } = xT

itβ, (1)

dependence model: logit{µc
it} = 4it +

p
∑

j=1

γitjyit−j, (2)

where µc
it = E(Yit|Yit−1, · · · , Yit−p, Xit) is the conditional mean, γitj = zT

itαj are depen-

dence parameters describing serial dependence by quantifying how strongly the immediate

past predicts the present. zit is a subset of xit, and the subject/time specific intercept in

the conditional model, 4it, is determined implicitly by Xi, β and α.

The mean parameter β describes changes in the average response as a function of

covariates. Using a logistic link for the transition model, (2), implies that the parameters

αj are unconstrained. For a given mean model, (1), and dependence model, (2), the

intercept 4it is fully constrained and must yield the proper marginal expectation µM
it

when µc
it is averaged over the distribution of the history. Therefore, a unique 4it can

be identified that satisfies both the transition model and the marginal mean assumptions

given any finite-valued dependence model and probability distribution for the history.

This model has several desirable features. First, the mean model is specified separately

from the dependence model. As a result, the interpretation of the regression parameter

β is invariant as we modify assumptions regarding the dependence in equation (2). This

is not true for classical transition models, which parameterize µc
it directly as a function

of covariates. Second, the marginalized transition model can be used with data where

subjects have variable lengths of follow-up, permitting likelihood analysis in settings where

data may be missing at random (MAR).

Given β and α, 4it for MTM(p) is computed based on the following relationship
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between the marginal and conditional means,

µM
it =

∑

j1,··· ,jp

µc
itπ

(t)
ij1,··· ,jp

,

where π
(t)
ij1,··· ,jp

= P (Yit−1 = j1, · · · , Yit−p = jp). Further details are given in Heagerty

(2002).

3. Marginalized transition models for longitudinal ordinal data

In this section, we propose two marginalized transition models (MTM) for longitudinal

ordinal data, a simple extension of MTM (OMTM) and an improved extension of MTM

(IOMTM).

Let Yi = (Yi1, · · · , Yini
) be a vector of longitudinal K-category ordinal responses on

subject i = 1, · · · , N at times t = 1, · · · , ni(ni ≤ T ). We assume that associated ex-

ogenous but possibly time-varying covariates, xit = (xit1, · · · , xitr), are recorded for each

subject at each time and that the regression model properly specifies the full covariate

conditional probability such that P (Yit = yit|Xit) = P (Yit = yit|Xi1, · · · , XiT ).

The simple extension of marginalized transition model of order p, OMTM(p), is spec-

ified using the following two regressions,

mean model: log
P (Yit ≤ k|xit)

1 − P (Yit ≤ k|xit)
= β0k + xT

itβ, (3)

dependence model: log
P (Yit = k|Yit−1, · · · , Yit−p, xit)

P (Yit = K|Yit−1, · · · , Yit−p, xit)
= 4itk +

p
∑

m=1

K−1
∑

l=1

γ
(k)
itmlYit−m,l,

(4)

where β is the p × 1 vector of regression coefficients, β01 < β02 < · · · < β0K−1, γ
(k)
itml =

zitα
(k)
ml , zit is a subset of xit, α

(k)
ml = (α

(k)
ml1, · · · , α

(k)
mlq)

T , k = 1, · · · , K − 1, and Yi,t−m,l

is the set of K − 1 indicators with Yi,t−m,l = 1 if Yi,t−m = l ; Yi,t−m,l = 0 otherwise

for l = 1, · · · , K − 1; m = 1, · · · , p. Model (3) is a cumulative logit model, a common
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model for ordinal data. However, the link function in the conditional probabilities (4) is

a multinomial logit since we expect the K − 1 conditional probabilities to have different

coefficients γ
(k)
itml depending on k and if cumulative logits were used as in the marginal

probabilities (3), the monotonicity property of the cumulative conditional probabilities

would be difficult to satisfy as it involves 4itk.

The dependence model (4) based on the multinomial logit link function models the

probability of moving from category k at time t to category k′ at time t + 1 under p = 1.

This is a natural and interpretable way to model the dependence for longitudinal data.

An alternative approach would be to model dependence using global odds ratios (Dale,

1986; Heagerty and Zeger, 1996) as discussed in the introduction which also allows the

interpretation of marginal mean parameters to be invariant with respect to specification

of the dependence and allows for parsimonious specification of dependence. However,

global odds ratio do not directly represent the change over time for a subject, unlike the

OMTM, and that is why we choose to specify the dependence using a Markov transition

structure.

Since this model is a straightforward extension of the MTM for binary data, it shares

many of the same advantages including having the attractive characterization of serial de-

pendence that a transition model provides combined with a marginal regression structure.

However, it does have some drawbacks. First, there are a lot of dependence parameters.

For example, if p = 1, K = 4, and q = 1(zit = 1), we need 2 × p × (K − 1)2 × q = 18

dependence parameters. Second, the ordering of the categories is not exploited in the

conditional probabilities (4). For these two reasons, we propose a modified version in

which (4) is replaced with

log
P (Yit = k|Yit−1, · · · , Yit−p, xit)

P (Yit = K|Yit−1, · · · , Yit−p, xit)
= 4itk + c(yit−1, · · · , yit−p; α

(k)), (5)

where c(·) is a smooth function of yit−1, · · · , yit−p parameterized by α(k). For our methods
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here, we chose an additive structure for c(·; α(k)), i.e., c(yit−1; α
(k)) + c(yit−2; α

(k)) + · · ·+

c(yit−p; α
(k)) and quadratic polynomials for each c(yit−l; α

(k)) : l = 1, . . . , p. The quadratic

polynomials should be adequate to explain the smooth change of the conditional probabil-

ities and we hypothesize that there is no dramatic change in conditional probabilities that

would necessitate higher order polynomials or other smooth functions; we discuss a more

general specification in the Discussion. Implicit in this specification is the ’scoring’ of the

response in the dependence model, which is not an issue in the (proportional odds) mean

models. For example, a quadratic model could be made more reasonable for a dataset by

changing the values of the responses (but not changing their order). We replace (5) by

log
P (Yit = k|Yi,t−1, · · · , Yi,t−p, xit)

P (Yit = K|Yi,t−1, · · · , Yi,t−p, xit)
= 4itk +

p
∑

m=1

γ
(k)
itm1Yi,t−m + γ

(k)
itm2Y

2
i,t−m, (6)

where γ
(k)
itml = zT

itα
(k)
ml and α = (αT

11, α
T
12, · · · , αT

p1, α
T
p2)

T . We call the model given by equa-

tions (3) and (6) a improved extension of MTM of order p, IOMTM(p). The IOMTM(p)

has fewer dependence parameters than the OMTM. For example, OMTM has 18 depen-

dence parameters for K = 4, p = 2 and q = 1, whereas an IOMTM(1) has 2×2×(K−1) =

12 dependence parameters. In general, for OMTM(p), the number of dependence param-

eters increases quadratically with K, the number of categories, whereas in IOMTM, the

number increases linearly in K. IOMTM also exploits the ordering of the categorical

responses in the conditional model (6).

Clearly, for models (3)-(6) to form a coherent probability model, the 4itk will be

constrained. Constraints are needed for (3), (4), and (6) to be a valid probability model.

Specifically, 4itk is found using the following identity

P (Yit = k|xit) =
K

∑

g1=1

· · ·
K

∑

gp=1

P (Yit = k|Yit−1 = g1, · · · , Yit−p = gp, xit) ×

P (Yit−1 = g1, · · · , Yit−p = gp|xit−1). (7)
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In this paper, we consider only first and second order (I)OMTM’s. Higher order models

are possible but require more dependence parameters and larger sample sizes.

3.1 First order models: OMTM(1) and IOMTM(1)

In this subsection, we provide some details for OMTM(1) and IOMTM(1), which

are often sufficient for short time series. The dependence models for marginalized 1st

order transition models (OMTM(1) and IOMTM(1)) are specified using the following two

regressions,

For OMTM(1): log
P (Yit = k|Yit−1, xit)

P (Yit = K|Yit−1, xit)
= 4itk +

K−1
∑

l=1

γ
(k)
it1lYit−1,l, (8)

For IOMTM(1): log
P (Yit = k|Yi,t−1, xit)

P (Yit = K|Yi,t−1, xit)
= 4itk + γ

(k)
it11Yi,t−1 + γ

(k)
it12Y

2
i,t−1. (9)

Note that (9) is only valid for t ≥ 2 since there is no history data available for the initial

state (t = 1).

For both IOMTM(1) and OMTM(1), mean and dependence parameters are orthogonal

as given in the following Theorem and Corollary.

Theorem I: The marginal mean parameters, (β0,β) are orthogonal to the dependence

parameters, α in the OMTM(1).

Corollary I: The marginal mean parameters,(β0,β), are orthogonal to the dependence

parameters, α in the IOMTM(1) when c(y; α) is a polynomial in y.

Fitzmaurice and Laird (1993) showed consistency of marginal mean parameters regard-

less of the dependence structure. This was used by Heagerty (2002) in binary MTM’s.

The following Theorem gives the equivalent result for ordinal MTM’s.

Theorem II: The maximimum likelihood estimate, (β̂0,β̂), remains consistent for (β0,β)

even if the dependence model is incorrectly specified.

Proofs of these results can be found in the web appendix.

9



3.2 Maximum likelihood for the first order models

The maximum likelihood algorithm for these models is described next. Define the

marginal cumulative probabilities, P M
itk = P (Yit ≤ k|xit) for i = 1, · · · , N ; t = 1, · · · , ni;

k = 1, · · · , K and conditional probabilities, P c
itk = P (Yit = k|Yit−1, xit) for i = 1, · · · , N ;

t = 2, · · · , ni; k = 1, · · · , K. The OMTM(1) likelihood function consists of two compo-

nents, conditional probabilities for time > 1 and marginal probabilities at time 1,

L(θ; y) =

N
∏

i=1

ni
∏

t=2

K
∏

k=1

(P c
itk)

yitk ×

N
∏

i=1

K
∏

k=1

(

π
(1)
ik

)yi1k

,

where π
(1)
ik = P M

i1k − P M
i1k−1. We propose a Fisher-scoring algorithm to find the MLE of

the parameters of interest in the OMTM(1). For estimation of the K − 1 intercepts β0k

(k = 1, · · · , K − 1), r covariate coefficients β, and (K − 1)2 dependence parameters α, we

rewrite the log likelihood as

log L(θ; y)

=

N
∑

i=1

ni
∑

t=2

{

K−1
∑

k=1

yitk

(

4itk + γ
(k)
it11yit−11 + · · ·+ γ

(k)
it1K−1yit−1K−1

)

+ log P c
itK

}

+
N

∑

i=1

K−1
∑

k=1

{Ri1kφi1k − Ri1k+1g(φi1k)}

let
= log L(2)(θ; y) + log L(1)(θ; y), (10)

where Ri1k = Yi11 + · · ·+ Yi1k, φi1k = log
(

P M
i1k

P M
i1k+1

−P M
i1k

)

and g(a) = log {1 + exp(a)}. Here

we have used the notation from McCullagh (1980) for the log likelihood function for the

cumulative logit model for the ordinal data, log L(1).

To evaluate the likelihood, we need to evaluate both the contribution from the initial

state, L(1), and the subsequent contribution from each transition probability, L(2). Let

θ = (β0, β, α) be the vector of parameters. We obtain

∂ log L

∂θ
=

∂ log L(2)

∂θ
+

∂ log L(1)

∂θ
.
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The K − 1 + r + (K − 1)q-dimensional likelihood equations and details on the Fisher-

scoring algorithm used to solve the likelihood equations can be found in Supplementary

Materials.

Estimation for the IOMTM(1) is similar.

3.3 Second order models: OMTM(2) and IOMTM(2)

For the initial states, we assumed a marginal model for t = 1, as we did for the first

order models, and an OMTM(1) and IOMTM(1) for t = 2. The marginal models for

OMTM(2) and IOMTM(2) are same as (3) and the dependence models for the OMTM(2)

and the IOMTM(2) are given by (4) and (6), respectively with p = 2. Unlike the first

order OMTM and IOMTM, the orthogonality of marginal and dependence parameters no

longer holds (i.e., cannot write it in canonical log linear form). Thus, consistent estimation

of the marginal mean parameters requires correct modeling of the dependence (though

marginalized models of this form often offer some robustness; see Heagerty and Kurland,

2001). Details on maximum likelihood estimation for the second order models can be

found in Supplementary Materials.

3.4 Missing data

When the data are incomplete due to dropout that is associated with observed out-

comes (i.e., missing at random), the orthogonality of marginal mean and dependence

parameters in the (I)OMTM(1) no longer holds. Thus, the consistency of the marginal

mean parameters under MAR relies on correctly specifying the dependence structure;

otherwise, the score functions for the mean parameters can be biased.

3.5 Simulation study

We conducted several simulation studies to examine robustness to misspecification of

dependence model when there is ignorable (MAR) dropout. We set T = 8 and N = 500

with an approximately equal sample size for each of the three (treatment) groups. We
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considered two different marginal mean models, (3), one with an unstructured mean over

time with design vector of the form, xT
it = (0, . . . , 1, . . . , 0, group1i, group2i), where the 1

is in the tth slot, and one with a linear trend over time, xT
it = (Visitit, group1i, group2i),

where groupji is an indicator of whether the subject was in group j. The two different

mean models were included to see if any bias in the presence of dropout differed between

the unstructured and structured (over time) means.

For each simulation, we considered the following MAR dropout model,

logitP (dropout = t|dropout ≥ t) = −2.5 + 0.6Yit−1 + 0.3Yit−2.

We simulated data using (9) with γ
(k)
it1m = αm0+αm1×Visitit, m = 1, 2, (α10, α11, α20, α21) =

(−1.0, 0.5,−0.5, 0.1) and fit the model assuming γ
(k)
it1m = αm0.

Table 1 presents the point estimates and the percent relative bias. Percent relative

biases in the coefficients were small, the largest being about 3%. The coefficients of

time-varying covariates in the structured mean model appeared to be more robust to

mis-specification of dependence and MAR missingness than in the unstructured mean

model.

We performed several similar simulations using the same models for the marginal

means, but simulating data under an IOMTM(2) and then fitting an IOMTM(1) with

and without MAR dropout. In the presence of dependence mis-specification and MAR

dropout, we saw considerable bias, with relative biases as large as 74% for the unstruc-

tured mean (see Supplementary Materials for the results of these simulations). Under

dependence mis-specification with no dropout, the biases were quite small despite the or-

thogonality of the mean and dependence parameters being lost in the IOMTM(2). These

simulations further emphasize the importance of correctly specifying the dependence in

the presence of missing data. We also did simulations (not shown) to examine small
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sample bias in the MLE’s with complete data. The bias in the mean parameters was

negligible. These results can be found in (Lee, 2007).

4. Example

We use the models proposed in Section 3 to analyze QOL data from the clinical trial of

metastatic colorectal cancer introduced in Section 1. A total of 795 patients with colorec-

tal cancer were randomly assigned to one of three treatments (FOLFOX, IFL(Control),

IROX) between May 1999 and April 2001 (Goldberg et al 2004). We focus on one QOL

measure, fatigue. Fatigue is measured on a 5 point ordinal scale (1: I am usually not

tired at all; 2: I am occasionally rather tired; 3: There are frequently periods when I am

quite tired; 4: I am usually very tired; 5: I feel exhausted most of the time). Because very

few patients reported category 5, we collapsed category 4 and 5 into one category. For

numerical reasons, we re-scaled the response as -0.9,-0.3,0.3, and 0.9. in the dependence

model; the re-scaling was not needed for the marginal mean model.

To examine treatment differences in fatigue levels, we included type of treatment(ARM1=1

for FOLFOX; ARM2=1 for IROX) and visit number(TIME=0.0, 0.1, · · · , 0.5) again re-

scaled. The Akaike Information Criteria(AIC) (Akaike, 1974) and likelihood ratio tests

were used as the model selection criterion.

We assumed the missing responses (mostly due to dropout) were missing at random

(MAR) in our initial analysis. In Section 4.2, we more carefully handled the dropouts

related to the reason for dropping out (including death).

The Fisher-scoring algorithm is not trivial computationally due to the need to obtain

an estimate of ∆it for all subjects and at all times, within each Fisher-scoring step.

However, in our dataset, with 795 patients, a four category ordinal responses, and six visit

times, the computational burden was not high. Each Fisher-scoring step (in which all the

∆it are computed) on a Pentium with a 1.6GHz processor took about 10 and 30 seconds
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for the IOMTM(1) and the IOMTM(2), respectively. In addition, using good initial values

based on fitting an independent proportional odds model in standard software results in

a minimal number of iterations until convergence.

4.1 Models Fit

We fit and compared seven models. Three were IOMTM(1)’s, three were IOMTM(2)’s,

and the other was an OMTM(1) . IOMTM(1)-1 and IOMTM(2)-1 were the simplest

models, with time homogeneous dependence, γ
(k)
itj = α

(k)
j0 . IOMTM(1)-2 and IOMTM(2)-

2 allowed the dependence coefficients to depend on Time, γ
(k)
itj = α

(k)
j0 + α

(k)
j1 × visitit.

IOMTM(1)-3 and IOMTM(2)-3 had dependence parameters depending on treatment,

γ
(k)
itj = α

(k)
j0 + α

(k)
j2 × Arm1i + α

(k)
j3 × Arm2i. The OMTM was an OMTM(1) with time

homogeneous dependence model, γ
(k)
itj = α

(k)
j0 for j = 1, 2, 3.

Table 2 presents maximum likelihood estimates for all seven models. Point estimates

and standard error for marginal mean parameters for the OMTM were similar to those

for the IOMTM(1) and IOMTM(2). To compare the fit of the models, in particular,

the dependence structure, we computed the AIC. The AIC for OMTM was 3800.700

and for IOMTM(1)-1 3876.306, indicating that IOMTM(1)-1 fit better than OMTM.

Comparison of deviances for IOMTM(1)-1, IOMTM(1)-2, and IOMTM(1)-3 which are

nested yields 4D
(1)
12 = 2 × (1924.153 − 1916.225) = 15.856, p−value= 0.015 on 6 d.f

and 4D
(1)
13 = 2 × (1924.153 − 1916.690) = 14.926, p−value= 0.246 on 12 d.f. The

AIC’s for IOMTM(1)-2 and IOMTM(1)-3 which were not nested were 3872.450 and

3885.380, respectively. These comparisons indicated that IOMTM(1)-2 was the better

fitting model among IOMTM(1)’s and OMTM. Similarly, we had IOMTM(2)-2 as bet-

ter fitting among IOMTM(2)’s by comparison of deviances and the AIC’s (4D
(2)
12 =

22.156, p−value= 0.036 on 12 d.f.; 4D
(2)
13 = 15.123, p−value= 0.917 on 24 d.f.; AIC

for IOMTM(2)-2=3825.910, AIC for IOMTM(2)-3=3861.820). Again, we compared de-
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viances for IOMTM(1)-2 and IOMTM(2)-2 (4D22 = 54.540, p−value< 0.0001 on 12 d.f.)

and concluded that IOMTM(2)-2 was the best fitting model.

4.1.1 Graphical assessment of the dependence model Figure 1 presents conditional

probabilities given previous values for the OMTM(1) given in (8). We arbitrarily chose one

subject and visit because the shapes of conditional probabilities are the same across sub-

jects (the intercepts 4itk only shift the trajectories up or down). The trajectories of con-

ditional probabilities change quadratically with previous responses. Thus, the quadratic

model given in (9) appears adequate to explain the change in the conditional probabilities

as a function of the previous response. We were unable to get an OMTM(2) to converge

to obtain a similar plot for first and second order dependence.

4.1.2 Inference on regression coefficients In the IOMTM(2)-2, the β coefficient of

Visit*Arm2 was significant with an estimate of -1.847 and SE of 0.874. This indicated

that the level of fatigue increased over time on the IROX arm and this was significantly

greater than for patients on the IFL (control) arm. The β coefficient of Visit*Arm1

was not significant. This indicated that the level of fatigue did not change over time on

FOLFOX arm and there was no significant difference of fatigue over time between the

IFL and the FOLFOX arms. The cumulative probabilities for the IROX arm decreased

more steeply over time compared with the FOLFOX arm and the IFL arm. Thus, for this

particular measure of QOL, fatigue, the worst treatment was not the one that provided

the longest time to progression and best overall survival (FOLFOX).

4.2 Dropout due to progression/death

A large number of subjects dropped out due to tumor progression or death (40.5%).

Thus, the analysis in Section 4.1 is problematic as among other things, it implicitly
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imputes missing values for the dropouts due to death. Imputing such values for subjects

who died is not a sensible approach. We would argue for QOL data, that imputing these

QOL values for those who dropped out due to their disease progressing is not sensible

either.

Table 3 summarizes the reasons for dropout in the three treatment arms. The dropout

rates due to progression/death were marginally higher in IFL and IROX arms. To deal

with events due to progression/death, we used a mixture model for the joint distribution

of longitudinal measures and progression/death times (Hogan and Laird, 1997) similar

to previous work by Pauler et al. (2003) and Kurland and Heagerty (2005). For this

dataset, we had the actual progression/death times for subjects who dropped out due

to progression/death and also for those who dropped out for other reasons. Table 4

summarizes the visit window in which patients progressed/died for all three treatments.

Note, for some subjects, this is past the time they actually dropped out.

Define S to be the progression/death time. We specify the ordinal MTM models

conditional on progression/death time, S. Due to the small sample sizes when conditioning

on individual times, we assumed the parameters were the same for S = 1, . . . , 5 (those who

progressed/died before the end of the study) but different for those who did not, S = 6.

This approach implicitly assumes that for a given progression/death time (pattern), that

missing data before the progression/death time is MAR (conditional on pattern); this

situation occurs if dropout is not due to progression/death.

Within this framework, the probability of fatigue for patients who progressed/died

beyond time k is given by

P (Yt > c|S > k, Tx) =

∑

j>k P (Yt > c|S = j, Tx)P (S = j|Tx)
∑

j>k P (S = j|Tx)
. (11)

where Tx is treatment and P (Yt > c | S = j, Tx) is only defined for t < j. In our

analysis here, our target probabilities are (11) evaluated at k = 5; i.e., those who did
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not progress/die before the end of the study. Table 5 presents the estimated target

probabilities on the three treatment arms. The probabilities of high fatigue for IROX and

FOLFOX arm increased over time, whereas that for IFL arm was more stable. However,

there were no significant differences between the treatment arms. Thus, we conclude that

patients’ fatigue was not affected by treatment unlike in the models under MAR.

5. Conclusions and discussion

We proposed two marginalized transition models for longitudinal ordinal data that di-

rectly model marginal probabilities as function of covariates while accounting for the

longitudinal correlation via a Markov structure. The IOMTM has fewer dependence pa-

rameters than the OMTM and exploits the ordering of previous responses. Parameter

estimation was based on maximum likelihood using a Fisher-scoring method. We showed

that the ML estimates for the (I)OMTM(1) were consistent regardless of specification of

(8) when there was no missing data. Simulation studies indicated that marginal mean

parameter estimates were robust to the dependence model being incorrectly specified in

(I)OMTM(1)’s under MAR dropout. However, IOMTM(2)’s were much less robust to

dependence model mis-specification under MAR dropout.

Calculations and analyses in this paper are based on 1st and 2nd order (I)OMTMs.

Extension to higher orders is also possible. However, such models introduce more depen-

dence parameters and more complex computing and constraints; such models are workable

for larger datasets. An alternative formulation would be to introduce random effects in-

stead of, or in addition to, previous response to model the longitudinal dependence. This

is ongoing work.

As discussed in Section 4, about 40% of the patients dropped out due to tumor progres-

sion or death. We adjusted for this using a pattern mixture approach with patterns defined

based on the observed progression/death times. To obtain the causal effect of treatment
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while accounting for progression/death, a principal stratification approach (Frangakis and

Rubin, 2002) could be developed which would condition on progressing/dying past a given

time on all three treatment arms. This is also ongoing work.

In (5), we specified a very general formulation for pth order Markov dependence and

then simplified it to an additive structure with quadratics for the individual components.

Using the more general formulation is possible and would allow for more flexible depen-

dence; for example, removing the additive restriction and allowing interactions. Com-

putationally, this would create no additional burden. We are currently exploring such

generalizations.

6. Supplementary Materials

Web Appendices, detailed calculations, Tables, and Figures referenced in Section 3, are

available under the Paper Information link at the Biometrics website http://www.tibs.org/biometrics.
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Table 1

Bias of IOMTM(1) maximum likelihood estimators when data are missing at random
(MAR). Displayed is the average regression coefficient estimates and the percent relative

bias, 100 × (β̂ − β)/β

Unstructured Marginal mean Structured Marginal mean

para. truth mean bias(%) truth para. mean bias(%)

int1 -1.00 -1.00 0.0 int1 -1.00 -1.00 0.0
int2 0.70 0.70 0.0 int2 0.70 0.70 0.0
int3 2.00 2.01 0.5 int3 2.00 2.00 0.0
grp1 0.10 0.10 0.0 grp1 0.10 0.10 0.0
grp2 -0.50 -0.50 0.0 grp2 -0.50 -0.50 0.0
vis1 0.10 0.10 0.0 vis -0.50 -0.49 -2.0
vis2 -1.50 -1.51 0.7
vis3 1.20 1.20 0.0
vis4 -0.40 -0.39 -2.5
vis5 0.80 0.80 0.0
vis6 -0.30 -0.29 -3.3
vis7 -1.00 -1.03 3.0
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Figure 1. Conditional probabilities for category k given previous response under
OMTM(1).
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Table 2

Maximum likelihood estimates for OMTM and IOMTM

IOMTM(1)-1 IOMTM(1)-2 IOMTM(1)-3 IOMTM(2)-1 IOMTM(2)-2 IOMTM(2)-3 OMTM

Marg. para. Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

Intercept 1 −1.099∗ (0.124) −1.094∗ (0.122) −1.104∗ (0.124) −1.082∗ (0.123) −1.084∗ (0.121) −1.095∗ (0.123) −1.099∗ (0.124)
Intercept 2 0.844∗ (0.121) 0.841∗ (0.120) 0.836∗ (0.119) 0.849∗ (0.120) 0.841∗ (0.117) 0.832∗ (0.119) 0.844∗ (0.121)
Intercept 3 2.318∗ (0.143) 2.316∗ (0.142) 2.301∗ (0.142) 2.319∗ (0.143) 2.317∗ (0.141) 2.293∗ (0.143) 2.319∗ (0.143)

Visit -0.290 (0.675) -0.427 (0.683) -0.235 (0.678) -0.455 (0.617) -0.484 (0.600) -0.124 (0.651) -0.265 (0.676)
Arm1 -0.066 (0.167) -0.070 (0.164) -0.060 (0.166) -0.086 (0.164) -0.088 (0.161) -0.070 (0.164) -0.065 (0.167)
Arm2 0.036 (0.165) 0.036 (0.163) 0.043 (0.165) 0.025 (0.163) 0.055 (0.160) 0.036 (0.162) 0.037 (0.166)

Visit*Arm1 -0.647 (1.013) -0.458 (1.027) -0.767 (1.006) -0.346 (0.926) -0.160 (0.906) -0.815 (0.937) -0.687 (1.014)
Visit*Arm2 -1.593 (0.985) -1.579 (0.996) -1.637 (0.984) -1.507 (0.897) −1.847∗ (0.874) -1.835 (0.888) -1.606 (0.986)

Max. loglike. -1924.153 -1916.225 -1916.690 -1900.033 -1888.955 -1886.910 -1923.350
AIC 3876.306 3872.450 3885.380 3840.660 3825.910 3861.820 3880.700

∗ indicates significance under 95% confidence level
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Table 3

Completers and dropouts by treatment groups. Proportions in parentheses

Reason for dropout
Treatment Completer Progression/Death Other Total

IFL 10 (0.043) 117 (0.498) 108 (0.460) 235
FOLFOX 4 (0.017) 68 (0.292) 161 (0.691) 233

IROX 4 (0.017) 101 (0.423) 134 (0.561) 239

Total 18 (0.025) 286 (0.405) 403 (0.570) 707

Table 4

Progression/Death windows by treatment groups. Proportions in parentheses

Progression/Death window
Treatment 1 2 3 4 5 61 Total

IFL 35(0.149) 32(0.136) 38(0.162) 26(0.111) 18(0.077) 86(0.366) 235
FOLFOX 16(0.069) 28(0.120) 24(0.103) 17(0.073) 19(0.082) 129(0.554) 233

IROX 22(0.092) 33(0.138) 36(0.151) 27(0.113) 16(0.067) 105(0.439) 239

Total 73(0.103) 93(0.132) 98(0.139) 70(0.099) 53(0.075) 320(0.453) 707
1Window 6 means ‘after study.’
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Table 5

Maximum Likelihood Estimates of P (Yt > c|S > 5,Tx) (and standard errors) where S is
progression/death time.

Visit(t)
Tx c 1 2 3 4 5 6

1 0.756 0.754 0.752 0.751 0.749 0.747
(0.037) (0.033) (0.037) (0.047) (0.060) (0.075)

IFL 2 0.281 0.279 0.277 0.275 0.273 0.271
(0.039) (0.025) (0.039) (0.050) (0.063) (0.078)

3 0.076 0.076 0.075 0.074 0.074 0.073
(0.017) (0.016) (0.017) (0.020) (0.024) (0.028)

1 0.744 0.759 0.773 0.786 0.799 0.811
(0.032) (0.028) (0.034) (0.044) (0.055) (0.066)

FOLFOX 2 0.268 0.284 0.300 0.316 0.333 0.351
(0.032) (0.030) (0.039) (0.055) (0.075) (0.097)

3 0.072 0.077 0.083 0.089 0.096 0.103
(0.014) (0.014) (0.018) (0.024) (0.031) (0.041)

1 0.741 0.761 0.779 0.797 0.813 0.829
(0.035) (0.030) (0.035) (0.044) (0.053) (0.062)

IROX 2 0.265 0.286 0.308 0.330 0.354 0.378
(0.034) (0.032) (0.042) (0.058) (0.079) (0.102)

3 0.071 0.078 0.086 0.095 0.104 0.114
(0.015) (0.015) (0.019) (0.025) (0.035) (0.046)
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