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1. Introduction

Determining the structure of an unknown J × J covariance matrix Σ is a long standing statistical

challenge. A key difficulty in dealing with the covariance matrix is the positive definiteness con-

straint. This is because the set of values for a particular element σij that yield a positive definite

Σ depends on the choice of the remaining elements of Σ. Additionally, because the number of pa-

rameters in Σ is quadratic in the dimension J , methods to find a parsimonious (lower-dimensional)

structure can be beneficial.

One of the earliest attempts in this direction is the idea of covariance selection (Dempster,

1972). By setting some of the off-diagonal elements of the concentration matrix Ω = Σ−1 to zero,

a more parsimonious choice for the covariance matrix of the random vector Y is achieved. A zero

in the (i, j)-th position of Ω implies zero correlation (and further, independence under multivariate

normality) between Yi and Yj , conditional on the remaining components of Y. This property, along

with its relation to graphical model theory (e.g., Lauritzen, 1996), has led to the use of covariance

selection as a standard part of analysis in multivariate problems (Wong et al., 2003; Yuan and Lin,

2007; Rothman et al., 2008). However, one should be cautious when using such selection methods

as not all produce positive definite estimators. For instance, thresholding the sample covariance

(concentration) matrix will not generally be positive definite, and adjustments are needed (Bickel

and Levina, 2008).

Model specification for Σ may depend on a correlation structure through the so-called sep-

aration strategy (Barnard et al., 2000). The separation strategy involves reparameterizing Σ by

Σ = SRS, with S a diagonal matrix containing the marginal standard deviations of Y and R the

correlation matrix. Let RJ denote the set of valid correlation matrices, that is, the collection of

J × J positive definite matrices with unit diagonal. Separation can also be performed on the con-

centration matrix, Ω = TCT so that T is diagonal and C ∈ RJ . The diagonal elements of T give

the partial standard deviations, while the elements cij of C are the (full) partial correlations. The

covariance selection problem is equivalent to choosing elements of the partial correlation matrix

C to be null. Several authors have constructed priors to estimate Σ by allowing C to be a sparse

matrix (Wong et al., 2003; Carter et al., 2011).

In many cases the full partial correlation matrix may not be convenient to use. In cases where

the covariance matrix is fixed to be a correlation matrix such as the multivariate probit case, the

elements of the concentration matrix T and C are constrained to maintain a unit diagonal for Σ
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(Pitt et al., 2006). Additionally, interpretation of parameters in the partial correlation matrix can be

challenging, particularly for longitudinal settings as the partial correlations are defined conditional

on future values. For example, c12 gives the correlation between Y1 and Y2 conditional on the future

measurements Y3, . . . , YJ . An additional issue with Bayesian methods that promote sparsity in C
is calculating the volume of the space of correlation matrices with a fixed zero pattern; see Section

4.2 for details.

In addition to the role R plays in the separation strategy, in some data models the covariance

matrix is constrained to be a correlation matrix for identifiability. This is the case for the multivari-

ate probit model (Chib and Greenberg, 1998), Gaussian copula regression (Pitt et al., 2006), certain

latent variables models (e.g. Daniels and Normand, 2006), among others. Thus, it is necessary to

make use of methods specific for estimating and/or modeling a correlation matrix.

We consider this problem of correlation matrix estimation in a Bayesian context where we are

concerned with choices of an appropriate prior distribution p(R) on RJ . Commonly used priors

include a uniform prior over RJ (Barnard et al., 2000) and Jeffrey’s prior p(R) ∝ |R|−(J+1)/2. In

these cases the sampling steps for R can sometimes benefit from parameter expansion techniques

(Liu, 2001; Zhang et al., 2006; Liu and Daniels, 2006). Liechty et al. (2004) develop a correlation

matrix prior by specifying each element ρij of R as an independent normal subject to R ∈ RJ .

Pitt et al. (2006) extend the covariance selection prior (Wong et al., 2003) to the correlation matrix

case by fixing the elements of T to be constrained by C so that T is the diagonal matrix such that

R = (TCT)−1 has unit diagonal.

The difficulty of jointly dealing with the positive definite and unit diagonal constraints of a

correlation matrix has led some researchers to consider priors for R based on the partial autocor-

relations (PACs) in settings where the data are ordered. PACs suggest a practical alternative by

avoiding the complication of the positive definite constraint, while providing easily interpretable

parameters (Joe, 2006). Kurowicka and Cooke (2003, 2006) frame the PAC idea in terms of a vine

graphical model. Daniels and Pourahmadi (2009) construct a flexible prior on R through indepen-

dent shifted Beta priors on the PACs. Wang and Daniels (2013a) construct underlying regressions

for the PACs, as well as a triangular prior which shifts the prior weight to a more intuitive choice

in the case of longitudinal data. Instead of setting partial correlations from C to zero to incorporate

sparsity, our goal is to encourage parsimony through the PACs. As the PACs are unconstrained, se-

lection does not lead to the computational issues associated with finding the normalizing constant
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for a sparse C. We introduce and compare priors for both selection and shrinkage of the PACs that

extends previous work on sensible default choices (Daniels and Pourahmadi, 2009).

The layout of this article is as follows. In the next section we will review the relevant details of

the partial autocorrelation parameterization. Section 3 proposes a prior for R induced by shrinkage

priors on the PACs. Section 4 introduces the selection prior for the PACs. Simulation results

showing the performance of the priors appear in Section 5. In Section 6 the proposed PAC priors

are applied to a data set from a smoking cessation clinical trial. Section 7 concludes the article

with a brief discussion.

2. Partial autocorrelations

For a general random vector Y = (Y1, . . . , YJ)′ the partial autocorrelation between Yi and Yj

(i < j) is the correlation between the two given the intervening variables (Yi+1, . . . , Yj−1). We

denote this PAC by πij , and let Π be the upper-triangular matrix with elements πij . Because the

PACs are formed by conditioning on the intermediate components, there is a clear dependence on

the ordering of the components of Y. In many applications such as longitudinal data modeling,

there is a natural time ordering to the components. With an established ordering of the elements of

Y, we refer to the lag between Yi and Yj as the time-distance j − i between the two.

We now describe the relationship between R and Π. For the lag-1 components (j − i = 1)

πij = ρij since there are no components between Yi and Yj . The higher lag components are

calculated from the formula (Anderson, 1984, Section 2.5),

πij = r
−1/2
1 r

−1/2
2

[
ρij − r′1(i, j)R3(i, j)

−1r2(i, j)
]
, (1)

where r′1(i, j) = (ρi,i+1, . . . , ρi,j−1), r′2(i, j) = (ρj,i+1, . . . , ρj,j−1), and R3(i, j) is the sub-correlation

matrix of R corresponding to the variables (Yi+1, . . . , Yj−1). The scalars rl (l = 1, 2) are rl =

1 − r′l(i, j)R3(i, j)
−1rl(i, j). Equivalent to (1), we may define the partial autocorrelation in terms

of the distribution of the (mean zero) variable Y. Let Ỹ = (Yi+1, . . . , Yj−1)
′ be the vector (possibly

empty or scalar) of the intermediate responses, and b′iỸ and b′jỸ be the linear least squares predic-

tors of Yi and Yj given Ỹ, respectively. Then, πij = corr{Yi−b′iỸ, Yj −b′jỸ}, and it is reasonable

to consider πij to define the correlation between Yi and Yj after correcting for Ỹ.

Examination of formula (1) shows that the operation from R to Π is invertible. By inverting

the previous operations recursively over increasing lag j − i, one obtains the correlation matrix
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from the PACs by ρi,i+1 = πi,i+1 and

ρij = r′1(i, j)R3(i, j)
−1r2(i, j) + r

1/2
1 r

1/2
2 πij

for j− i > 1. As the relationship between R and Π is one-to-one, the Jacobian for the transforma-

tion from R to Π can be computed easily. The determinant of the Jacobian is given by

|J(Π)| =
∏
i<j

(1− π2
ij)
−[J−1−(j−i)]/2 (2)

(Joe, 2006, Theorem 4). Notationally, we let R(Π) denote correlation matrix corresponding to the

PACs Π. Similarly, Π(R) represents the set of PACs corresponding to correlation matrix R. When

it is clear from context, we continue to use only the matrix R or Π and not the functional notation.

The key advantage in using PACs is that parameters are unconstrained (Joe, 2006). For the

correlation matrix R, the subset of values in (−1, 1) that ρij can take satisfying the positive def-

inite constraint is determined by the configuration of the other elements of R. For a geometric

interpretation of this phenomenon, see Rousseeuw and Molenberghs (1994). For the PACs, each

πij can take any value in (−1, 1), regardless of the choice of the remaining π’s. This is especially

important in the selection context, as setting certain elements of R (or the partial correlation ma-

trix C) to zero can greatly restrict the sets of values that yield a positive definite matrix for other

elements in R (C).

Define SBeta(α, β) to be the beta distribution shifted to the support (−1, 1), i.e., the density

proportional to (1 + y)α−1(1 − y)β−1 for y ∈ (−1, 1). Daniels and Pourahmadi (2009) use the

PACs to form a prior on R by letting each πij come from this shifted beta distribution where the

two shape parameters depend on the lag j − i, with the special case where each πij ∼ SBeta(1, 1).

We call this the flat-PAC (or flat-Π) prior since it specifies a uniform distribution for each of the

PACs. Wang and Daniels (2013a) advise using a triangular prior with SBeta(2,1) which (weakly)

encourages positive values for the PACs.

The result in (2) shows that we can write the flat prior of Barnard et al. (2000) in terms of a

prior on the PACs. We call the prior pfR(R) ∝ I(R ∈ RJ) the flat-R prior since it is uniform

over the space RJ . Hence, the flat-R is equal to pfR(Π) ∝ |J(Π)|−1, which has a contribution

from πij of (1 − π2
ij)

[J−1−(j−i)]/2. Note that pfR(Π) is the product of independent SBeta(αij, βij)

distributions for each πij , where αij = βij = 1+[J−1−(j−i)]/2. This provides an unconstrained

representation of the flat-R prior.
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In longitudinal/ordered data contexts, we expect the PACs to be negligible for elements that

have large lags. We exploit this concept via two types of priors. First, we introduce priors that

shrink PACs toward zero with the aggressiveness of the shrinkage depending on the lag. Next, we

propose, in the spirit of Wong et al. (2003), a selection prior that will stochastically choose PACs

to be set to zero.

3. Partial autocorrelation shrinkage priors

3.1. Specification of the shrinkage prior

Using the PAC framework, we form priors that will shrink the PAC πij toward zero. It has long

been known that shrinkage estimators can produce greatly improved estimation (James and Stein,

1961). As previously noted, πij = 0 implies that Yi and Yj are uncorrelated given the intervening

variables (Yi+1, . . . , Yj−1). In the case where Y has a multivariate normal distribution, this implies

independence between Yi and Yj , given (Yi+1, . . . , Yj−1). We anticipate that variables farther apart

in time (and conditional on more intermediate variables) are more likely to be uncorrelated, so we

will more aggressively shrink πij for larger values of the lag j − i.

We let each πij ∼ SBeta(αij, βij) independently. As we wish to shrink toward zero, we want

E{πij} = 0, so we fix αij = βij . It is easily shown that

Var{πij} =
4αijβij

(αij + βij)2(αij + βij + 1)
,

which we denote by ξij . We recover the SBeta shape parameters by αij = βij = (ξ−1ij − 1)/2.

Hence, the distribution of πij is determined by its variance ξij . Rather than specifying these J(J −
1)/2 different variances, we parameterize them through

Var{πij} = ξij = ε0|j − i|−γ, (3)

where ε0 ∈ (0, 1) and γ > 0. Clearly, ξij is decreasing in lag so that higher lag terms will generally

be closer to zero. We let the positive γ parameter determine the rate that ξij decreases in lag.

To fully specify the Bayesian set-up, we must introduce prior distributions on the two parame-

ters, ε0 and γ. To specify these hyperpriors, we use a uniform (or possibly a more general beta) for

ε0 and a gamma distribution for γ. We require γ > 0, so ξij = ε0|j − i|−γ remains an decreasing

function of lag. In the simulations and data analysis of Sections 5 and 6, we use γ ∼ Gamma(5,5),
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so that γ has a prior mean of 1 and prior variance of 1/5. We use a moderately informative prior

to keep γ from dominating the role of ε0 in ξij = ε0|j − i|−γ . A large value of γ will force all ξij
of lag greater than one to be approximately zero, regardless of the value of ε0.

3.2. Sampling under the shrinkage prior

The utility of our prior depends on our ability to incorporate it into a Markov chain Monte Carlo

(MCMC) scheme. For simplicity we assume that the data consists of Y1, . . . ,YN , where each Yi

is a J-dimensional normal vector with mean zero and covariance R, which is a correlation matrix

so as to mimic the computations for the multivariate probit case. Let L(Π|Y) denote the likelihood

function for the data, parameterized by the PACs, Π.

The MCMC chain we propose involves sequentially updating each of the J(J − 1)/2 PACs,

followed by updating the hyperparameters determining the variance of the SBeta distributions.

To sample a particular πij , we must draw the new value from the distribution proportional to

L(πij,Π(−ij)|Y) pij(πij), where pij(πij) is the SBeta(αij, βij) density and Π(−ij) represents the set

of PACs except πij . Due to the subtle role of πij in the likelihood piece, there is no simple conjugate

sampling step. In order to sample fromL(πij,Π(−ij)|Y) pij(πij), we introduce an auxiliary variable

Uij (Damien et al., 1999; Neal, 2003), and note that we can rewrite the conditional distribution as

L(πij,Π(−ij)|Y) pij(πij) =

∫ ∞
0

I
{
uij < L(πij,Π(−ij)|Y)pij(πij)

}
duij, (4)

suggesting a method to sample πij in two steps. First, sample Uij uniformly over the interval

[0,L(πij,Π(−ij)|Y)pij(πij)], using the current value of πij . We then draw the new πij from uni-

formly from the slice set P =
{
π : uij < L(π,Π(−ij)|Y)pij(π)

}
. Because this set lies within the

compact set [−1, 1], P could be calculated numerically to within a prespecified level of accuracy,

but this is not generally necessary due to the “stepping out” algorithm of Neal (2003).

The variance parameters, ε0 and γ, are not conjugate so sampling new values in the MCMC

chain requires a non-standard step. We also update them using the auxiliary variable technique.
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4. Partial autocorrelation selection priors

4.1. Specification of the selection prior

Having developed a prior that shrinks the partial autocorrelations toward zero, we now consider

prior distributions that give positive probability to the event that the PAC πij is equal to zero. Again,

this zero implies that Yi and Yj are uncorrelated given the intervening variables (Yi+1, . . . , Yj−1)

with independence under multivariate normality. The selection priors are formed by independently

specifying the prior for each πij as the mixture distribution,

πij ∼ εij SBeta(αij, βij) + (1− εij) δ0, (5)

where δ0 represents a degenerate distribution with point mass at zero. In the shrinkage prior we

allowed the shifted Beta parameters αij, βij to depend on lag, but here we generally let α = αij and

β = βij and incorporate structure through the modeling choices on εij . While there is flexibility to

make any choice of these shifted Beta parameters α, β, we recommend as default choices either a

uniform distribution on [−1, 1] through α = β = 1 (Daniels and Pourahmadi, 2009) or the trian-

gular prior of Wang and Daniels (2013a) by α = 2, β = 1; alternatively, independent hyperpriors

for α, β could be specified.

The value of εij gives the probability that πij will be non-zero, i.e. will be drawn from the

continuous component in the mixture distribution. Hence, we have the probability that Yi and Yj
are uncorrelated, given the interceding variables, is 1 − εij . As the values of the ε’s decrease, the

selection prior places more weight on the point-mass δ0 component of the distribution (5), yielding

more sparse choices for Π. As with our parameterizations of the variance ξij in Section 3.1, we

make a structural choice of the form of εij so that this probability depends on the lag-value. We let

εij = ε0|j − i|−γ, (6)

similar to our choice of ξij in the shrinkage prior.

This choice (6) specifies the continuous component probability to be an polynomial function of

the lag. Because εij is decreasing as the lag j−i increases, P(πij = 0) increases. Conceptually, this

means that we anticipate that variables farther apart in time (and conditional on more intermediate

variables) are more likely to be uncorrelated. As with the shrinkage prior, we choose hyperpriors

of ε0 ∼ Unif(0, 1) and γ ∼ Gamma(5,5).
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4.2. Normalizing constant for priors on R

One of the key improvements of our selection prior over other sparse priors for R is the simplicity

of the normalizing constant, as mentioned in the introduction. Previous covariance priors with a

sparse C (Wong et al., 2003; Pitt et al., 2006; Carter et al., 2011) place a flat prior on the non-zero

components cij for a given pattern of zeros. However, the needed normalizing constant requires

finding the volume of the subspace ofRJ corresponding to the pattern of zeros in C. This turns out

to be a quite difficult task and provides much of the challenge in the work of the three previously

cited papers.

We are able to avoid this issue by specifying our selection prior in terms of the unrestricted PAC

parameterization. As the value of any of the πij’s does not effect the support of the remaining PACs,

the volume of [−1, 1]J(J−1)/2 corresponding to any configuration of Π with J0 (≤ J(J − 1)/2)

non-zero elements is 2J0 , the volume of a J0-dimensional hypercube. Because this constant does

not depend on which elements are non-zero, we need not explicitly deal with it in the MCMC

algorithm to be introduced in the next subsection. Further, we are able the exploit structure in the

order of the PACs in selection (i.e. higher lag terms are more likely to be null), whereas in Pitt

et al. (2006), the probability that cij is zero is chosen to minimize the effort required to find the

normalizing constant.

An additional benefit of performing selection on the partial autocorrelation as opposed to the

partial correlations C is that the zero patterns hold under marginalizations of the beginning and/or

ending time points. For instance, if we marginalize out the J th time point, the corresponding

matrix of PACs is the original Π after removing the last row and column. However, any zero

elements in C will not be preserved because corr(Y1, Y2|Y3, . . . , YJ) = 0 does not generally imply

that corr(Y1, Y2|Y3, . . . , YJ−1) = 0.

4.3. Sampling under the selection prior

Sampling with the selection prior proceeds similarly to the shrinkage prior scheme with the main

difference being the introduction of the point mass in (5). As before we sequentially update each of

the PACs, by drawing the new value from the distribution proportional to L(πij,Π(−ij)|Y) pij(πij),

where pij(πij) gives the density corresponding the prior distribution in (5) (with respect to the

appropriate mixture dominating measure). We cannot use the slice sampling step according to (4)
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but must write the distribution as

L(πij,Π(−ij)|Y) pij(πij) =

∫ ∞
0

I
{
uij < L(πij,Π(−ij)|Y)

}
pij(πij) duij. (7)

For the selection prior, we sample Uij uniformly over the interval from zero to L(πij,Π(−ij)|Y),

using the current value of πij , and then draw πij from pij(·), restricted to the slice set P ={
π : uij < L(π,Π(−ij)|Y)

}
.

To sample from pij(·) restricted to P , let F (x) = P(πij ≤ x) denote the (cumulative) distribu-

tion function for the prior (5) of πij . Note that F (x) is available in closed form when the SBeta

distribution is uniform or triangular. We then draw a random variable Z uniformly over the set

F (P) ⊂ [0, 1], and the updated value of πij is F−1(Z) = inf{π : F (π) ≥ Z}. This is simply

a version of the probability integral transform. It is relatively straight-forward to verify that sam-

pling according to (7) instead of (4) using the “stepping out” algorithm of Neal (2003) leaves the

stationary distribution invariant.

The similarity between the sampling steps for the shrinkage and selection priors is notable.

Consider the situation when the parameter of concern is the vector of regression coefficients for

a linear regression model. With a shrinkage prior these regression coefficients may be drawn

simultaneously. But when using a selection prior, each coefficient must be sampled one at a time,

and each step requires finding the posterior probability it should be set to zero. For linear models

the computational effort required for selection is often much greater than under shrinkage.

In the PAC context, this is not the case. We cannot update the PACs in blocks under the

shrinkage prior, so there is no computational benefit relative to selection. Because we sample from

the probability integral transform restricted to P , there is also no need to compute the posterior

probability that the parameter is selected. Hence, the computational effort for the shrinkage and

selection is roughly equivalent. Finally, with the exception of the minor step of updating the

hyperparameters, the flat-Π and triangular priors also require a similar level of computational time

as the selection and shrinkage priors.

To sample the parameters ε0 and γ defining the mixing proportions εij , we introduce the set of

dummy variable ζij = I(πij 6= 0), which have the property that P(ζij = 1) = εij . The sampling

distributions of ε0 and γ depend on Π only through the set of indicator variables ζij . As with the

variance parameters of the shrinkage priors, we incorporate a pair of slice sampling steps to update

the hyperparameters.
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5. Simulations

To better understand the behavior of our proposed priors, we conducted a simulation study to

assess the (frequentist) risk of their posterior estimators. We consider four choices A–D for the

true covariance matrix in the case of six-dimensional (J = 6) data. RA will have an autoregressive

(AR) structure with ρAij = 0.7|j−i|. The corresponding ΠA has values of 0.7 for the lag-1 terms and

zero for the others, a sparse parameterization. For the second correlation matrix RB we choose

the identity matrix so that all of PACs are zero in this case. The ΠC has a structure that decays to

zero. For the lag-1 terms πCi,i+1 = 0.7, and for the remaining terms, πCij = 0.4j−i−1, j − i > 1.

Neither ΠC nor RC have zero elements, but πCij decrease quickly in lag j − i. Finally, we consider

a correlation matrix that comes from a sparse ΠD,

ΠD =


1 .9 .3 0 0 0

0.90 1 .8 .4 .1 0
0.80 0.80 1 .6 .2 0
0.62 0.67 0.60 1 .8 .3
0.58 0.63 0.58 0.80 1 .7
0.46 0.50 0.45 0.69 0.70 1

 ,

where the upper-triangular elements correspond to ΠD and the lower-triangular elements depict

the marginal correlations from RD. Note that while ΠD is somewhat sparse, RD has only non-zero

elements.

For each of these four choices of the true dependence structure and for sample sizes ofN = 20,

50, and 200, we simulate 50 datasets. For each dataset a posterior sample for Π (and hence, R)

is obtained by running an MCMC chain for 5000 iterations, after a burn-in of 1000. We use

every tenth iteration for inference, giving a sample of 500 values for each dataset. We consider

the performance of both the selection and shrinkage priors on Π. For the selection prior, we

perform analyses with SBeta(1, 1) (i.e., Unif(−1, 1)) and SBeta(2, 1) (triangular prior) for the

continuous component of the mixture distributions (5). In both the selection and shrinkage priors,

the hyperpriors are ε0 ∼ Unif(0, 1) and γ ∼ Gamma(5,5). The estimators from the shrinkage and

selection priors are compared with the estimators resulting from the flat-R, flat-PAC, and triangular

priors. Finally, we consider a naive shrinkage prior where γ is fixed at zero in (3). Here, all PACs

are equally shrunk with variance ξij = ε0 independent of lag.

We consider two loss functions in comparing the performance of the six prior choices: L1(R̂,R) =

tr(R̂ R−1)− log |R̂ R−1| − p and L2(Π̂,Π) =
∑

i<j(π̂ij − πij)2. The first loss function is the stan-
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dard covariance log-likelihood loss (Yang and Berger, 1994), whose Bayes estimator is E{R−1}−1.

Because this quantity generally does not have a unit diagonal, we use R̂1 = S E{R−1}−1 S, where

S = [diag(E{R−1})]1/2 is the diagonal matrix that guarantees R̂1 is a correlation matrix. The Bayes

estimator for L2 is R̂2 = R (E{Π}), the correlation matrix corresponding to the posterior mean of

Π.

We estimate the frequentist risk for Rk, k ∈ {A,B,C,D}, by averaging the loss over the 50

datasets. Table 1 contains the estimated risk by loss function, prior choice, sample size, and true

correlation matrix. When evaluating the risk for loss function l, we are using the estimator R̂l for

l = 1, 2. Figure 1 contains the box plots of the observed losses for L1 with R̂1. Plots using loss

function 2 look similar and have been excluded for brevity.

It is immediately clear that the shrinkage and selection priors dominate the two flat priors for

correlation matrices A and B. These are the matrices that have the most sparsity. From the box

plots we see the losses for the middle 50% of datasets for the selection priors fall completely below

the middle 50% for the four competitors. For RA we see risk reductions between 28 and 61% for

the sparse estimators over the estimators from the flat priors with N = 20; for N = 200 the

improvements range from 23 to 64%. In the independence case, the estimators from the shrinkage

and selection priors outperform the flat estimators by margins between 83 and 99%. While our

focus is mainly on the comparison of the sparse priors to the others, we note that generally the

triangular and flat-Π choices are best among the four competitors, with the naive shrinkage prior

performing quite well for RB.

For ΠC all of the seven prior choices perform comparably. From Figure 1 we see that the

middle 50% of the losses fall in the same range for each of the sample sizes. For all sample sizes

the shrinkage prior is (slightly) favored, and for N = 20 the estimated risk for flat-R is visibly

worse than the others. Recall that πCij is decreasing in lag but is not equal to zero. In fact, the

smallest element πC16 = (0.4)4 = 0.0256 which may not be close enough to zero to be effectively

zeroed out, explaining why the selection priors are less effective for ΠC than in the other scenarios.

When we consider estimating the sparse correlation matrix ΠD, the shrinkage and selection

priors outperform the four other priors. From Table 1 we see that for loss function 1 and the

N = 20 sample size the estimated risk decreases by 45 (25), 45 (24) and 39 (16) percent for the

estimates from the shrinkage, selection (2,1), and selection (1,1) priors over the flat-R (flat-Π)

priors. This is quite a substantial drop for the small sample size. For the other sample sizes we still
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R N
Risk Estimates by Prior

Loss
Shrinkage

Selection Selection
flat-R flat-Π Triangular

Naive
Fcn (2,1) (1,1) Shrink

A 20 1 0.53 0.34 0.36 0.88 0.74 0.69 0.82
A 50 1 0.23 0.13 0.14 0.35 0.32 0.30 0.34
A 200 1 0.057 0.027 0.027 0.076 0.074 0.073 0.075
B 20 1 0.081 0.025 0.021 0.48 0.55 0.53 0.091
B 50 1 0.034 0.010 0.0083 0.23 0.24 0.24 0.039
B 200 1 0.0077 0.0014 0.0012 0.063 0.064 0.064 0.0085
C 20 1 0.69 0.77 0.88 1.02 0.80 0.70 0.68
C 50 1 0.28 0.33 0.36 0.36 0.31 0.29 0.33
C 200 1 0.067 0.081 0.083 0.073 0.070 0.070 0.070
D 20 1 0.61 0.61 0.68 1.11 0.81 0.74 0.88
D 50 1 0.26 0.29 0.30 0.39 0.33 0.32 0.33
D 200 1 0.066 0.068 0.070 0.075 0.073 0.072 0.073
A 20 2 0.25 0.13 0.12 0.52 0.46 0.44 0.47
A 50 2 0.13 0.039 0.042 0.22 0.21 0.20 0.22
A 200 2 0.035 0.0064 0.0066 0.053 0.052 0.052 0.052
B 20 2 0.066 0.015 0.012 0.39 0.45 0.44 0.071
B 50 2 0.031 0.0081 0.0065 0.21 0.22 0.22 0.035
B 200 2 0.0075 0.0013 0.0011 0.062 0.063 0.063 0.0083
C 20 2 0.35 0.42 0.48 0.60 0.47 0.41 0.39
C 50 2 0.15 0.19 0.21 0.21 0.18 0.17 0.19
C 200 2 0.039 0.053 0.055 0.044 0.042 0.042 0.041
D 20 2 0.28 0.28 0.31 0.53 0.44 0.40 0.45
D 50 2 0.14 0.16 0.17 0.22 0.19 0.19 0.20
D 200 2 0.037 0.038 0.040 0.044 0.043 0.042 0.044

Table 1: Risk estimates for simulation study with dimension J = 6. Correlation matrices:
A autoregressive structure; B independence; C non-zero decaying; D sparse. Loss functions:
L1(R̂,R) = tr(R̂ R−1)− log |R̂ R−1| − p; L2(Π̂,Π) =

∑
i<j(π̂ij − πij)2.
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Figure 1: Box plots of the observed loss using L1(R̂1,R) for the J = 6 cases. The prior distribu-
tions compared are (1) shrinkage, (2) selection (2,1), (3) selection (1,1), (4) flat-R, (5) flat-Π, (6)
triangular, and (7) naive shrinkage.
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ΠD′
=



1 .9 .3 0 0 0 0 0 0 0
0.90 1 .8 .4 .1 0 0 0 0 0
0.80 0.80 1 .6 .2 0 0 0 0 0
0.62 0.67 0.60 1 .8 .3 0 0 0 0
0.58 0.63 0.58 0.80 1 .7 0 0 0 0
0.46 0.50 0.45 0.69 0.70 1 .8 .4 .1 0
0.37 0.40 0.36 0.55 0.56 0.80 1 .6 .2 0
0.31 0.34 0.30 0.46 0.47 0.67 0.60 1 .8 .3
0.29 0.32 0.29 0.43 0.44 0.63 0.58 0.80 1 .7
0.23 0.25 0.23 0.34 0.35 0.50 0.45 0.69 0.70 1


Table 2: 10 × 10 PAC matrix ΠD′

shown above the diagonal and its respective correlation matrix
RD′

shown below the diagonal.

observed a clear decrease over the flat priors. For N = 50 there is a drop of 32 (20), 26 (14), and

22 (9) percent for the sparse priors over the flat priors, and with N = 200 a decrease of 13 (9), 10

(7), and 7 (4) percent.

To investigate how our priors behave as J increases, we repeat the analysis using the non-

sparse decaying RC and a sparse RD′
with the dimension of the matrix increased to J = 10.

Again, πCi,i+1 = 0.7 for the lag-1 terms and πCij = 0.4j−i−1 for all j − i > 1, and we expand the

previous RD to the 10× 10 RD′
shown in Table 2. As before the above diagonal elements are from

ΠD′
and the below diagonal elements from the corresponding RD′

. ΠD′
is very sparse, while RD′

has no zero elements. We consider sample sizes of 50 and 200. Risk estimates and box plots for

this simulation are displayed in Table 3 and Figure 2.

From both Table 3 and Figure 2 it is clear that estimation of the correlation matrix is improved

under the sparse priors. In the simulations of both dimensions we find that the estimators from the

triangular selection prior tend to be slightly better than the selection prior with SBeta(1,1). With

the sparse correlation matrix RD′
the risk under the sparse priors are about half of the risk of the

flat prior under both sample sizes. Recall that ΠC is not sparse but has elements which decay

exponentially. Because many of the large lag components are very small, the selection priors

provide stability by explicitly zeroing many of these out. For the larger sample size, the flat priors

do comparatively better although still worse than the sparse priors.

We have demonstrated that the sparse priors yield improved estimation of the correlation matrix

in a variety of data situations. In order to investigate the performance in the standard situation
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R N
Risk Estimates by Prior

Loss
Shrinkage

Selection Selection
flat-R flat-Π Triangular

Naive
Fcn (2,1) (1,1) Shrink

C 50 1 0.61 0.73 0.80 1.29 0.99 0.93 1.09
C 200 1 0.163 0.214 0.219 0.254 0.232 0.228 0.236
D′ 50 1 0.47 0.52 0.57 1.22 0.95 0.90 1.00
D′ 200 1 0.132 0.129 0.133 0.251 0.231 0.228 0.235
C 50 2 0.37 0.46 0.49 0.86 0.71 0.67 0.74
C 200 2 0.111 0.156 0.160 0.186 0.176 0.172 0.174
D′ 50 2 0.26 0.31 0.34 0.76 0.68 0.66 0.68
D′ 200 2 0.084 0.079 0.081 0.184 0.177 0.175 0.177

Table 3: Risk estimates for simulation study with dimension J = 10. Correlation matrices: C non-
zero decaying; D′ sparse. Loss functions: L1(R̂,R) = tr(R̂ R−1)− log |R̂ R−1| − p; L2(Π̂,Π) =∑

i<j(π̂ij − πij)2.
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Figure 2: Box plots of the observed loss using L1(R̂1,R) for J = 10. The prior distributions com-
pared are (1) shrinkage, (2) selection (2,1), (3) selection (1,1), (4) flat-R, (5) flat-Π, (6) triangular,
and (7) naive shrinkage.
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where the true dependence structure is unknown, we apply the sparsity and shrinkage priors to a

data set obtained from a smoking cessation clinical trail.

6. Data analysis

The first Commit to Quit (CTQ I) study (Marcus et al., 1999) was a clinical trial designed to

encourage women to stop smoking. As weight gain is often a viewed as a factor decreasing the

effectiveness of smoking cessation programs, a treatment involving an exercise regimen is utilized

to try to increase the quit rate. The control group received an educational intervention of equal

time. The study ran for twelve weeks, and patients were encouraged to quit smoking at week 5.

As the study required a significant time commitment (three exercise/educational sessions a week),

there is substantial missingness due to study dropout. As in previous analyses of this data (Daniels

and Hogan, 2008), we assume this missingness is ignorable.

For patient i = 1, . . . , N (N = 281), we denote the vector of quit statuses by Qi = (Qi1, . . . , QiJ)′.

We only consider the responses after patients are asked to quit, weeks 5 through 12 (J = 8). Here

Qit = 1 indicates a success (not smoking) for patient i at time t (1 ≤ t ≤ J , corresponding to

week t + 4), Qit = −1 for a failure (smoking during the week), and Qit = 0 if the observation

is missing. Following the usual conventions of the multivariate probit regression model (Chib and

Greenberg, 1998), we let Yi be the J-dimensional vector of latent variables corresponding to Qi.

Thus, Qit = 1 implies that Yit ≥ 0, and Qit = −1 gives Yit < 0. When Qit = 0, the sign of Yit
represents the (unobserved) quit status for the week.

We assume the latent variables follow a multivariate normal distribution Yi ∼ NJ(µi,R) for

i = 1, . . . , N , where µi = Xiβ, Xi is a J × q matrix of covariates and β a q-vector of regression

coefficients. As the scale of Y is unidentified, the covariance matrix of Y is constrained to be a

correlation matrix R. We consider two choices of Xi: ‘time-varying’ which specifies a different

µit for each time within each treatment group (q = 2J) and ‘time-constant’ which gives the same

value of µit across all times within treatment group (q = 2).

With the time-constant and time-varying choices of the mean structure, we consider the fol-

lowing priors for R: shrinkage, selection, flat-R, flat-Π, triangular, naive shrinkage, and an au-

toregressive (AR) prior. The AR prior assumes an AR(1) structure for R, that is, ρij = ρ|j−i|

and πi,i+1 = ρ and πij = 0 if |j − i| > 1. We assume a Unif(−1, 1) distribution for ρ. As in
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the risk simulation, we consider the selection prior with both SBeta(1, 1) and with SBeta(2, 1) for

the continuous component. The remaining prior distributions to be specified are ε0 ∼ Unif(0, 1),

γ ∼ Gamma(5, 5), and the prior on the regression coefficients β is flat.

To analyze the data we run an MCMC chain for 12,000 iterations after a burn-in of 3000,

retaining every tenth observation. Convergence was assessed through graphical diagnostics and

deemed adequate. There are three sets of parameters to sample in the MCMC chain: the regression

coefficients, the correlation matrix, and the latent variables. The conditional for β given Y and R
is multivariate normal. Sampling the correlation matrix evolves as discussed in Sections 3.2 and

4.3 using the residuals Yi −µi. The latent variables Yi, which are constrained by Qi, are sampled

according to the strategy of Liu et al. (2009, Proposition 1).

To compare the specification based on our prior choices, we make use of the deviance infor-

mation criterion (DIC; Spiegelhalter et al., 2002). The DIC statistic can be viewed similarly to

the Bayesian or Akaike information criterion, but the DIC does not require the user to “count”

the number of model parameters. This is key for Bayesian models that utilize shrinkage and/or

sparsity priors as it is not clear whether or how one should count a parameter that has been set to

or shrunk toward zero. To that end, let

Dev = −2loglik(β̂, R̂|Q) =
∑
i

−2loglik(β̂, R̂|Qi) (8)

be the deviance or twice the negative log-likelihood with the parameters β̂ and R̂. Here β̂ is the

posterior mean, and for the correlation estimate R̂, we use the first of the estimators we considered

in Section 5, R̂ = S E{R−1}−1 S with S = [diag(E{R−1})]1/2. The complexity of the model

is measured by the term pD, sometimes called the effective number of parameters. This pD is

calculated as

pD = E{−2loglik(β,R|Q)} − Dev, (9)

where the expectation is over the posterior distribution of the parameters (β,R). The DIC model

comparison statistics is DIC = Dev + 2pD, the sum of terms measuring model fit and complexity.

Smaller values of DIC are preferred.

As Wang and Daniels (2011) point out, the DIC should be calculated using the observed data,

which in this case is the quit status responses Qi not the latent variables Yi. Hence the log-

likelihood for Qi at parameters (β,R) is equal to

loglik(β,R|Qi) = log

(∫
(−∞,∞)J

I{Qityt ≥ 0∀t}φ(y|Xiβ,R) dy
)
, (10)
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Mean Structure Correlation Prior Dev pD DIC
Time-constant Shrinkage 1031 14 1060
Time-constant Selection (2,1) 1042 12 1066
Time-constant Selection (1,1) 1044 12 1068
Time-constant Triangular 1029 20 1068
Time-constant flat-Π 1029 20 1069
Time-constant Naive shrinkage 1033 20 1074
Time-constant AR 1071 3 1078
Time-constant flat-R 1043 21 1086
Time-varying Shrinkage 1022 25 1071
Time-varying Triangular 1017 30 1077
Time-varying Selection (2,1) 1033 22 1077
Time-varying Selection (1,1) 1036 22 1080
Time-varying flat-Π 1019 30 1080
Time-varying Naive shrinkage 1023 31 1085
Time-varying AR 1068 13 1093
Time-varying flat-R 1034 31 1097

Table 4: Model comparison statistics for the CTQ data.

where φ(·|µ,Σ) is the J-dimensional multivariate normal density with mean µ and covariance

matrix Σ. The integral in (10) is not tractable but can be estimated using importance sampling

(Robert and Casella, 2004, Section 3.3). See the appendix in the online supplementary materials

for details about estimating the DIC. The model fit (Dev), complexity (pD), and comparison (DIC)

statistics are in Table 4; DIC statistics were estimated with a standard error of approximately 0.5.

We see that the models that use a mean structure that depends only on treatment and not time t

tend to have lower DIC values. The time-varying models are penalized in the pD term for having

to estimate the additional 14 regression coefficients. Of the correlation priors the flat-R and AR

priors perform much worse than the shrinkage, selection, triangular, and flat-PAC priors with the

same mean structure. Additionally, the selection prior that uses the triangular form for SBeta

(α = 2, β = 1) tend to have a smaller DIC than the SBeta(1,1) priors. From Table 4 we determine

the prior choice that best balances model fit with parsimony is clearly the model with time-constant

mean structure and the shrinkage prior on the correlation matrix prior.

Using this best fitting model, the posterior mean of β is (−0.504,−0.295) implying that

the marginal probability (95% credible interval) of not smoking during a given study week is

Φ(−0.504) = 0.307 (0.24, 0.37) for the control group and Φ(−0.295) = 0.384 (0.32, 0.45) for
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the exercise group, where Φ(·) is the distribution function of the standard normal distribution.

The test of the hypothesis that the control treatment is as effective as the exercise treatment (i.e.,

H0 : β1 ≥ β2) has a posterior probability of 0.06, providing some evidence to the claim that

exercise improves cessation results.

We now examine in more detail the effect the shrinkage prior has on modeling the correla-

tion matrix. The posterior means (credible interval) of the shrinkage parameters are ε̂0 = 0.406

(0.25, 0.60) and γ̂ = 2.44 (1.6, 3.4). With a value of γ greater than 1, the variance of πij is decaying

to zero fairly rapidly. The posterior mean of Π is

Π̂ =



1.00 0.70 0.12 0.02 0.05 0.00 0.00 −0.01
0.71 1.00 0.83 0.16 0.09 0.02 0.01 0.00
0.64 0.84 1.00 0.81 0.12 0.10 0.06 0.02
0.56 0.74 0.82 1.00 0.78 0.24 0.09 0.03
0.51 0.64 0.69 0.79 1.00 0.81 0.37 0.04
0.48 0.61 0.66 0.74 0.83 1.00 0.88 0.21
0.48 0.61 0.67 0.74 0.83 0.89 1.00 0.78
0.40 0.52 0.57 0.63 0.70 0.77 0.80 1.00


,

with the lower diagonal values giving the elements of R̂. We see that the PACs are far from zero

in only the first two lags and the remaining π’s are close to zero. This is because these partial

autocorrelations have been shrunk almost to zero in most iterations.

7. Discussion

In this paper we have introduced two new priors for correlation matrices, a shrinkage prior and a

selection prior. These priors choose a sparse parameterization of the correlation matrix through

the set of PACs. In the selection context, by stochastically selecting the elements of Π to zero

out, our model finds interpretable independence relationships for normal data and avoids the need

for complex model selection of the dependence structure. A key improvement of the selection

prior over existing methods for sparse correlation matrices is that our approach avoids the complex

normalizing constants seen in previous work. Additionally, in settings with time-ordered data,

the partial autocorrelations are more interpretable than the full partial correlations, as they do not

involve conditioning on future values.

While the examples we have considered here involve situations where the covariance matrix

was constrained (as in the data example) or known (as in the simulations) to be a correlation
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matrix, the extension to arbitrary Σ is simple. Returning to the separation strategy Σ = SRS
(Barnard et al., 2000), a prior for Σ can be formed by placing independent priors on S and R, i.e.

p(Σ) = p(R)p(S). Using one of the proposed priors for p(R), sensible choices of p(S) include an

independent inverse gamma for each of the σjj or a flat prior on {S = diag(σ11, . . . , σJJ) : σjj >

0}. This leads to a prior on Σ with sparse PACs.

The simulations and data we have considered here deal with Y of low or moderate dimension.

We provide a few comments regarding the scalability of our approach for data with larger J . As

we believe that PACs of larger lag play a progressively smaller role in describing the (temporal)

dependence, it may be reasonable to specify a maximum allowable lag for non-zero PACs. That is,

we choose some k such that πij = 0 for all j − i > k and sample πij (j − i ≤ k) from either our

shrinkage or selection prior. Banding the Π matrix is related to the idea of banding the covariance

matrix (Bickel and Levina, 2008), concentration matrix (Rothman et al., 2008), or the Cholesky

decomposition of Σ−1 (Rothman et al., 2010). Banding Π has also been studied by Wang and

Daniels (2013b). In addition to reducing the number of parameters that must be sampled, other

matrix computations will be faster by using properties of banded matrices.

Related to this, modifications to the shrinkage prior may be needed for larger dimension J .

Recall that the variance of πij is ξij = ε0|j − i|−γ . For large lags, this can be very close to

zero leading to numerical instability; recall the parameters of the SBeta distribution are inversely

related to ξij through αij = βij = (ξ−1ij − 1)/2. Replacing (3) with ξij = ε0 min{|j − i|, k}−γ or

ξij = ε0 + ε1|j − i|−γ to bound the variances away from zero or banding Π after the first k lags

provide two possibilities to avoid such numerical issues.

Further, we have parametrized the variance component and the selection probability in similar

ways in our two sparse priors. The quantity is of the form ε0|j − i|−γ for both ξij in (3) and εij in

(6), but other parameterizations are possible. We have considered some simulations (not included)

allowing the variance/selection probability to be unique for lag, i.e. εij = ε|j−i|. A prior needs

to be specified for each of these J − 1 ε’s, ideally decreasing in lag. Alternatively, one could

use ε0/|j − i|, which can be viewed as a special case where the prior on γ is degenerate at 1. In

our experience results were not very sensitive to the choice of the parameterization, and posterior

estimates of Π and R were similar.

In addition, we have focused our discussion on the correlation estimation problem in the context

of analysis with multivariate normal data. We note that these priors are additionally applicable in
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the context of estimating a constrained scale matrix for the multivariate Student t-distribution.

Consider the random variable Y ∼ tJ(µ,R, ν). That is, Y follows a J-dimensional t-distribution

with location (mean) vector µ, scale matrix R (constrained to be a correlation matrix), and ν

degrees of freedom (either fixed or random). Using the gamma-mixture-of-normals technique

(Albert and Chib, 1993), we rewrite the distribution of Y to be Y|τ ∼ NJ(µ, τ−1R) and τ ∼
Gamma(ν/2, ν/2). Sampling for R as part of an MCMC chain follows as in Sections 3.2 and 4.3

using Y? =
√
τ(Y− µ) as the data. However, one should note that a zero PAC πij implies that Yi

and Yj are uncorrelated given Yi+1, . . . , Yj−1, but this is not equivalent to conditional independence

as in the normal case.
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