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Abstract:

In the modeling of longitudinal data from several groups, appropriate handling of the dependence

structure is of central importance. In many cases, one assumes that the covariance (or correlation)

structure is the same for all groups. However, this assumption, if it fails to hold, can have an adverse

effect on inference for mean effects. Conversely, if one specifies each of the covariance matrices

without regard to the other groups, this can lead to a loss of efficiency if there is information to be

gained across groups. It is desirable to develop methods to simultaneously estimate the covariance

matrix for each group that will borrow strength across groups in a way that is ultimately informed

by the data. In addition, for several groups with covariance matrices of even medium dimension, it

is difficult to ‘manually’ select a single best parametric model given a huge number of possibilities

(e.g., structural zeros and/or commonality of individual parameters across groups). In this paper

we develop a family of nonparametric priors using the matrix stick-breaking process of Dunson

et al. (2008) that seeks to accomplish this task by parameterizing the covariance matrices in terms

of the parameters of their modified Cholesky decomposition (Pourahmadi, 1999). We establish

some theoretic properties of these priors, examine their effectiveness via a simulation study, and

illustrate the priors using data from a longitudinal clinical trial.
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1. Introduction

When working with longitudinal data, specifying the model for the dependence structure is a major

consideration. Often the data is composed of several groups, such as differing treatments in a

clinical trial. In many cases, particularly if one does not have many observations per group, one

assumes that the covariance (or correlation) structure is constant across all groups. However, this

assumption, if it fails to hold, can have a dramatic effect on the inference of mean effects, even

leading to bias if data are incomplete (Daniels and Hogan, 2008). Conversely, if one specifies each

of the covariance matrices without regard to the other groups, this can lead to a loss of information.

Dealing with these competing models for the covariance structure is a concern in many statistical

applications, such as classification and model-based clustering. Therefore, it is desirable to develop

methods to simultaneously estimate the set of covariance matrices that will borrow information

across groups in a coherent, automated manner allowing for structural zeros, commonality across

(a subset of) the groups, and appropriate equality of parameters within a group. We accomplish

this task by developing nonparametric priors for the set of covariance matrices.

We will begin by establishing the necessary notation. Assume that we have M groups of

normally distributed longitudinal data with nm responses of dimension p, Ymi for the mth group.

We assume without loss of generality that the mean vector for each group is zero. The distribution

of the Ymi is

Ymi |Φm,Γm ∼ i.i.d. Np

(
0,Σ(Φm,Γm)

)
, i = 1, . . . , nm; m = 1, . . . ,M,

with the covariance matrix Σm = Σ(Φm,Γm) parameterized by the generalized autoregressive

parameters (GARPs), Φm, with innovation variances (IVs), Γm, as described by Pourahmadi (1999

and 2000). We also refer to this as the modified Cholesky parameterization, since the parameters
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are derived by performing a Cholesky decomposition on Σm. That is,

Σ(Φm,Γm)−1 = T (Φm)D(Γm)T (Φm)′

=


1 −φm1 −φm2 · · ·

1 −φm3 · · ·
1 · · ·

. . .




1
γm1

1
γm2

. . .
1
γmp




1
−φm1 1
−φm2 −φm3 1

...
...

... . . .

 .
The T (Φm) matrix is upper-triangular with ones on its diagonal. Note that there are p parameters

for each Γm = (γm1, . . . , γmp) and J = p(p − 1)/2 parameters associated with each Φm =

(φm1, . . . , φmJ). The natural interpretability of the GARPs relies on an assumed order of the p

components of Y . This is quite natural in the longitudinal data setting where the elements of Y

are measurements of the same quantity obtained at p different time points. This assumed ordering

may, however, not be appropriate in other multivariate data settings.

Many authors have developed frequentist estimators of the collection Σ = {Σ1, . . . ,ΣM} by

inducing commonality among some feature of the Σm. Boik proposed models to induce structure

by imposing commonality on some (or all) of the principal components of the covariance (2002) or

correlation (2003) matrix. Others have used the variance-correlation decomposition for estimation

by imposing structures such as proportionality of all Σm or commonality among the correlation

matrices (Manly and Rayner, 1987). Pourahmadi et al. (2007) developed estimation and testing

procedures for equality among the GARPs and subsets of the GARPs. Daniels (2006) considered

a Bayesian perspective by introducing priors for the GARPs and IVs, as well as the principal

components of the covariance matrices, that induce pooling across groups. Unfortunately, it is

computationally challenging to select among all the possible models within these classes. Other

techniques have been proposed that model the covariance matrix as a function of a continuous

covariate. These include models that perform regressions on certain model components (Chiu et

al., 1996; Daniels, 2006; Fox and Dunson, 2011; Hoff and Niu, 2011), as well as those that treat the

covariance matrices as realization of a stochastic volatility process (Philiov and Glickman, 2006a,
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2006b; Lopes et al., 2011).

Guo et al. (2011) considered an automated approach using the lasso to estimate sparse graphical

models by selecting sets of edges common to all groups, as well as group-specific edges. In the

longitudinal data setting we wish to find more covariance structure than just common zeros across

all groups. We want to consider models that allow subsets of the model parameters to be equal

across (a subset of the) groups at non-zero values; the Guo et al. estimators do not accommodate

this goal. We additionally note that it is not clear how one could easily adapt their penalty term

into a Bayesian prior on the set covariance matrices for our setting.

In this article we focus solely on the modified Cholesky parameterization because of the un-

restrictedness of the parameters, the interpretability for longitudinal data, and the computational

advantages via conjugacy (Daniels and Pourahmadi, 2002). Our goal is to develop a prior for

the set of GARPs and IVs in such a way that we borrow strength across the M groups. Addi-

tionally, we want to share information across Γm and Φm values, particularly those GARPs of a

common lag. Another consideration for prior development is to encourage sparsity of the elements

of T (Φm), that is, containing few non-zero elements. Because each GARP represents a conditional

dependency, setting φmj to zero establishes a conditional independence relationship between a pair

of components of Y . It is necessary to consider priors that allow the data to inform the balance

between these two goals: pooling across groups and introducing sparsity. Above all, we seek to ac-

complish this in an automated, stochastic fashion. To form such a nonparametric prior, we employ

the matrix stick-breaking process (MSBP) introduced by Dunson, Xue, and Carin (2008).

The layout of the paper is as follows. We first review the MSBP and specify some of its key

properties that will be influential in the development of our priors. We propose a class of priors

on the set of covariance matrices by specifying a prior on the set of GARPs and a prior for the

set of IVs. Section 3 considers the priors for the GARPs and IVs. We explore several resulting

properties of the GARP and IV parameters in Section 4. We remark on some of the bias and
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efficiency issues regarding the mean function under covariance estimation in Section 5, and then

describe the computational issues involved in setting up a Markov chain Monte Carlo (MCMC)

scheme to perform inference using these priors in Section 6. In Section 7 the risk performance

of the Bayes estimators resulting from the grouping priors are compared with other methods. In

Section 8 we apply our priors to a longitudinal dataset obtained from a study of depression patients.

We conclude with some discussion about further areas of exploration.

2. Review of the MSBP

Before we introduce the proposed priors for Σ, we first review some of the key components of

the matrix stick-breaking process (Dunson et al., 2008). The authors consider the case where nm

subjects from group m are drawn from a parametric model that depends on the p-dimensional

parameter vector θm, as well as possible global parameters or subject-specific covariates. The

MSBP induces a prior for the set of θm that allows for clustering of parameters by drawing θmj ∼

Fmj for m = 1, . . . ,M and j = 1, . . . , p where Fmj is a random probability measure. They define

the matrix F of random probability measures by {Fmj : m = 1, . . . ,M, j = 1, . . . , p}, which will

have a distribution that induces correlations among the Fmj measures that in turn produce desirable

properties on the model parameters θm. The measure Fmj has the following form

Fmj =
H∑
h=1

πmjhδξjh , ξjh ∼ i.i.d. F0j,

where Ξ = {ξjh} is a p ×H matrix of random elements and δx represents a point mass at x. The

rows of Ξ (j = 1, . . . , p) correspond to each of the model parameters, which have a nonatomic

base distribution F0j . The H columns are referred to as the clusters. We sometimes refer to the

elements of Ξ as the parameter candidates because they constitute the set of potential values for

the model parameters θmj .

The dependence among the Fmj is controlled by the specification of the stick-breaking weights
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πmjh. These are defined by

πmjh = Vmjh
∏
l<h

(1− Vmjl), Vmjh = UmhXjh, Umh
iid∼ Beta(1, α), Xjh

iid∼ Beta(1, β).

We see that the Vmjh is the product of Umh, which controls the likelihood that parameters for

group m come from cluster h, and Xjh, controlling the likelihood that parameter j is drawn from

cluster h. Because Umh’s are shared across parameters and the Xjh across groups, they induce

the dependence among the probability measures of F . We require that UmH = 1 for all m and

that XjH = 1 for all j, so that the stick-breaking weights sum to one, guaranteeing Fmj is a valid

distribution.

The matrix stick-breaking process is then defined using the above specification as H → ∞,

and they refer to the finite H case as MSBPH . Since the MSBPH is a truncation approximation

of MSBP, we can consider the adequacy of this approximation using a method similar to that

employed by Ishwaran and James (2001). Dunson et al. (2008) show that for a set {πmjh} drawn

from the MSBP with H =∞,

E

{
∞∑
h=H

πmjh

}
=

[
1− 1

(1 + α)(1 + β)

]H−1
. (1)

So we may choose the number of clusters H such that this expected approximation error (1) is

arbitrarily small, so that the MSBPH truncation is a good approximation to MSBP.

Because the probability measures Fmj and Fm′j for two groups m and m′ share the same set

of atoms {ξj1, . . . , ξjH}, there is a positive probability that θmj will equal θm′j . This occurs when

θmj and θm′j are drawn from the same cluster, that is, if θmj = θm′j = ξjh for some h in 1, . . . , H .

The probability of this occurring is a known function of the stick-breaking parameters α and β.

We finally recall the model behavior for some special cases of the stick-breaking parameters.

In the following, we assume H = ∞. As α → 0, Beta(1,α) → δ1, and so for all m, Vmjh =

Xjh almost surely (a.s.). Thus, for all m, Fmj =
∑∞

h=1Xjh

∏
l<h(1 − Xjl)δξjh = Fj, which

implies Fj ∼ DP (βF0j) and that Fmj are equal across all groups. This is equivalent to placing
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independent Dirichlet process priors on each of the parameters with no sharing of information

across parameters. Hence, α controls that amount of information shared across parameters, with

small values of α indicating little borrowing of information. In the case where α→ 0 and β →∞,

θmj ∼ F0j , that is, the prior for the parameters collapses to the base distribution. If both α, β → 0,

we make no use of the groupings and treat the data as a single population with global parameters

θj = θmj for all m.

3. Grouping Priors for GARPs and IVs

We now propose priors to use for simultaneous covariance estimation based on the MSBP. These

priors are referred to as grouping priors because of the way the MSBP induces grouping among the

values of the various parameters. To this end, we independently place a MSBP-type prior on the set

of GARPs Φ = {Φ1, . . . ,ΦM} and another MSBP-type prior on the set of IVs Γ = {Γ1, . . . ,ΓM}.

The prior on Σ is induced by the mapping defined by Σm = Σ (Φm,Γm), which forms the covari-

ance matrix corresponding to GARPs Φm and IVs Γm. Because the GARPs and IVs are orthogonal

parameters (Pourahmadi, 2007), it is sensible to choose priors with Φ independent of Γ. In this

section we discuss three priors for Φ and a pair of priors on Γ.
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3.1. Sparsity Grouping Prior for Φ

The first prior proposal for the GARPs, referred to as the sparsity grouping prior, is defined as

follows.

φmj ∼ Fmj(·) =

Hφ∑
h=1

πmjh δξjh(·), m = 1, . . . ,M, j = 1, . . . , J ; (2)

ξjh ∼ εq(j)δ0 + (1− εq(j))N(0, σ2), j = 1, . . . , J, h = 1, . . . , Hφ; (3)

πmjh = UmhXjh

∏
l<h

(1− UmlXjl) for all m, j, h;

Umh ∼ Beta(1, αφ), h = 1, . . . , Hφ − 1, UmHφ ∼ δ1, m = 1, . . . ,M ;

Xjh ∼ Beta(1, βφ), h = 1, . . . , Hφ − 1, XjHφ ∼ δ1, j = 1, . . . , J.

This prior assumes each φmj is drawn from the random probability measure Fmj in (2). The

distribution (3) of ξjh, the candidate values for the jth GARP, is a mixture of a mean-zero normal

and a distribution degenerate at zero. Here, q(·) : {1, . . . , J} 7→ {1, . . . , p−1} denotes the function

that gives the lag value associated with the GARPs. Note there are (p− 1) of the εq, each of which

represents the probability that ξjh will be zero for the lag-q GARPs. The presence of the zero point

mass promotes sparsity in T (Φm), and because a zero GARP parameter represents a conditional

independence relationship, the sparsity has a desirable interpretation. Allowing the probability

of conditional independence to depend on lag follows from common intuition as one generally

expects decreased relevance for higher lag terms. We can specify a Beta prior for each of the εq

with parameters that potentially depend on lag.

We form the probabilities {πmjh} as in the MSBP. The αφ and βφ stick-breaking parameters

serve the same role as α and β before. We subscript them with φ to distinguish the GARP stick-

breaking parameters from the IV parameters to be defined later. Note αφ is the defining parameter

for the Umh’s, which control the likelihood that the group m GARPs come from cluster h. While

the βφ is the parameter associated with Xjh, influencing the probability the GARP j will be drawn

from cluster h. The previously described special cases as αφ and βφ converge to zeros and infinity
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are still applicable. In the following section, we will derive further properties of the distribution of

the GARP parameters that will be functions of these two stick-breaking parameters.

This sparsity grouping prior for Φ is defined similarly to the MSBP, with the key difference

being that Dunson et al. (2008) specify that the base distribution of the ξjh’s be nonatomic. This

is not the case with our prior since we use a distribution for the ξjh’s that contain a point mass at

zero. This does not lead to a problem, but it does alter some of the theoretic properties as discussed

in Section 4.

3.2. Non-sparse Grouping Prior for Φ

We now consider the non-sparse grouping prior, which is a slight alteration of the sparsity grouping

prior obtained by dropping the zero point mass. The non-sparse grouping prior for Φm is defined

by replacing equation (3) in the sparsity prior by

ξjh ∼ N(0, σ2).

Having removed the zero point mass from the ξ-level, φmj is non-zero a.s. Thus, we no longer

allow for conditional independence relationships or gain sparsity in the T (Φ) matrix, but by fixing

the mean at zero for the distribution of ξ, we still encourage shrinkage toward independence. This

distribution for Φ follows exactly the MSBP framework of Dunson et al. (2008).

3.3. Lag-block Sparsity Grouping Prior for Φ

Having developed a pair of priors for Φ which follow closely to the MSBP, we consider a vari-

ant that differs more significantly from the MSBP framework and is better suited for covariance

matrices in an ordered data setting (e.g., longitudinal data).

As will be shown in the Section 4.1, the distributions Fmj and Fmj′ of the parameters φmj

and φmj′ (different GARPs for a common group) are uncorrelated for the sparsity and non-sparse
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grouping priors. This is because the only information shared across parameters is whether the

parameter values for different groups are drawn from the same cluster. No information relating

to the value of the parameter is borrowed. This may be viewed unfavorably in the context of

covariance estimation, as one might expect that different GARPs that correspond to a common

lag value to be similar, or even equal. For example, it may be reasonable to consider that the

regression effect of Yt−1 onto Yt be the same for different values of t. By deviating from the

MSBP, we develop a new prior for Φ which we refer to as the lag-block sparsity grouping prior.

This will induce a correlation structure between Fmj and Fmj′ when GARP j and j′ correspond to

the same lag value, q(j) = q(j′).

The lag-block prior consists of replacing equations (2) and (3) from the sparsity prior with

φmj ∼ Fmj(·) =

Hφ∑
h=1

πmjh δξq(j)h(·), m = 1, . . . ,M, j = 1, . . . , J ;

ξqh ∼ εqδ0 + (1− εq)N(0, σ2), q = 1, . . . , p− 1, h = 1, . . . , Hφ.

Note that for this prior each cluster h no longer has a parameter associated with each GARP, but

only a ξ-term for each of the p − 1 lags. This means that all of the lag-q GARP parameters are

drawn from the same set of Hφ candidate values. In Section 4.2, we show that this yields a non-

zero correlation between Fmj and Fmj′ and a non-zero probability that φmj and φmj′ are equal, for

j and j′ of the same lag, unlike the previous priors.
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3.4. InvGamma Grouping Prior for Γ

We now consider two priors for the innovation variances Γ, the first of which follows from the

MSBP. We define the InvGamma grouping prior to be

γmj ∼ Gmj(·) =

Hγ∑
h=1

τmjh δηjh(·), m = 1, . . . ,M, j = 1, . . . , p; (4)

ηjh ∼ InvGamma(λ1, λ2), j = 1, . . . , p, h = 1, . . . , Hγ; (5)

τmjh = WmhZjh
∏
l<h

(1−WmlZjl) for all m, j, h;

Wmh ∼ Beta(1, αγ), h = 1, . . . , Hγ − 1, WmHγ ∼ δ1, m = 1, . . . ,M ;

Zjh ∼ Beta(1, βγ), h = 1, . . . , Hγ − 1, ZjHγ ∼ δ1, j = 1, . . . , p.

We draw the IV γmj from the stick-breaking measure Gmj , where the candidate atoms are drawn

from an inverse Gamma distribution (InvGamma). We choose the InvGamma distribution for η to

exploit conjugacy for the IVs, as will be described in the web appendix. We use the parameteri-

zation of InvGamma where the λ2 parameter defines the rate of the distribution. The probability

τmjh of each of the atoms is formed using the stick-breaking method on the product of W and Z.

These Beta random variables depend on the parameters αγ and βγ .

3.5. Correlated-logNormal Grouping Prior for Γ

Recall that lag-block grouping prior moves beyond the MSBP framework to more closely align

with our intuition of the behavior of the GARPs. In a similar spirit we now expand beyond the

previously defined prior for Γ to develop a more sophisticated prior which allows us to exploit

some reasonable assumptions about the innovation variances. One sometimes considers the IVs

as realized values of some unknown smooth function of time. Similar to the lag-block prior we

will obtain the atoms ηjh for the random measure Gmj in a dependent way, while leaving the

construction of the probability weights τmjh unchanged.
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To form the correlated-logNormal prior for Γ we replace line (5) in the InvGamma grouping

prior specification with the following

ηjh = exp(ωjh), j = 1, . . . , p, h = 1, . . . , Hγ;

ωh = (ω1h, . . . , ωph)
T ∼ Np(ψ1p,ΩR(ρ)), h = 1, . . . , Hγ.

The development in this prior is that the candidate IVs ηjh are drawn in a correlated fashion

and marginally follow a logNormal distribution, providing the name of this prior, the correlated-

logNormal grouping prior. We introduce the intermediate variable ωh which is a p-dimensional

normally distributed random vector with mean vector ψ1p and covariance matrix ΩR(ρ). Here,

ψ and Ω are scalar quantities, Ω > 0, and R(ρ) is the correlation matrix corresponding to an

auto-regressive function of order 1. The (i, j) component of R(ρ) is ρ|i−j|. We let ηjh be the

exponentiated version of ωjh so that marginally ηjh has a logNormal distribution.

In the previous InvGamma grouping prior, the distribution of η relied on two hyperparameters,

λ1 and λ2. The correlated-logNormal prior relies on three hyperparameters to define the distribu-

tion of η: ψ,Ω, and ρ. While one might be tempted to use an unstructured mean and/or covariance

matrix for ωh, this does not appear to be feasible due to lack of information one has to estimate

these hyperparameters at this level of the model. Hence, we choose the common mean and AR(1)

covariance, which still leads to improved estimation as will be shown in the risk simulations of

Section 7.

Note that in the special case where ρ = 0, that the components of the ωh vector are independent.

Consequently, the IV candidates ηjh are i.i.d. from the logNormal(ψ,Ω) distribution, and so this

special case follows the MSBP framework. Comparing the two MSBP priors, the InvGamma

grouping prior and the correlated-logNormal grouping prior with ρ = 0, we recommend using the

InvGamma because of the conjugacy that is obtained. The benefit of using the normal (equivalently,

logNormal) distribution for ω (η) is that inducing the correlation inside a cluster is straightforward,

a gain that outweighs the loss of conjugacy. See Section 6 and Web Appendix 2 for more details
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on the conditional distributions and computational issues involved in using this prior.

4. Theoretical Properties

We now explore some of the theoretical properties of the proposed grouping priors in the case

where Hφ, Hγ →∞. Recall that the MSBP is formally defined as the limit as the number of clus-

ters approaches infinity, and the finite number of clusters case, while necessary for implementation,

is viewed as an approximation. Our grouping priors follow in the same way. While defined using

finite Hφ and Hγ for computation, we view them as approximations to the distributions defined in

the limiting cases when Hφ, Hγ →∞. The following properties are derived for these limiting dis-

tributions, and we ensure that the number of clusters is chosen large enough that these properties

may be considered to hold (approximately). The initial properties mirror Propositions 1, 2, and 4

of Dunson et al. (2008). Partial derivations of these properties are provided in the Web Appendix

1.

4.1. Properties for the GARPs for the Sparsity and Non-Sparse Grouping
Priors

First, we consider the behavior of the GARPs from the sparsity grouping prior. For the following

calculations, we assume that the εq’s and all hyperparameters are fixed. Additionally, for ease of

notation, we ignore the subscript on εq, αφ, βφ when it is clear from context, and let Φ(·) denote the

probability measure for the N(0,σ2) distribution. Define Ψ(·) = εδ0(·)+(1−ε)Φ(·), the probability

measure for the mixture distribution of the ξjh’s.

1. For all sets A in the Borel field of the real line B(R), E(Fmj(A)) = Ψ(A). This property

shows that it is appropriate to refer to the δ0-normal mixture Ψ as the base distribution for

the GARPs. This unbiasedness property also holds for the finite Hφ case, as can be seen in

the derivation.
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2. For A ∈ B(R), Var (Fmj(A)) = 2
(2+α)(2+β)−2Ψ(A) (1−Ψ(A)) .

We see that α and β control the extent to which the random measure Fmj differs from the

base distribution. As either α or β approach infinity, the distribution of φmj collapses to the

parametric base Ψ. Small values of α and β allow for a more flexible prior.

3. For A ∈ B(R) and m 6= m′, Corr (Fmj(A), Fm′j(A)) = α+αβ/2+β+1
2α+αβ+β+1

.

This quantity is the correlation between the distributions of the GARP j for two groups m

andm′. Because this does not depend on the choice of Borel setA, it may be used as a simple

univariate measure of the degree to which information is shared across groups. Simple alge-

bra shows that 1/2 ≤ Corr (Fmj(A), Fm′j(A)) ≤ 1. In particular, Corr (Fmj(A), Fm′j(A))→

1/2 as either α or β approach infinity. Additionally, Corr (Fmj(A), Fm′j(A))→ 1 as α→ 0.

4. Having considered the correlation for the distributions of the GARP j parameters for two

different groups, we derive the probability of equality for these two parameters. Form 6= m′,

Pr(φmj = φm′j) = ε2 + 1−ε2
(1+α)(2+β)−1 .

The presence of the zero point mass causes these clustering properties to differ from those

derived in Dunson et al. (2008). Note that as either α or β approach infinity, this probability

approaches ε2, which is the probability that both φmj and φm′j are equal to zero if drawn from

the parametric base distribution Ψ. This probability of equality is increasing in ε, which is

intuitive since larger values of ε indicate that both terms are more likely to be zero whether

or not they come from the same cluster. Additionally, this probability increases as either α

and β decreases coinciding with the increase in Corr (Fmj(A), Fm′j(A)).

5. In Property 3., the correlation between the distributions of two parameters representing the

same GARP but different groups was considered. We now study the relationship between

the distributions for two different GARPs of the same group. For A ∈ B(R) and j 6= j′,

Corr(Fmj(A), Fmj′(A)) = 0, that is, Fmj and Fm′j are uncorrelated.
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Additionally, for m 6= m′, Corr(Fmj(A), Fm′j′(A)) = 0, that is, the distributions of two

different GARPs of different groups are also uncorrelated.

6. Property 4. considered the probability of equality among two GARP parameters with com-

mon j and differing group m. The probability of equality for two different GARPs j and j′

of the same group m relies only on the probability of setting each to zero independently. For

j 6= j′, Pr(φmj = φmj′) = εq(j)εq(j′) = Pr(φmj = 0)Pr(φmj′ = 0).

This implies that there is no sharing strength in the estimation of different GARPs of the same

group, even if the GARPs share a common lag value (q(j) = q(j′)). This, in conjunction

with the preceding property, further motivates the development of the lag-block grouping

prior.

If we consider two different groups m,m′, we again obtain Pr(φmj = φm′j′) = εq(j)εq(j′).

We additionally point out that the non-sparse grouping prior is equivalent to the sparsity group-

ing prior if we take εq = 0 for all q. Hence, the respective properties for this prior are obtained

by substituting ε = 0 (and consequently, Ψ(·) = Φ(·)) in the above properties. Because the non-

sparse prior is a MSBP prior with a non-atomic base distribution, the properties may also be taken

from Propositions 1, 2, and 4 in Dunson et al. (2008).

4.2. Properties for the GARPs for the Lag-block Sparsity Grouping Prior

We also explore some of the theoretical properties of the lag-block prior. Properties 1.–4. are the

same as for the sparsity grouping prior so we do not list them again. The critical deviation from

the sparsity grouping properties is the change for Properties 5.-8.

5. For A ∈ B(R) and j 6= j′ with q(j) = q(j′), Corr (Fmj(A), Fmj′(A)) = β+αβ/2+α+1
2β+αβ+α+1

.

For j 6= j′ with q(j) 6= q(j′), Corr(Fmj(A), Fmj′(A)) = 0.
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6. For j 6= j′ with q = q(j) = q(j′), Pr(φmj = φmj′) = ε2q +
1−ε2q

(2+α)(1+β)−1 .

For j 6= j′ with q(j) 6= q(j′), Pr(φmj = φmj′) = εqεq′ .

Properties 5. and 6. consider the correlation and matching probabilities for different GARPs j and

j′ for a common group m. Under the lag-block prior we have imposed a correlation structure on

the distribution functions of the GARP parameters of a common lag. As mentioned during the

introduction of this prior, we are now borrowing strength in the estimation of GARP parameters

from the same lag. The correlation is guaranteed to lie in the interval [1/2, 1] and does not depend

on the chosen Borel set A, only on the parameters αφ and βφ. The correlation is the same as that

for Property 3. with the role of αφ and βφ in reverse. Likewise, the probability of matching across

GARPs of common lag in Property 6. is also equivalent to the probability of matching across group

for common GARP in Property 4. with αφ and βφ exchanged.

We compare the correlations between the distributions of the same group to distributions of the

same GARP j. Let m 6= m′, and j 6= j′ with q(j) = q(j′), and assume αφ > βφ. Then,

Corr (Fmj(A), Fm′j(A)) < Corr (Fmj(A), Fmj′(A)) ,

P r(φmj = φm′j) < Pr(φmj = φmj′).

If αφ is the larger then βφ, then there is more similarity in the distributions of common group and

differing GARP than for the distributions of differing group but common GARP. The probability

that φmj agrees with other GARPs of its group is greater than that of matching other groups’

GARPs for the same j. If αφ < βφ, then the inequalities reverse.

It had previously been unnecessary to consider correlations or matching simultaneously across

group and GARP for the previous priors, because there was no influence across GARP. As seen

in the previous two properties, that is no longer the case for the lag-block prior, so it becomes

beneficial to look at the behavior of these quantities here.
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7. For A ∈ B(R), m 6= m′, and j 6= j′ with q = q(j) = q(j′),

Corr (Fmj(A), Fm′j′(A)) =
αβ/2 + α + β + 1

2αβ + 2α + 2β + 1
.

If j and j′ do not correspond to a common lag (i.e., q(j) 6= q(j′)), then Fmj(A) and Fm′j′(A)

are uncorrelated.

8. For m 6= m′ and j 6= j′ with q = q(j) = q(j′), Pr(φmj = φm′j′) = ε2q +
1−ε2q

2(1+α)(1+β)−1 .

If q(j) 6= q(j′), then Pr(φmj = φm′j′) = εqεq′ .

It is instructive to compare the correlations and matching probabilities across both group and

GARP to the respective quantities when only group or only GARP differ. Simple algebra gives

that for all Borel sets A, m 6= m′, and j 6= j′ with q = q(j) = q(j′),

Corr (Fmj(A), Fm′j′(A)) < Corr (Fmj(A), Fmj′(A)) ,

Corr (Fmj(A), Fm′j′(A)) < Corr (Fmj(A), Fm′j(A)) ,

P r(φmj = φm′j′) < Pr(φmj = φmj′),

P r(φmj = φm′j′) < Pr(φmj = φm′j).

That is, the correlations of the distribution functions and the probability of matching across both

groups and GARP parameters both are strictly smaller than the correlation and matching proba-

bility across just one. We noted earlier that Corr (Fmj(A), Fm′j(A)) and Corr (Fmj(A), Fmj′(A))

are each contained in [1/2, 1]. Comparatively, the lower bound for Corr (Fmj(A), Fm′j′(A)) is 1/4.

The lag-block specification induces a positive correlation between each pair of distributions of a

common lag.

We conclude the discussion of the GARP grouping prior by noting that distributions obtained

in the special cases α → 0 and α, β → 0 are different from those obtained in the MSBP (and

hence, the sparsity and non-sparse prior). As α → 0, it remains true that Fmj = Fj for all m

and that Fj ∼ DP (βF0j). However, these are not independent across j, because the set of Fj of
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common lag share the same set of atoms ξqh. Previously as both α and β approach zero, the data

is pooled such that a common parameter value is assigned for all groups, i.e. φmj = φj . Due to the

lag-block structure, we will now have a common parameter across all groups and all GARPs of a

common lag, φmj = φq for all m and j with q = q(j).

4.3. Innovation Variance Properties

We now explore the behavior of the IVs and their distributions Gmj . Let R+ denote the positive

real line, and IΓ(·) denote the probability function of the InvGamma(λ1, λ2) distribution, with

fixed values for the hyperparameters. Because the InvGamma grouping prior is a MSBP prior, the

relevant properties follow immediately from Dunson et al. (2008). We list them here for ease of

comparison with the properties obtained from the correlated-logNormal prior.

1. For A ∈ B(R+), E(Gmj(A)) = IΓ(A).

2. For A ∈ B(R+), Var(Gmj(A)) = 2
(2+α)(2+β)−2 IΓ(A) (1− IΓ(A)).

3. For A ∈ B(R+) and m 6= m′, Corr(Gmj(A), Gm′j(A)) = α+αβ/2+β+1
2α+αβ+β+1

.

4. For m 6= m′, P r(γmj = γm′j) = 1
(1+α)(2+β)−1 .

5. For A ∈ B(R+), j 6= j′ and 1 ≤ m,m′ ≤M (possibly equal),

Corr (Gmj(A), Gm′j′(A)) = 0.

6. For j 6= j′ and 1 ≤ m,m′ ≤M , Pr(γmj = γm′j′) = 0.

We additionally consider the properties when we specify the correlated-logNormal prior for

the IVs. Let logA be the set {log x : x ∈ A} for any A ∈ B(R+) and Φ(·) the probability function

for the N(ψ,Ω) distribution, assuming the hyperparameters ψ,Ω are fixed.

1. For A ∈ B(R+), E(Gmj(A)) = Φ(logA).
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2. For A ∈ B(R+), Var(Gmj(A)) = 2
(2+α)(2+β)−2Φ(logA) (1− Φ(logA)).

Properties 1. and 2. vary from the MSBP-InvGamma prior due to changing the distribution

of η from InvGamma to (marginally) logNormal.

3. For A ∈ B(R+) and m 6= m′, Corr(Gmj(A), Gm′j(A)) = α+αβ/2+β+1
2α+αβ+β+1

.

4. For m 6= m′, P r(γmj = γm′j) = 1
(1+α)(2+β)−1 .

The correlation between distributions and the probability of matching across groups for a

common time point has the same structure for both of these IV priors.

5. For A ∈ B(R+) and j 6= j′,

Corr (Gmj(A), Gmj′(A)) =
β + αβ/2 + α + 1

2β + αβ + α + 1
Corr (I{ωj1 ∈ logA}, I{ωj′1 ∈ logA}) .

6. For A ∈ B(R+), j 6= j′, and m 6= m′,

Corr (Gmj(A), Gm′j′(A)) =
αβ/2 + α + β + 1

2αβ + 2α + 2β + 1
Corr (I{ωj1 ∈ logA}, I{ωj′1 ∈ logA}) .

It is no longer the case that the correlation of these distributions is independent of the choice

of Borel set A. However, they are the products of a term that depends solely on the stick-

breaking parameters α and β and a term that depends only on A and the distribution of

(ωj1, ωj′1) ∼ N2 (ψ12,ΩR
∗(ρ)), where [R∗(ρ)](1,1) = [R∗(ρ)](2,2) = 1 and [R∗(ρ)](1,2) =

[R∗(ρ)](2,1) = ρ|j−j
′|. The higher correlations for neighboring IVs (for ρ > 0) implies a

smoothing of the IVs as a function of j. We observe that the leading term gives the same

correlation structure as the common-lag GARPs when using the lag-block prior.

7. For j 6= j′ and 1 ≤ m,m′ ≤ M , Pr(γmj = γm′j′) = 0. With the correlated-logNormal

grouping prior there is no matching of IVs across time points. This is a consequence of the

fact that two points drawn from a correlated normal distribution (|ρ| < 1) will be equal with

probability zero. However, as is apparent from the previous two correlation properties, they

can be arbitrary close depending on ρ, ψ,Ω and the choices of A.
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5. Effect of Covariance Estimation on the Mean Function

In this section, we briefly discuss the importance of covariance estimation on the mean structure. In

the complete data case the mean and covariance parameters are orthogonal in the sense of Cox and

Reid (1987) and the estimates of the mean parameters will be consistent under mis-specification

of the covariance structure. However, if there is missingness in the data, there is no longer orthog-

onality, even at the true value of the covariance matrix (Little and Rubin, 2002). Hence, for the

posterior distribution of the mean parameters to be consistent, the dependence structure must be

correctly specified. So, even in the missing at random case (MAR), where missingness depends

only on the observed values not the unobserved data, it is no longer appropriate to treat the covari-

ance structure as a nuisance parameter. In this case biased mean estimates can result if we do not

use the correct model for the dependence. For further discussion of the mean-covariance issues

that arise in incomplete data modeling, see Daniels and Hogan (2008, Section 6.2).

Although the mean and dependence are asymptotically independent in the complete data case,

efficiency gains may be possible for small or moderately sized, fully-observed samples. Through

four simulation examples with relatively small sample sizes, Cripps et al. (2005) demonstrated

improvements in estimating regression coefficients, fitted values, and the predictive density for the

Wong et al. (2003) covariance selection prior over a more dispersed covariance prior choice.

We examine the impact of covariance estimation on the means in the simulations (Section 7)

and the data example (Section 8).
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6. Computational Considerations

6.1. Selecting the Number of Clusters

Recall that equation (1) provided us with the expected approximation error which we employ to

choose the number of clusters necessary for the MSBP truncation. This formula continues to hold

for each of the proposed grouping priors, since the stick-breaking weights are always formed using

the MSBP framework. Hence, if the values of α, β (for either the GARP or IV parameters) are

assumed known, then we choose the number of clusters H such that [1− (1 + α)−1(1 + β)−1]H−1

is less than some threshold, such as 0.01. As we generally do not have any knowledge or prior

belief about these stick-breaking parameters, it will often be inappropriate to prespecify values, so

we follow the suggestion of Dunson et al. (2008) and specify independent Gamma(1,1) priors for

α and β. To choose the value of H when using a prior on for the stick-breaking parameters, we

run the MCMC chain for approximately 10% of its total length and use the posterior means to test

whether (1) is below our threshold.

Dunson et al. (2008) point out that for α, β values less than 1, H = 20 clusters leads to an

expected approximation error less than 0.01. They recommend using stick-breaking parameter

values less than 1, but it has been our experience through various simulation studies and data

analyses that this need not strictly be the case. In many examples using the Gamma(1,1) priors, we

received posterior means for the stick-breaking parameters between 1 and 2. While these situations

do require more clusters (20 ≤ H ≤ 40) to give a small approximation error, they continue to give

improved covariance estimation versus competing priors.

6.2. Using the Grouping Priors in MCMC Analysis

One of the nice properties of the MSBP prior is that by introducing appropriate latent variables an

MCMC algorithm can be devised that employs well-known conjugate distributions that are easy to
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sample from (Dunson et al., 2008). Because a normal prior for the GARPs and an InvGamma prior

for the IVs provide conjugacy, the sampling for ξ and η are from normal (or a zero-normal mixture)

and InvGamma distributions, respectively, for the sparsity, non-sparse, lag-block, and InvGamma

grouping priors. The conjugacy for the IV candidates is lost for the correlated-logNormal prior,

but we can sample η efficiently by incorporating a slice sampling step (Neal, 2003) or another

sampling technique. We review the algorithm of Dunson et al. (2008) and further discuss the

implementation of a posterior sampling scheme for our grouping priors and other computational

challenges in Web Appendix 2.

7. Risk Simulations

We now examine the operating characteristics of the proposed grouping priors via risk simulations.

For the purposes of comparison with the proposed grouping priors, we introduce some additional

naive priors based on the modified Cholesky parameterization of the covariance matrix. We con-

sider two priors (NB1, NB2) for the GARPs and one prior (NB) for the IVs, defined as follows.

Naive Bayes 1 (NB1): φmj ∼ εq(j)δ0 + (1− εq(j))N(0, σ2)

Naive Bayes 2 (NB2): φmj ∼ N(0, σ2)

Naive Bayes (NB): γmj ∼ InvGamma(λ1, λ2)

These priors are simple choices for the GARPs and IVs so that conjugacy is maintained, leading

to relatively simple MCMC algorithms.

The NB1 prior is the model that follows as αφ approaches zero with βφ going to infinity for

the sparsity grouping prior. This clearly corresponds to independently (given the hyperparameters)

drawing from the parametric model of φ. While not allowing any kind of grouping in the GARP

parameters, this model will induce a level of sparsity into the T (Φm) matrices, as does the sparsity

grouping prior.
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The naive Bayes 2 prior removes the point mass portion from NB1 and, when used in conjunc-

tion with NB for the IVs, is a simplified version of the prior suggested by Daniels and Pourahmadi

(2002). NB2 is the limiting case of the non-sparse prior when αφ converges to zero and βφ ap-

proaches infinity. Since NB2 does not have the zero point mass for the GARPs, this prior will not

induce sparsity in the T (Φm) matrices. However, since the prior mean for the φmj is fixed at zero,

there is shrinking of the conditional dependencies toward zero.

We note that the NB prior for the innovation variances gives the model corresponding to the

InvGamma grouping prior when αγ → 0 and βγ →∞.

For each of the simulations, we generate 50 datasets and run an MCMC chain on each dataset

with each prior for 50,000 iterations keeping every tenth iteration, using a burn-in of 10,000. We

place the following priors on the hyperparameters when appearing in the prior specification: for

εq, independent Unif(0,1); for αφ, βφ, αγ , βγ , λ1, and λ2, independent Gamma(1,1); σ2 ∼ In-

vGamma(0.1, 0.1). For the correlated-logNormal prior, we use Ω ∼ InvGamma(0.1,0.1) and ψ ∼

N(0, c2Ω), c2 = 1000, and we fix the value of ρ to be 0.75 (for explanation, see Web Appendix

2.5).

We measure the performance of our proposed priors by estimating the risk associated with the

Bayes estimators under two common loss functions (Yang and Berger, 1994),

L1(Σm, Σ̂m1) = tr(Σ−1m Σ̂m1)− log |Σ−1m Σ̂m1| − p

L2(Σm, Σ̂m2) = tr
{

(Σ−1m Σ̂m2 − I)2
}
.

Since these losses are defined in terms of a single covariance matrix, we consider the loss for esti-

mating the set of covariance matrices to be the weighted average of the losses from the individual

covariance matrices, with weights proportional to the group’s sample size.

Additionally, to represent two of the more common methods of dealing with this situation, we

run the MCMC chain with a common-Σ flat prior and a group-specific flat prior. The common-Σ

22



prior assumes a common covariance matrix across all groups and uses a flat prior on this matrix.

The group-specific prior places independent flat priors on each of the M groups. The resulting

conditional distributions are inverse-Wishart, making this distribution simple to incorporate in the

MCMC algorithm.

7.1. Risk Simulation 1

We first consider M = 5 (groups) and p = 4 (four-dimensional) normally distributed mean-zero

random variables. The five covariance matrices are defined by the following specification of the

GARP and IV parameters:

Φ1= ( 0.7, 0.2, 0.7, 0, 0.2, 0.7), Γ1= ( 1, 1, 1, 1),
Φ2= ( 0.7, 0, 0.3, 0, 0, 0.7), Γ2= ( 2, 2, 2, 2),
Φ3= ( 0.3, 0, 0.3, 0, 0, 0.3), Γ3= ( 2, 2, 1, 1),
Φ4= ( 0.7, 0.2, 0.7, 0.1, 0.2, 0.7), Γ4= ( 5, 5, 5, 5),
Φ5= ( 0.7, 0, 0.7, 0, 0, 0.3), Γ5= ( 1, 1, 2, 2).

We use the sample sizes of n1 = . . . = n4 = 30, n5 = 15. Note that for this specification many

of the parameters across groups are equal and that many of the higher lag GARP terms are zero.

Additionally with the smaller sample size for the fifth group, the grouping priors should improve

estimation of Σ5 by sharing information across similar groups. Thus, this should be an ideal

situation for our priors. Using the technique suggested in Section 6.1, we specify Hφ = Hγ = 40

for the grouping priors.

Risk estimates are given in Table 1. The prior composed of the lag-block structure on the

GARPs and the correlated-logNormal specification for the IVs has the best risk estimates of the

collection. Comparing the lag-block/InvGamma and sparsity/correlated-logNormal priors to the

sparsity/InvGamma grouping prior, the modification on either the GARPs or the IVs produces

improved risk performance. The lag-block/correlated-logNormal produces risk estimates that are

15% and 12% lower than the NB1/NB naive prior. It is natural to compare the NB1/NB prior

to the sparsity/InvGamma because the first is a limiting case of the latter. Likewise, we compare
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NB2/NB and grouping/InvGamma. For both loss functions, the sparsity/InvGamma beats NB1/NB

and grouping/InvGamma beats NB2/NB, indicating the borrowing of information across groups in-

duced by the grouping priors improves the estimation. We also see that the sparsity prior performs

better than the grouping prior, but this is to be expected since we know that there are GARP pa-

rameters that are equal to zero. Comparatively, the estimators from the flat priors perform very

poorly; the risks for the grouping priors are 37–47% smaller than the group-specific estimator for

L1 and 30–39% for L2.

Additional risk simulations were tested with the mean fixed to zero, some of which are included

in Web Appendix 3. The grouping prior continued to perform very well under many different types

of covariance matrix specifications such as situations with no sparsity and dissimilar covariance

matrices across groups, and under increasing nm,M, and p. Throughout the lag-block/correlated-

logNormal prior performed the best with the other grouping priors performing as well or better than

the relevant naive choices. The choice of the flat priors continued to perform poorly compared to

the grouping (and naive) choices.

7.2. Risk Simulation 2

We now study our estimators in the presence of a more realistic longitudinal scenario. We incor-

porate a non-zero mean, and the simulated data will suffer from ignorable missingness due to a

dropout process. There are M = 8 groups with nm = 50 measurements of dimension p = 6.

Letting Di denote the time t = 2, . . . , p+ 1 of dropout for subject i (Di = p+ 1 indicates a subject

who completes the study), the dropout is induced according to the model

logit {Pr(Di = t+ 1|Di > t, yit,m)} = ζ0t + ζ1t yit + ζ2m, t = 1, . . . , p− 1. (6)

This missing data mechanism yields data that follow the MAR assumption. The mean, GARP, IV,

and dropout parameters for the simulation are listed in Table 2.
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This choice of Φ and Γ do not provide any equalities across groups as was present in the

previous example. However with the small sample sizes, it will generally still be advantageous

to share information across the eight groups. Also, note a moderate amount of sparsity in the

GARP parameters, which is typical for ordered data. Table 3 gives the probability of Yit will be

unobserved by t and m due to the dropout process (6). We see that groups 3 and 8 experience a

large amount of attrition over the study which will have adverse effects on the mean estimation. As

noted in Section 5, the improved modeling of the dependence structure provided by our grouping

priors should yield improvements in the estimation of the mean function.

For the MCMC chain, additional steps are needed to sample the mean vectors and the missing

data. We assume a flat prior on the group-specific mean vectors µm; as a result, its full conditional

distribution will be multivariate normal. We use data augmentation to sample the missing data

values from the (normal) distributions conditional on the observed data.

The estimated risk associated with estimating the covariance matrices for each of the two loss

functions is shown in Table 4. With the increased values of p and M , all of the grouping pri-

ors beat the naive priors. The ability to borrow strength across groups improves the estimation

such that even the non-sparse grouping prior, which does not allow the correct independence re-

lationships, beats the NB1 prior, which correctly incorporates the potential independence. The

lag-block/correlated-logNormal prior continues to beat the remainder of the grouping priors, with

a risk improvement of 30 and 25% over the NB1/NB prior and 52 and 41% over the group-specific

flat prior. From these and other simulation studies, we believe that as the number of groups M and

the dimension of the covariance matrix p increases, the grouping estimators for Σ will outperform

the naive Bayes estimators and the margin by which they do so increases. This is particularly

important since the number of possible models increases as p and M increase.

In addition to improvement in the estimation of the covariance matrix, we additionally exam-

ined the ability to recover the mean structure for each group. Having placed a flat prior on the
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group-specific mean vectors µm, we measure the accuracy of the means using the loss function

L(µ̂m, µm) = (µ̂m−µm)′Σ−1m (µ̂m−µm), which is standardized by the true covariance matrix Σm;

we use the weighted average of these losses across groups for an overall loss. The final column of

Table 4 displays the performance.

There is clear improvement in the mean estimation under the grouping priors. The lag-block/correlated-

logNormal prior produces a risk 14% smaller than the NB1/NB prior and 29% smaller than the

group-specific estimator. The risk associated with the common-Σ prior is almost five times that

associated with the grouping priors. By considering flexible, ’parsimonious’ priors on the depen-

dence, we see a meaningful improvement in the estimation of mean trajectory.

8. Data Example

We now demonstrate the use of the grouping priors in the fitting of a longitudinal dataset from

a depression study. The data, originally presented by Thase et al. (1997) and further analyzed

by Pourahmadi and Daniels (2002), consists of weekly measures of depression over a sixteen

week study period. Depression scores were measured weekly using the Hamilton Rating Scale for

Depression (HRSD). As noted in previous analyses of the dataset, the severity of the depression

symptoms at baseline influences the rate of the improvement of HRSD scores. There are two

treatments under consideration in the study, a psychotherapy-only treatment versus a treatment

regimen which includes both psychotherapy and pharmacotherapy. We divide the data into M = 4

groups for analysis considering each combination of treatment and a binary indicator of the initial

severity of depression. The sample sizes for the four groups are 98, 101, 100, and 249. The vector

of a patient’s seventeen weekly HRSD scores (baseline through sixteen weeks) is assumed to be

normally distributed with a quadratic mean function and covariance matrix specific to treatment-

severity group.

Approximately 30% of the possible measurements from the study are missing. We assume that
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the missingness was MAR and incorporate a data augmentation step to sample the missing values

given the observed data and the current parameter values, as in the previous risk simulation. The

modeling of the mean function is accomplished by assuming that the expected depression score is

a group-specific, quadratic function in time.

To compare the fits induced by the various covariance priors used, we use the deviance infor-

mation criteria (DIC) (Spiegelhalter et al., 2002). Let

Dev = Dev(µ̄,Σ−1 | yobs) = −2 loglik(µ̄,Σ−1 | yobs)

be the deviance, or twice the negative observed data log-likelihood evaluated at the posterior means

of the parameters. Here µ̄ and Σ−1 represents the posterior expectations of µ and Σ−1. Wang and

Daniels (2011) recommended DIC based on the observed data likelihood for missing data settings,

such as this. The complexity of each of the models is measured by pD, which can be viewed as the

effective number of parameters. The pD is defined by

pD = Dev(µ,Σ−1 | yobs)−Dev(µ̄,Σ−1 | yobs),

where the over-bar notation denotes the posterior mean of the deviances in the first term. Note

that we use the precision (inverse of the covariance) matrix in the pD calculation to obtain a more

numerically stable estimate (Spiegelhalter et al., 2002). We form the DIC as our model comparison

measure by DIC= Dev + 2pD. Smaller values of DIC indicate a good combination of model fit

and simplicity.

We perform an analysis using each of the pairs of grouping covariance priors: sparsity/InvGamma,

non-sparse/InvGamma, lag-block/InvGamma, sparsity/correlated-logNormal, and lag-block/correlated-

logNormal. For each prior specification, the chain ran for a burn-in of 10,000 iterations followed

by another 100,000 iterations, of which we retained every tenth value for inference. As described

in Section 6, appropriate values for Hφ and Hγ were chosen by running the first 10% of the chain.

The number of clusters necessary to approximate the limiting distribution to within 0.01 ranged
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from twenty to thirty. For the correlated-logNormal prior, we run an MCMC chain for three fixed

values for ρ of 0.5, 0.75, and 0.9 (see Web Appendix 2.5); otherwise, we used the same hyper-

priors as in Section 7. The analysis was also performed with the NB1/NB and NB2/NB prior

combinations, as well as the common-Σ and group-specific flat priors.

Table 5 contains the model deviance, the effective number of parameters pD, and the model se-

lection criteria DIC when using various prior choices for Σ. We see that the lag-block/correlated-

logNormal with ρ = 0.9 prior gives the best fit to the dataset. For the correlated-logNormal

prior the largest of the three correlations ρ = 0.9 slightly beats the other two when we combine

them with either the lag-block or sparsity grouping priors, but the (relatively) small difference in

DIC provides further evidence of the robustness of the prior to the choice of ρ. Comparing the

model complexities between the NB2/NB prior to the non-sparse/InvGamma prior, as well as the

NB1/NB to the sparsity/InvGamma, there is a reduction of 34 and 6 parameters, respectively. Us-

ing the grouping priors over their naive Bayes counterparts produces a more structured model.

The structure added by allowing conditional independence is even more evident, since the spar-

sity/InvGamma pD contains about 54 fewer parameters than the non-sparse/InvGamma. There

is also a dramatic improvement in model fit comparing analyses with the lag-block prior to the

corresponding analysis with the sparsity prior. This is mainly due to decreased model complex-

ity (i.e. fewer free parameters). We conclude the prior comparison by noting that the grouping

priors model the data much more effectively than those methods that assume a flat prior on the

covariance matrix, in particular, the treatment-specific prior which has too many parameters to be

handled efficiently.

We also consider how the covariance priors effect the mean estimation. We show the treatment

effect (difference in mean value between baseline and week 16) and 95% credible intervals for

the first two groups in Table 5. In group m = 2 we see that there are clear differences for this

effect across the different priors on Φ. We see a treatment effect of around 9.5 points for the four
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lag-block analyses, while the four grouping priors with the sparse GARP structure show an effect

around 8.7. We see major deviations for the two flat priors, 10.2 for the common-Σ flat and 6.9 for

the group-specific flat prior. For group 1 we do not see much difference in the mean effect (except

for some deviation with the common-Σ prior) although the confidence interval is more narrow for

the grouping priors than the flat versions. These two groups demonstrate the bias and efficiency

issues relevant to covariance matrix estimation with missing data as discussed in Section 5. The

effects for groups 3 and 4 (not shown) also indicate little difference in treatment effect, as in group

1. We note that the differences do not rise to the level of statistical significance but they are large

enough to be of practical importance.

We provide some additional details from the analysis using the lag-block and correlated-logNormal

(ρ = 0.9) grouping priors. This was the prior that produced the best model fit (according to the DIC

criterion). We obtained the following posterior means (and 95% credible intervals) for the stick-

breaking parameters: α̂φ = 0.673(0.34, 1.30), β̂φ = 0.584(0.49, 0.71), α̂γ = 0.454(0.27, 0.78), β̂φ =

0.431(0.32, 0.60). We see that the intervals for these parameters are much smaller than for the

Gamma(1,1) prior, indicating substantial learning about the parameter values. The posterior mean

for ε1 is 0.109, the mean of ε2 is 0.215, with the remaining means ranging from 0.31 to 0.78. This

agrees with our intuition that the first few lags will usually be non-zero with higher lags more likely

to be zero.

Figures 1–3 show the grouping nature of the proposed priors. Figure 1 shows the posterior

probabilities of Pr(γmj = γm′j) for each m,m′, j combination. Larger boxes indicate higher

grouping probabilities, with the boxes on the y = x diagonal having area one. We see that there

is substantial matching for the groups 1 and 2 (the two low initial severity groups), as well as for

groups 3 and 4 (the two high initial severity groups), with less matching across the two pairs.

Figures 2 and 3 give the posterior probabilities of matching for the lag-1 and lag-4 GARPs,

respectively. We show only the first eight of each due to space limitations. Because we use the lag-
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block sparsity grouping prior for Φ, there is a positive probability of equality across GARPs of a

common lag. This is indicated in the figure by the presence of large matching probabilities for j 6=

j′, (e.g. j = 1 and j′ = 3). We note the pairwise probability of equality is very high for all combina-

tions of the j = 1 GARPs and the group 2, lag-1 GARPs (and group 3, lag-1 GARPs to a lesser ex-

tent). One would be unlikely to learn of this relationship or to consider a model with equality across

all (or a large subset) of the parameters (φ11, φ21, φ31, φ41, φ23, φ26, φ2,10, φ2,15, φ2,21, φ2,28, φ2,36)

using other techniques. The black boxes that overlay the y = x diagonal are proportional to the

posterior of Pr(φmj = 0). We see that the lag-1 GARPs are rarely set to zero.

Considering Figure 3 one notes that the lag-4 GARPs are quite often equal to zero, except for

the first group. There are larger matching probabilities for the lag-4 parameters, much of which is

due to matching with both parameters set to zero. The matching relationships are not always due

to equality with zero, as can be seen from the large probabilities of matching across the group 1

GARPs, as well as in group 4 for GARPs 7, 12, 18, and 25. Recall that the lag-block is the only

grouping priors that is able to exploit equality across GARPs within lag, a property that greatly

improves the model fit for the depression data.

9. Discussion

In this article we have proposed a new class of priors for sets of covariance matrices. These

grouping priors seek to promote sparsity in the Cholesky decomposition of the inverse covariance

matrix, as well as all for equality relationships in the parameters across different groups and across

GARPs (of the same lag). The theoretical properties explored in Section 4 show that the priors

seek to promote sensible structures in Σ, while allowing the data to inform the extent to which

the posterior agrees with the structures. The risk simulations of Section 7 and the depression data

example of Section 8 clearly show that the proposed priors lead to improved covariance estimation

as measured by the estimated risk (for the mean parameters under ignorable missingness as well)
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and model fit, respectively. In particular, the lag-block grouping prior for the GARPs and the

correlated-logNormal grouping prior on the IVs perform much better than the naive Bayes and

flat prior competitors, as well as the other grouping priors. Because each of the grouping priors

performs well, one can choose to use grouping priors other than lag-block/corr-logNormal based

on the context of the data being used for inference.

In addition to the grouping priors previously defined, there are a number of other natural ex-

tensions and possible variations of our grouping priors that one could use. For instance, one could

allow for differing values of σ2, the GARP parameter variance, that depend on the lag value of

the associated GARP. This might be beneficial in a situation where p is large and one believes

that the GARPs after the first few lags vary more tightly around zero. Additionally, we can re-

move the sparsity from the lag-block grouping prior by deleting the point mass at zero from the

distribution of the ξ’s. As another choice, instead of specifying the Φ and Γ as separate blocks

with different values of the stick-breaking parameters α and β, one could draw both the GARP

and IV terms with the same values of α and β. Instead of specifying that the candidate GARPs

ξ are zero according to the probability ε, another extension is to modify the grouping prior by

introducing a zero-th cluster where ξj0 = 0 for all j. The selection of φmj would then follow by

Pr(φmj = 0) = Pr(φmj = ξj0) = εq(j) and for h = 1, . . . , H , Pr(φmj = ξjh) = (1− εq(j))πmjh.

The properties derived in Section 5 are easily obtained and compared to those obtained in the spar-

sity grouping case. While these or others may be more natural in certain contexts, we believe that

those discussed here are the most applicable priors for general longitudinal data.

We briefly point out some of the potential drawbacks of our grouping priors. The main weak-

ness is the computational time necessary to run the MCMC sampling scheme. We note that the

computational time increases as any of M , p, Hφ, or Hγ increase. This is due in part to the large

number of latent variable used in the MCMC algorithm. While computation time will also increase

as the group sample sizes nm increase, this is comparatively minor, as it does not lead to any ad-
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ditional latent variables. While the time to run one chain with a grouping prior may be slower

than other methods, model selection on the covariance will generally not be necessary, as our prior

encompasses an extraordinarily large collection of models for the GARPs/IVs. For instance, there

are 2p(p+1)/2 different models for Σ when we only consider those that allow each GARP/IV to be

either constant across all groups or differ across all groups. When we increase the model space

to contain all combinations where each GARP/IV is be constant across all possible subsets of the

groups, we have Bp(p+1)/2
M models to consider, where BM is the M th Bell number (Spivey, 2008)

or the sum of the firstM Stirling numbers of the second kind. With this many models we have little

hope of finding the most appropriate one. Our grouping priors avoid this problem by stochastically

considering the possibility of each of these model in a single MCMC analysis and accounting for

uncertainty appropriately. It is our belief that running an MCMC chain with one of these grouping

prior is a necessary alternative to the unreasonable time and energy required to fit and compare the

extremely large class of models.

When modeling multivariate data whose components do not have a natural ordering, it is still

possible to use a modified form of these grouping priors. It is inappropriate to make use of the

(time) lags between measurements when we are outside of the situation of ordered data, so it

would be inadvisable to apply the lag-block prior to non-longitudinal data. Similarly, because

we no longer view the IVs as values of a function of time, we do not recommend the correlated-

logNormal model for Γ. The sparsity and non-sparse grouping priors with the InvGamma prior

on Γ remain reasonable choices for prior specification due to their flexibility, clustering properties,

and conjugacy for computations. We finally note that for the sparsity grouping prior we would no

longer vary ε by lag but use a common value for all ξ.

Throughout this article, we have treated the different groups as exchangeable. Future areas of

work include exploring methods to incorporate an ordering of the groups to guide the extent of the

clustering. This could be useful in a situation where the groups are defined by increasing strengths
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of a treatment or by the dropout time in a pattern mixture model (Little, 1994), and we wish to

make use of this ordering to inform the grouping. Additionally, adaptations of the grouping priors

could be employed for binary data models with mean and dependence parameters, such as those in

the Ising model. Finally, the development of faster algorithms for MCMC sampling would further

increase the attractiveness of the grouping priors.

We point out that that the ideas behind the lag-block and correlated-logNormal grouping priors

provide a general recipe for extending the MSBP to form nonparametric priors in situations outside

of simultaneous covariance estimation. For the lag-block prior, rather than using i.i.d. atoms in

the stick-breaking measures for each of the parameters, we required that all of the common-lag

GARPs be drawn from the same set of atoms. In the correlated-logNormal prior, the IV candidates

ηjh were formed so they were correlated across time point j for a common cluster h. In both cases,

we formed the stick-breaking weights of these atoms in the same way as in Dunson et al. (2008).

However, by choosing the candidate atoms dependently, either through strict equality across sets

of the parameters or through specifying correlations in each cluster, we have adapted the MSBP

to better fit our specific inference problem. For a different estimation situation, one can devise a

way to choose the candidate atoms dependently that is appropriate for that particular situation and

form a nonparametric grouping prior by coupling these atoms with stick-breaking weights formed

according to the MSBP. If the dependence structure among atoms is reasonable, then this prior

should yield more efficient estimation than the MSBP.
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Priors Estimated Risk
GARP IV Loss Fcn 1 Loss Fcn 2
Lag-block Corr-logNormal 0.247 0.429
Lag-block InvGamma 0.257 0.448
Sparsity Corr-logNormal 0.270 0.462
Sparsity InvGamma 0.281 0.480
NB1 NB 0.291 0.488
Non-sparse InvGamma 0.292 0.493
NB2 NB 0.322 0.530

Group-specific flat 0.463 0.700
Common-Σ flat 1.560 6.623

Table 1: Risk Estimates for Simulation 1

µ1=( 0 , 1.9 , 5.2 , 9.9 , 16.0 , 23.5 )
µ2=( 0 , 1.8 , 4.8 , 9.0 , 14.4 , 21.0 )
µ3=( 0 , 1.8 , 5.6 , 11.4 , 19.2 , 29.0 )
µ4=( 0 , 2.0 , 5.0 , 9.0 , 14.0 , 20.0 )
µ5=( 0 , 2.0 , 5.2 , 9.6 , 15.2 , 22.0 )
µ6=( 0 , 3.0 , 6.0 , 9.0 , 12.0 , 15.0 )
µ7=( 0 , 1.8 , 4.8 , 9.0 , 14.4 , 21.0 )
µ8=( 0 , 2.8 , 7.2 , 13.2 , 20.8 , 30.0 )

Φ1=( 0.7 , 0.2 , 0.7 , 0 , 0.2 , 0.7 , 0 , 0 , 0.2 , 0.7 , 0 , 0 , 0 , 0.2 , 0.7 )
Φ2=( 0.6 , 0.1 , 0.6 , 0.1 , 0.1 , 0.6 , -0.1 , 0.1 , 0.1 , 0.6 , -0.1 , -0.1 , 0.1 , 0.1 , 0.6 )
Φ3=( 0.4 , 0.3 , 0.4 , -0.2 , 0.3 , 0.4 , 0 , -0.2 , 0.3 , 0.4 , -0.2 , 0 , -0.2 , 0.3 , 0.4 )
Φ4=( 0.3 , 0 , 0.3 , -0.1 , 0 , 0.3 , 0 , -0.1 , 0 , 0.3 , 0 , 0 , -0.1 , 0 , 0.3 )
Φ5=( 1 , -0.5 , 1 , 0.2 , -0.5 , 1 , 0 , 0.2 , -0.5 , 1 , 0 , 0 , 0.2 , -0.5 , 1 )
Φ6=( 0.8 , -0.4 , 0.8 , 0.3 , -0.4 , 0.8 , 0 , 0.3 , -0.4 , 0.8 , 0 , 0 , 0.3 , -0.4 , 0.8 )
Φ7=( 0.9 , -0.2 , 1 , -0.2 , -0.2 , 1 , -0.2 , -0.2 , -0.2 , 1 , -0.2 , -0.2 , -0.2 , -0.2 , 1 )
Φ8=( -0.9 , 0.1 , -0.9 , 0 , 0.1 , -1 , 0.2 , 0 , 0.1 , -0.8 , -0.2 , 0.2 , 0 , 0.1 , -0.8 )

Γ1=( 1 , 1 , 1 , 1 , 1 , 1 )
Γ2=( 1.5 , 1.5 , 1.5 , 1.5 , 1.5 , 1.5 )
Γ3=( 3.4 , 3.1 , 2.8 , 2.5 , 2.2 , 1.8 )
Γ4=( 3 , 3 , 2 , 2 , 2 , 1 )
Γ5=( 3.5 , 3.2 , 2.9 , 3.5 , 3.2 , 2.9 )
Γ6=( 5 , 3.7 , 3 , 3 , 2 , 2 )
Γ7=( 2 , 1.8 , 1.6 , 1.4 , 1.2 , 1 )
Γ8=( 3.3 , 3 , 2.7 , 2.4 , 2.2 , 1.9 )

ζ0 = (−2.5, −3.5, −9, −13, −20)

ζ1 = ( 0.4, 0.5, 0.8, 1.0, 1.2)

ζ2 = ( 0, 0.2, −2, 0, 0, 0, 0.1, −4)

Table 2: Parameter Values for Simulation 2
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m t = 2 t = 3 t = 4 t = 5 t = 6
1 0.080 0.156 0.167 0.239 0.498
2 0.100 0.188 0.199 0.241 0.356
3 0.014 0.029 0.034 0.112 0.670
4 0.090 0.180 0.190 0.225 0.303
5 0.093 0.199 0.224 0.323 0.496
6 0.100 0.251 0.282 0.333 0.348
7 0.094 0.183 0.197 0.251 0.374
8 0.002 0.007 0.014 0.172 0.726

Table 3: Probability Yit is missing by group m for Simulation 2

Priors Estimated Risk
GARP IV Loss Fcn 1 Loss Fcn 2 Mean Loss
Lag-block Corr-logNormal 0.425 0.742 0.175
Lag-block InvGamma 0.437 0.759 0.174
Sparsity Corr-logNormal 0.553 0.915 0.196
Sparsity InvGamma 0.565 0.934 0.196
Non-sparse InvGamma 0.551 0.912 0.200
NB1 NB 0.605 0.987 0.203
NB2 NB 0.630 1.010 0.210

Group-specific flat* 0.892 1.255 0.248
Common-Σ flat 8.105 84.339 0.925

Table 4: Risk Estimates for Simulation 2. (The group-specific flat prior is only over 49 datasets
because the MCMC chain failed to converge for one of the datasets.)

Covariance Prior Model Fit Treatment Effect
GARP Prior IV Prior Dev pD DIC Group 1 Group 2
Lag-block Corr-logN (ρ = 0.90) 39,006 342 39,690 9.23 (7.03, 11.48) 9.51 (6.85, 12.19)
Lag-block InvGamma 38,999 350 39,698 9.22 (6.98, 11.45) 9.39 (6.73, 12.13)
Lag-block Corr-logN (ρ = 0.75) 39,006 347 39,700 9.22 (6.99, 11.42) 9.56 (6.85, 12.27)
Lag-block Corr-logN (ρ = 0.50) 39,003 349 39,700 9.24 (7.00, 11.53) 9.41 (6.74, 12.14)
Sparsity Corr-logN (ρ = 0.90) 38,887 464 39,816 9.25 (7.02, 11.49) 8.78 (6.33, 11.24)
Sparsity Corr-logN (ρ = 0.75) 38,887 466 39,819 9.23 (6.96, 11.42) 8.82 (6.39, 11.27)
Sparsity Corr-logN (ρ = 0.50) 38,883 472 39,827 9.25 (7.01, 11.51) 8.68 (6.23, 11.20)
Sparsity InvGamma 38,884 475 39,834 9.25 (7.02, 11.53) 8.64 (6.16, 11.15)
NB1 NB 38,875 481 39,837 9.25 (7.11, 11.46) 8.56 (6.16, 10.99)
Non-sparse InvGamma 38,818 529 39,876 9.29 (7.01, 11.59) 8.81 (6.21, 11.52)
NB2 NB 38,765 563 39,890 9.24 (7.02, 11.49) 7.99 (5.59, 10.46)

Common-Σ flat 39,907 220 40,347 9.44 (6.21, 12.53) 10.17 (7.02, 13.24)
Group-specific flat 39,178 1021 41,219 9.20 (6.44, 12.08) 6.93 (4.22, 9.77)

Table 5: Model fit statistics and treatment effects for the first two groups for the depression data
using each of the priors.
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Figure 1: The posterior probabilities of matching for the innovation variances. The size of the
boxes are proportional to Pr(γmj = γm′j | yobs), with the boxes on the diagonal having area one
for comparison.
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Matching for the First Eight Lag−1 GARPs

Group/GARP

G
ro

up
/G

A
R

P

1 2 3 4

GARP 1

1
2

3
4

G
A

R
P

 1

1 2 3 4

GARP 3

1
2

3
4

G
A

R
P

 3

1 2 3 4

GARP 6

1
2

3
4

G
A

R
P

 6

1 2 3 4

GARP 10

1
2

3
4

G
A

R
P

 1
0

1 2 3 4

GARP 15

1
2

3
4

G
A

R
P

 1
5

1 2 3 4

GARP 21

1
2

3
4

G
A

R
P

 2
1

1 2 3 4

GARP 28

1
2

3
4

G
A

R
P

 2
8

1 2 3 4

GARP 36

1
2

3
4

G
A

R
P

 3
6

Figure 2: The posterior probabilities of matching for the first eight lag-1 GARPs. The size of the
grey boxes are proportional to Pr(φmj = φm′j′ | yobs), with the boxes on the diagonal having area
one for comparison. The black boxes overlaying the diagonal are proportional to the posterior of
Pr(φmj = 0).
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Matching for the First Eight Lag−4 GARPs
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Figure 3: The posterior probabilities of matching for the first eight lag-4 GARPs. The size of the
grey boxes are proportional to Pr(φmj = φm′j′ | yobs), with the boxes on the diagonal having area
one for comparison. The black boxes overlaying the diagonal are proportional to the posterior of
Pr(φmj = 0).
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