
BIOMETRICS 000, 000–000 DOI: 000

000 0000

Bayesian Inference for the Causal Effect of Mediation

Michael J. Daniels1,∗, Jason A. Roy2, Chanmin Kim1, Joseph W. Hogan3, and Michael G. Perri4

1Department of Statistics,University of Florida, Gainesville, FL 32611

2Department of Biostatistics, University of Pennsylvania, Philadelphia, PA 19104

3Department of Biostatistics, Brown University, Providence, RI 02912

4Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611

*email: mdaniels@stat.ufl.edu
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1. Introduction

Behavioral scientists and other applied researchers are often interested in both the causal effect

of an intervention directly, and on the causal effect of the intervention on the outcome through

its effect on other processes, called mediators (Kraemer et al. 2002). For example, interventions

such as cognitive behavioral therapy (CBT) typically influence one or more processes, such as self

efficacy or motivation, which in turn leads to a change in behavior, such as reduced consumption

of alcohol or loss of weight. The graph below illustrates the basic idea in the setting of a single

mediator, M :

Z −→ Y

↘ ↗

M

In this graph, the direct effect of exposure Z on outcome Y is the horizontal arrow at the top. The

indirect effect of Z on Y passing through mediator M is captured by the arrows that flow from Z

to M to Y . The statistical challenge is quantifying the direct and indirect effects. This is similar in

structure to the surrogate endpoints problem (Joffe and Greene, 2009; Wolfson and Gilbert, 2010;

Li et al., 2011).

We formalize the above as follows. First, let Z ∈ {0, 1} denote randomized intervention. Define

the pair (M0,M1) as the potential values of a mediator variable under intervention z = 0, 1, with

Mobs = ZM1 + (1 − Z)M0 observed. Each subject could be thought of as having a potential

outcome Yz,Mz for every combination of z and m. Two ways to characterize the effect of Z

that passes around M (direct effect) have been proposed (Robins and Greenland, 1992; Pearl,

2001). In each case, comparisons are made between potential outcomes with a constant mediator

but different treatments. The natural direct effect is defined by NDE = E(Y1,M0 − Y0,M0). This

quantifies the effect of the intervention Z obtained by setting M to its ‘natural’ value M0; i.e., its

realization in the absence of the intervention. Note that here the value of the mediator will not be

constant across subjects, but rather set to each subject’s value of M in the absence of treatment.
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Alternatively, one can define the controlled direct effect of treatment by E(Y1m − Y0m), for all m.

Here, the direct effect of treatment involves settingM to a particular value for the whole population

and varying the treatment.

In many trials of a behavioral intervention, the potential mediator is a behavior, symptom, or

perception of an individual. For example, in a trial designed to examine the effect of therapy for

depression on smoking cessation might trials, depressive symptoms could be viewed as a mediator.

Many behavioral trials also examine measures of motivation or expectation of successful behavior

change as potential mediators. Because these variables cannot be directly manipulated by the

experimenter, the use of controlled effects can be difficult to justify.

The use of natural direct and indirect effects in behavioral intervention trials is conceptually

easier to justify, particularly when the intervention being administered has multiple components

designed to influence specific mediators (or paths toward change in the targeted behavior behavior).

The natural indirect effect is defined as NIE = E(Y1,M1 − Y1,M0), or the effect of changing from

M0 to M1, had everyone received the intervention. We can then define the total causal effect of Z

on Y as TE = NDE + NIE = E(Y1,M1) − E(Y0,M0). Referring to the figure above, this captures

the aggregate effect of Z that passes through and around M .

To interpret the meaning of natural direct and indirect effects, and particularly to interpret the

meaning of Y1,M0 , we use the weight management trial (described at the end of this section) as

an example. Suppose the intervention has a component that is targeted to help people track food

intake. Then the direct effect is the effect of the intervention if the component of treatment that is

affecting food intake monitoring were somehow to be removed. This implies that the path from the

intervention to food intake monitoring will be blocked, but all other components of the treatment

will be implemented and can potentially affect weight loss through paths that do not involve food

intake monitoring.

In practice, mediation analysis is often based on solving linear systems of equations (MacKinnon
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2008). For example, Baron and Kenny (1986) used the following three regression models:

Y = α1 + β1Z + ε1

M = α2 + β2Z + ε2

Y = α3 + β3Z + γM + ε3,

although, given the second two regressions, the first is redundant (Imai et al. 2010). Here, the

proposed TE is β3 + β2γ, the NDE effect is β3 and the NIE is β2γ. The controlled direct effect

of treatment is also β3. However, causal interpretations of these parameters depend on sequential

ignorability and no interaction assumptions (Imai et al. 2010); more detail on the former can be

found in Section 2.3. The no interaction assumption is particularly strong for controlled effects, as

it requires that, for example, E(Y1m−Y0m) does not depend onm. In addition to the randomization

and no interaction assumptions, the model also requires correct specification of the linear system.

A Bayesian version of the regression approach can be found in Yuan and MacKinnon (2009).

New semiparametric methods have recently been proposed for estimating mediation effects. Ten

Have et al. (2007) proposed estimating mediation effects using models that make assumptions

about structural interactions, rather than sequential ignorability. VanderWeele (2009) proposed

using two marginal structural models (Robins 1999) to estimate natural direct and indirect effects.

However, these methods can be problematic for continuous mediators due to unstable weights

(Vansteelandt, 2009).

Parametric likelihood-based or Bayesian methods for mediation have primarily been proposed

in a principal stratification (PS) framework (Frangakis and Rubin 2002), in which causal effects

are defined within strata determined by post-randomization outcomes. See Gallop et al. (2009)

and Elliott, Raghunathan, and Li (2010) for examples. In the mediation context, the PS approach

has been used to define treatment effects conditional on M0 and M1, and hence focuses on latent

subpopulations defined by pairs {M0,M1}. For a binary mediator, the direct effect of Z is defined

as E(Y1 − Y0|M1 = M0), or the causal effect of Z among people whose value of M would not be



4 Biometrics, 000 0000

affected by Z. When M is continuous rather than binary, the PS approach will generally require

additional, untestable modeling assumptions because strata defined by M0 = M1 will be sparse or

even empty in finite samples.

Because PS-based inferences apply to latent subpopulations, direct comparisons between PS and

other methods is not straightforward; however, VanderWeele (2008) and Joffe and Greene (2009)

provide detailed discussion and describe linkages between PS-based inferences and both controlled

and natural direct and indirect effects.

Our approach is distinct from other mediation approaches in the literature in several ways. We

take a fully Bayesian approach to inferring natural direct and indirect effects. Because we will focus

on natural effects, we can focus on a subset of the potential outcomes Yz,Mz : {Y1,M1 , Y1,M0 , Y0,M0},

with Yobs = ZY1,M1 + (1 − Z)Y0,M0 observed. For example, Y1,M1 is the outcome that would be

observed if we set Z = 1 and M = M1. In this framework, we do not require that Yzm be defined

for all values of m; it is only necessary to define Yzm for the realizations of M0 and M1. We model

the marginal distributions of M0 and M1 non-parametrically, and then specify a copula model to

obtain their joint distribution. We avoid making some of the strong assumptions that are required

for some of the alternative methods described above. Instead, our model is identified if three

sensitivity parameters are specified. Although our application has a binary outcome and continuous

mediator, our general approach could be used for other types of outcomes and mediators.

We illustrate the methodology using data from a weight management trial, TOURS (Perri et al,

2008). Subjects were randomized to either extended care or to an education control group. Adher-

ence to behavioral weight-management strategies, as measured by the number of days with self-

monitoring records for food intake, is the proposed mediator of weight change. The outcome was

a (binary) measure of weight change (described in Section 6) . We estimate both the direct effect

of the weight management programs on the weight change outcome, as well as the indirect effect

of the programs on the outcome through the effect on adherence to food intake self-monitoring.
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In Section 2, we discuss inference on the causal effect of mediation by first introducing some

notation, then stating our assumptions, and finally showing that our assumptions are sufficient

to identify the natural direct and indirect effects. We provide details on posterior computations

in Section 3. Section 4 outlines our approach to elicitation for the sensitivity parameters and

subsequent sensitivity analysis. Simulations to assess sensitivity to violations of assumptions can

be found in Section 5. Section 6 contains our analysis of the TOURS trial. Finally, we wrap up and

discuss extensions in Section 7.

2. Inference on causal effects

2.1 Notation

Let fz,Mz′
(y) denote the distribution of Yz,Mz′

, for (z, z′) ∈ {0, 1}⊗2. Similarly, we denote the

conditional distribution [Yz,Mz′
| Mz′ = mz′ ] by fz,Mz′

(y|mz′). Let D = (M1 − M0). The

conditional distribution [Yz,Mz′
|Mz = mz,M

′
z = mz′ , D = d] is denoted by fz,Mz′

(y|mz,mz′ , d).

Multivariate distributions are defined using similar notation below.

2.2 Assumptions

Recall the observed data is Mobs = ZM1 + (1 − Z)M0 and Yobs = ZY1,M1 + (1 − Z)Y0,M0 . The

observed data are not sufficient to identify the conditional distribution

f(1,M1),(1,M0),(0,M0)(y11, y10, y00|m1,m0)

and the joint distribution, fM0,M1(m0,m1) which are necessary to identify the joint posterior

distribution of NIE and NDE without assumptions. Thus, we make the following assumptions.

Assumption 1. (Randomization assumption)

f(z′,M),Mz(yz′,m,mz|z) = f(z′,M),Mz(yz′,m,mz). (1)

This assumption will hold in our application since the treatment was randomized.

Assumption 2 stratifies the population into those for whom the treatment has a large and small

effect on the mediator.



6 Biometrics, 000 0000

Assumption 2a. For a fixed z and for some ε,

P (Yz,Mz′
= 1|Mz′ = m, |d| < ε) = P (Yz,Mz = 1|Mz = m, |d| < ε)

Note for binary responses, the above conditional probability uniquely determines the correspond-

ing conditional distribution. The random variableD quantifies the treatment effect on the mediator.

A consequence of the assumption is that, for example,

P (Y1,M1 = 1|M0 = m0,M1 = m1, |d| < ε) = P (Y1,M0 = 1|M0 = m1,M1 = m0, |d| < ε).

It means that, among people for whom the treatment effect on the mediator is small (as quantified

by ε), the distribution of the outcome is same whether that mediator value was induced by Z = 1

or Z = 0. It does not imply an exclusion restriction. That is, we are not assuming [Y1,M0 | M0 =

m] = [Y0,M0 |M0 = m].

Assumption 2b. The next assumption is for the subgroup of subjects for whom Z has a greater

than ε effect on M . For this group, for a fixed z, ε, and χ, we assume

P (Yz,Mz′
= 1|Mz′ = m, |d| > ε) = χsgn(d)P (Yz,Mz = 1|Mz = m, |d| > ε).

where the sensitivity parameter χ is a relative risk with the following restriction:

χ ∈ (0, 1/P (Yz,Mz = 1|Mz = m, |d| > ε)) for sgn(d) ≡ +

or

χ ∈ (P (Yz,Mz = 1|Mz = m, |d| > ε),∞) for sgn(d) ≡ −.

Note we differentiate m1 > mo + ε from mo > m1 + ε through the sgn(d) in the above expression.

We discuss elicitation of χ and ε in Section 4.

Note that with Assumption 2, we implicitly assume a discontinous relationship (a step function

at ε) between the conditional probabilities and the treatment effect on the mediator, D. There are

not good alternatives to this, e.g., a smooth function of D, since this is not identifiable from the

data (and would involve additional sensitivity parameters). We view the step function assumption

as a reasonable alternative. By considering a several combinations of χ and ε, we should be able
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to capture many plausible scenarios. The key is differentiating the population into those where the

intervention has a large versus small effect on the mediator.

Assumption 3.

fMz′
(mz′|mz, Yz,Mz) = fMz′

(mz′|mz)

This assumptions says that the potential value of the mediator under treatment z′ is independent of

the potential outcome under treatment z conditional on the potential value of the mediator under

treatment z; for example, M1 ⊥ Y0,M0|M0. This assumption also implies

fz,Mz(y|mz,mz′) = fz,Mz(y|mz).

That is, the potential outcomes Yz,Mz are independent of the mediator under the other treatment,

mz′ conditional on the mediator associated with the potential outcome, mz; for example, Y1,M1 ⊥

M0|M1. Thus this assumption says that no additional information is provided about the potential

outcomes, Yz,Mz from the mediator under the other treatment, Mz′ after we condition on the

mediator under treatment z. Note it clearly does not imply Y1,M1 ⊥M1|M0.

This assumption is not required, but considerably simplifies computations. We examine sensitiv-

ity to this assumption via simulations in Section 5.

Assumption 4.

We assume the joint distribution of the mediator follows a Gaussian copula model (Nelsen, 1999),

FM0,M1(m0,m1) = Φ2

[
Φ−11 {FM0(m0)},Φ−11 {FM1(m1)}

]
where Φ1 is the univariate standard normal CDF and Φ2 is the bivariate normal CDF with mean

(0, 0)T , variance (1, 1)T and correlation ρ ∈ (−1, 1).

The joint distribution of the continuous mediators can be identified up to a sensitivity parameter

ρ by first specifying the two marginal distributions. There is no information in the data about ρ

because it represents the association between two variables that are never observed simultaneously.

We will therefore treat ρ as known and vary it as part of a sensitivity analysis. The special case

ρ = 1 implies equipercentile equating of the mediators (i.e., the ranks ofM0 andM1 are the same).
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In Section 3, we discuss Bayesian nonparametric estimation of the marginal distributions which

are identified from Mobs as outlined in Section 2.4.

The choice of the Gaussian copula here is for several reasons: 1) it allows complete flexibility in

the marginals (which we model in Section 2.4.1 using a nonparametric Bayesian approach) and 2)

it is parsimonious in terms of sensitivity parameters (here only one sensitivity parameter, ρ).

Assumption 5. (Conditional independence between potential outcomes)

f(1,M1),(1,M0),(0,M0)(y11, y10, y00|m0,m1) =

f1,M1(y11|m0,m1)f1,M0(y10|m0,m1)f0,M0(y00|m0,m1).

Note that Assumption 5 is not necessary to estimateE[NIE|data] andE[NDE|data]; for these, we

just need the marginal posterior distributions for the potential outcomes. However, it is necessary

to estimate other features of the posterior distribution of NIE and NDE. In particular, the posterior

mean of the NIE and NDE is not effected by this assumption; however the posterior variance is.

In fact, this assumption provides an upper bound on the variance of the NIE assuming deviations

only involving positive dependence between the potential outcomes. In particular, the difference

(which we denote as A) between the variance of the NIE under Assumption 5 and under the case

that Assumption 5 does not hold (with the strongest possible conditional dependence between the

outcomes) is

A 6 2

∫
θ × s.d.(Y10)s.d.(Y11)f(m0,m1)dm0dm1,

where

θ =

√
exp{sgn(d) logχI(|d| > ε)}p(Y11 = 1|m0,m1)

s.d.(Y10)s.d.(Y11)
−exp{sgn(d) logχI(|d| > ε)}p(Y11 = 1|m0,m1)

2

s.d.(Y10)s.d.(Y11)
.

For further details on this and the entire derivation, see the Web appendix.

This assumption states that the correlation between the potential outcomes is completely ex-

plained by the two values for the potential mediator; implicitly, it is assuming there are no other
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mediators. We can weaken this assumption, but not without adding additional sensitivity parame-

ters. In the data example, we provide information on the changes to the posterior variance under

violations of Assumption 5. Another option to weaken this assumption would be to have it hold

only conditional on baseline covariates; we discuss this extension in Section 7.

We emphasize that none of these assumptions are ‘checkable’ from the observed data.

2.3 Alternative assumptions required for non-parametric identification

The average NIE and NDE can be identified non-parametrically with an alternative set of assump-

tions (Imai et al. 2010 ; Robins 1999). In particular, Imai et al. (2010) showed that non-parametric

identification required the treatment assignment ignorability (1) and ignorability of the mediator

(i.e., sequential ingnorability),

fz′,M(yz′,m|m, z) = fz′,M(yz′,m|z)

for z, z′ = 0, 1. In addition, a positivity assumption is required for treatment and the mediator:

P (Z = z) > 0 and P (M = m|Z = z) > 0 for all m, z. The above assumptions are typically made

conditional on pre-treatment covariates. A sensitivity analysis can be used to quantify effects of

unmeasured confounding (Imai et al., 2010a; Imai et al., 2010b; VanderWeele, 2010).

We do not make the sequential ignorability assumption. As stated earlier, this is typically not a

reasonable assumption for mediators in behavioral trials. For example, our Assumption 2b allows

for a dependence between M0,M1 and the potential outcomes that is not assumed to vanish

after conditioning on Z (unlike with sequential ignorability). However, we require additional

assumptions about the joint distribution of (M0,M1) because we need to identify the posterior

distributions of NDE and NIE, not just the means.

2.4 Identification of joint distributions for computation of direct and indirect effects

In the following, we will demonstrate that Assumptions 1-4 are sufficient to identify the joint

distribution of NIE and NDE. We state this formally in the following theorem. We also note that by
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randomization of the treatment, (1), the distributions fMz(Mz), fMz ,Yz(Mz|Yz,Mz) and fz,Mz(Yz,Mz)

are estimable from (Yobs,Mobs).

Theorem: The joint posterior distribution of NIE and NDE is identified under Assumptions 1-5.

Proof:

Consider the following factorization of the joint distribution of the two potential outcomes (one

of which is observed), which we will denote as B,

f(0,M0),(1,M1),M0,M1(y00, y11,m0,m1) = f(M0,Y0),(M1,Y1)(m0,m1|y00, y11)f(0,M0),(1,M1)(y00, y11).

We can further factor B as

B = f(0,M0),(1,M1)(y00, y11|m0,m1)fM0,M1(m0,m1)

= f0,M0(y00|m0,m1)f1,M1(y11|m0,m1)fM0,M1(m0,m1) (A 5)

=
fM0,M1(m0,m1|y00)f0,M0(y00)

fM0,M1(m0,m1)

fM0,M1(m0,m1|y11)f1,M1(y11)

fM0,M1(m0,m1)
fM0,M1(m0,m1)

=
fM1(m1|m0)fM0,Y0(m0|y00)f0,M0(y00)

fM0,M1(m0,m1)
fM0(m0|m1)fM1,Y1(m1|y11)f1,M1(y11) (A 2) (2)

where ‘A’ corresponds to ‘Assumption’ in the above. Each component in (2) is identified by

randomization (Assumption 1) and/or Assumption 4. To obtain the posterior distribution of indirect

effects, we need

f(1,M1),(1,M0)(y11, y10) =

∫
f(1,M1),(1,M0)(y11, y10|m0,m1)fM0,M1(m1,m0)dm0dm1.

The second term in the integrand is a function of the estimable quantities in (2). Using Assumption

5, the first term in the integrand can be factored as

f(1,M1),(1,M0)(y11, y10|m0,m1) = f1,M1(y11|m0,m1)f1,M0(y10|m0,m1).

By Assumption 3, the first term is equal to f1,M1(y11|m0,m1) = f1,M1(y11|m1) which can be

estimated using the observed data via randomization (and a function of components in (2)). Also,

we observe the pairs (Y1,M1 ,M1). The second term, f1,M0(y10|m0,m1) is identified by Assumptions

2 and 4. From Assumption 2, we identify f1,M0(y10|m0,m1) using f1,M1(y11|m0,m1) and the
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sensitivity parameters, (χ, ε). Using Assumption 4, we identify the distribution of M0 given M1

and estimate f1,M1(y11|m0,m1).

Similarly, to obtain the posterior distribution of direct effects, we need

f(1,M0),(0,M0)(y10, y00) =

∫
f(1,M0),(0,M0)(y10, y00|m0,m1)fM0,M1(m0,m1)dm0dm1.

The first term, f(1,M0),(0,M0)(y10, y00|m0,m1) can be factored via Assumption 5

f(1,M0),(0,M0)(y10, y00|m0,m1) = f1,M0(y10|m0,m1)f0,M0(y00|m0,m1).

The identification of the first term was outlined in the identification of the NIE. For the second

term, f0,M0(y00|m0,m1) = f0,M0(y00|m0) by Assumption 3, which is estimable from the observed

data and randomization (since function of quantities in (2)).

2.4.1 Models and Estimation. The models required for inference in the previous section can

be specified nonparametrically and estimated using the observed data. In particular, we need the

following component nonparametric models:

Yz,Mz ∼ Ber(πz,Mz) : z = 0, 1.

We specify Dirichlet process priors for the distributions FMz ,y(mz|Yz,Mz = y): y = 0, 1; z = 0, 1.

We also place independent Unif(0, 1) priors on πz,Mz . The relevant posterior can be sampled in

WinBUGS (see the supplementary materials).

Note that the identified quantities in the previous subsection, fz,Mz(y|m) can be estimated quite

easily using the models; this is clear if we rewrite fz,Mz(y|m) as fMz ,y(m|y)fYz,Mz
(y)/fMz(m).

3. Posterior computations

We construct an algorithm to sample from the posterior distribution of the direct and indirect

effects. We proceed using the following steps.

(1) Fix the sensitivity parameters, (ρ, χ, ε).
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(2) Sample [FM1,1, FM1,0, FM0,1, FM0,0, π1,M1 , π0,M0 ] ∼ p(FM1,1, FM1,0, FM0,1, FM0,0, π1,M1 , π0,M0|mobs, yobs)

where mobs = {Mzi , i = 1, . . . , n} and yobs = {Yzi,Mzi
, i = 1, . . . , n} using WinBUGS.

(3) For each sample (FM1,1, FM1,0, FM0,1, FM0,0, π1,M1 , π0,M0), compute NDE and NIE.

(4) Repeat Steps 2-3 Q times.

If we place a prior on the sensitivity parameters, Step 1 is replaced by sampling the prior and Step

4 becomes repeat Steps 1-3 Q times. Details on WinBUGS in Step 2 and all of Step 3 can be found

in the supplementary materials.

4. Sensitivity Analysis and Elicitation

Assumptions 2 and 4 contain three sensitivity parameters, (χ, ε, ρ). We discuss a general strategy

to elicit a range for each sensitivity parameter.

Assumption 2: To help understand the first two sensitivity parameters, we assume, wlog, that the

treatment has a non-negative (non-decreasing) effect on the mediator and using Assumption 2, we

have the following expression

P (Yz,Mz′
= 1|mz,mz′ , d > ε)

P (Yz,Mz = 1|mz,mz′ , d > ε)
= exp(logχ) = χ. (3)

In the following, we choose Z = 1 (wlog) and assume (m1−m0) > ε. In addition, we can simplify

the expression in (3), which will facilitate elicitation, as follows,

P (Y1,M1 = 1|M1 = m1,M0 = m0, d > ε) = P (Y1,M1 = 1|M1 = m1,M0 = m0, d < ε)

= P (Y1,M0 = 1|M1 = m0,M0 = m1, d < ε).

The first equality comes from Assumption 3; the second from Assumption 2a. So we can rewrite

(3) as

P (Y1,M0 = 1|m, d > ε)

P (Y1,M0 = 1|m, d < ε)
= χ. (4)

where m is the value of the mediator under the control arm. The numerator corresponds to m1 >
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(m0+ε) (assuming a larger value for the mediator is better). If we assume the treatment has a larger

effect on other mediators (not measured) or other relevant mechanisms, then we might expect the

probability in the numerator to be larger than the denominator corresponding to a larger direct

effect. We use expression (4) for eliciting.

To elicit likely values for ε, we consider how big d should be for the following ratio to be not

equal to one,

P (Y1,M0 = 1|m0, d = 0[m1 = m0])

P (Y1,M0 = 1|m0, d = ε[m1 = m0 + ε])
.

Assumption 4: The parameter ρ in Assumption 4 corresponds to the rank correlation between

the mediator values under the treatment and control arms, with ρ = 1 corresponds to a perfect

correlation and ρ = 0 corresponding to independence. We use these two benchmarks to elicit

a value. A conservative approach would be just to consider any value in [0, 1) (assuming the

relationship was positive).

We elicit a range of values for each sensitivity parameter.

5. Simulation study to assess sensitivity to violations of Assumption 3

We explicitly suggest approaches for sensitivity analysis with sensitivity parameters for Assump-

tions 2 and 4. For Assumption 5, we derived analytic results that demonstrate its impact (only

on the posterior variance). In the below, we assess, via simulations, sensitivity to violations of

Assumption 3.

For the simulation, similar to the data example, we assume Y1,M1 ∼ Ber(0.71). We consider the

following (simple) violations of assumption 3. We assume logit(M0)|logit(M1), Y1,M1 ∼ N(µ, σ2)

µ = β0 + β1logit(M1) + β2Y1,M1 and the logit transformation is on the interval [0, 350]. Based

on the data (and setting ρ = .3 in Assumption 4), we obtain β0 = −1.5241 and β1 = 0.1842.

We consider deviations from Assumption 3 (β2 = 0) in terms of the following values for β2,

{1.07, 2.14, 4.28} which are half, full and twice of s.d. of m0 after the logit transformation. For
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the simulation, we also consider varying the sensitivity parameters from Assumption 2 as follows:

χ ∈ {1, 1.15, 1.3, 2} and ε ∈ {50, 75, 100}.

For each scenario, we compute the NIE assuming Assumption 3 holds and compare it to the

true NIE when Assumption 3 does not hold. The results are in Table 1 (and Table S.1 in the

supplementary materials).

The posterior mean and standard deviation of the NIE are not very sensitive to small to medium

size violations of Assumption 3 with the estimates not differing by much more than .02. However,

for the large violation (2 standard deviation change), the estimates can differ by as much as .05 to

.08. There are no consistent patterns of bias, including bias toward the null.

6. TOURS: weight management trial

6.1 Description of Data

This was a randomized trial to compare the effectiveness of extended care programs designed to

promote successful long term weight management. Participants completed a standard six month

lifestyle modification program and then were randomly assigned to telephone counseling, face-to-

face counseling or an education control group (Perri et al., 2008). This completed trial is referred to

as TOURS. A very important question in this trial, and obesity research in general are identifying

mediators of weight change. In this trial, different measures of adherence to behavioral weight-

management strategies were recorded. Here, we focus on the (continuous) mediator, the number of

days with self-monitoring records for food intake (which takes values 0 to 350) during the weight

management phase of the trial, 6 to 18 months. Among those that lost at least 5% of their weight

by 6 months, we define the (binary) outcome of interest to be whether or not they maintained the

loss of at least 5% from 6 to 18 months.

In the analysis of the original trial, the telephone and face-to-face treatment arms resulted in

similar weight maintenance that was considerably larger than the education control arm. Here, we
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assess the NIE and NDE of the mediator for the face-to-face (FTF) vs. education control (EC)

arms. The sample sizes for the two treatment arms were 63 and 62, respectively.

6.2 Models

We assume the following prior for the conditional distribution of the mediators given the binary

response (y ∈ {0, 1}), FMz ,y(mz|Yz,Mz = y) ∼ DP (Kz,Wz × Beta[0,350](α1z, β1z) + (1−Wz)×

Beta[0,350](α2z, β2z)), where the base measure is a mixture of Beta distributions on the interval

[0, 350] and KZ is the precision parameter. We place the following priors on the hyperparameters,

Kz ∼ DiscUnif [1, 20] and αiz ∼ Unif(0, 70) and βiz ∼ Unif(0, 70) for i = 1, 2 and Wz ∼

Unif(0, 1) : z = 1, 2.

6.3 Elicitation of sensitivity parameters

The combined expertise of the authors in weight management trials and causal inference were

utilized the determine reasonable values for the sensitivity parameters.

Assumption 2

Regarding the sensitivity parameter ε, it was thought that a difference of at least one day per week

in filling out the food intake records could be interpreted as clinically important and significant;

we discuss this issue further in the discussion section. As a result, we consider values of ε ∈

(50, 100); roughly corresponding to a difference of 1 to 2 days per week. In addition, in terms of

the ratio in (4), the impact of the treatment on the mediator being more than 50 days could reflect

a positive impact on other factors innate to the individual up to a relative risk of about 1.3. Thus,

we considered values χ ∈ (1.0, 1.3).

Assumption 4

For assumption 4, the correlation betweenm0 andm1 was thought to be positive. So, we followed

the conservative approach from Section 4 and consider ρ ∈ [0, 1).

For the analysis, we also consider independent uniform priors over these ranges.
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6.4 Results

For sampling from the posterior distribution of the models for the observed data in section 6.2, we

ran 10000 iterations and discarded the first 5000 as burn-in. We ran multiple chains and trace plots

indicated convergence.

The total effect of face-to-face (FTF) versus mail (EC) corresponded to a marginally significant

risk difference of .081(−.073, .25) suggesting the efficacy of the FTF treatment (Tables 2-4).

For all combinations of the sensitivity parameters considered, the conclusions were quite robust

corresponding to a large NDE ranging from about .077 to .089, with credible intervals that covered

zero (see Tables 2-4). The NIE was always much smaller in magnitude, less than .01 in absolute

value with credible intervals centered close to zero.

The results were least sensitive to the correlation between mediators (see Assumption 4) and

the NDE decreased (slightly) as epsilon increased but increased as the RR, χ increased. When we

assumed independent uniform priors on the sensitivity parameters (based on their ranges elicited

in Section 6.3), we drew similar conclusions (Table 5).

Thus, based on our analysis, there was some evidence for the efficacy of the FTF treatment,

but minimal evidence that the effect of the FTF treatment was mediated by the number of self-

monitoring records completed over the 12 month management portion of the trial.

The maximal influence (on the posterior variance) for a violation of Assumption 5 is A 6 .39.

6.5 Comparison with Baron and Kenny type estimators

For comparison, we also estimated the direct and indirect effects using the Baron and Kenny ap-

proach under the assumptions of sequential ignorability and no interaction. We use the R function

mediate (Imai et al., 2010) and linear models as outlined in the Baron and Kenny approach in

Section 1. The natural direct effect was estimated to be .031(−.12, 18) of similar magnitude to

the natural indirect effect .054(−.000, .12), a quite different conclusion from the analysis above.

However, the assumptions underlying the Baron and Kenny approach are unlikely to be reasonable
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in our (behavioral science) application and thus, we prefer the analysis (in Section 6.4) under

the assumptions proposed in Section 2. Note that the sequential ignorability assumption is often

weakened by including baseline covariates and conducting sensitivity analysis (Imai et al., 2010;

vanderWeele, 2010), which we did not do here.

7. Discussion

We have proposed a Bayesian approach to the causal effect of mediation that involves three

sensitivity parameters and no parametric models for the observed data. Strategies to elicit the

sensitivity parameters were provided. Simulation studies suggested that estimation of the NIE is

not very sensitive to small to medium size violations of Assumptions 3 and Assumption 5 provides

an upper bound on the posterior variance of the NIE. For the TOURS trials, the effect of the face-

to-face counseling treatment vs. the education control was marginally significant. However, based

on our analysis, the potential mediator, the number of self-monitoring food records completed was

not a mediator of this relationship. We propose this as a general approach to assess mediation that

allows easy to interpret sensitivity parameters and realistic assumptions for behavioral trials.

There are several extensions to the current modeling approach. First, we might incorporate

baseline covariates to weaken some of our assumptions and potentially gain efficiency in estimation

of the natural indirect effects; we are currently working on this extension. Second, we could

develop a more detailed framework for eliciting a prior (not just the range) for the sensitivity

parameters. Third, extending the current framework (both defining causal effects and models)

to the setting of multiple mediators is an open question. Fourth, we might consider alternatives

to Assumption 2; in addition, we can generalize Assumption 2 by replacing the relative risk

formulation with an odds ratio (exponential tilt) formulation that would be appropriate for both

a binary and a continuous response.

There are also numerous interesting extensions based on the TOURS data. Twelve subjects

(7.4%) dropped out before 18 months. We have not included them in the analysis. Future analyses
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will include these subjects under specific assumptions about the dropout. In addition, we have

defined the mediator here as the total number of days with self-monitoring records of food intake

over the 12 month period. However, this may be too coarse a summary. Future work will examine

the record completion process, basically a 350-dimensional vector of 0 and 1’s (that sum up to our

mediator) as there may be a (clinical) distinction between filling out no records per week versus

one per week as opposed to two per week vs three per week (that both correspond to a difference

of 50 days of records).

We are working on making the methods available as an R package.

Supplementary Materials

Web Appendix and tables referenced in Section 2, 3, 5 and 6 are available with this paper at the

Biometrics website on Wiley Online Library.
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Table 1
Simulations to assess sensitivity of estimate of NIE to violations in Assumption 3: n=60

χ = 1
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.024 (0.058) 0.030 (0.054) 0.029 (0.058)

Truth 0.024 (0.058) 0.030 (0.054) 0.029 (0.058)

β2 = 1.28
Our Approach 0.0051 (0.058) 0.0065 (0.055) 0.0079 (0.060)

Truth 0.0021 (0.058) 0.0036 (0.055) 0.0040 (0.058)

β2 = 2.56
Our Approach -0.025 (0.051) -0.017 (0.055) -0.016 (0.047)

Truth -0.0034 (0.048) 0.0073 (0.051) 0.0067 (0.045)

β2 = 5.12
Our Approach -0.058 (0.044) -0.072 (0.048) -0.062 (0.049)

Truth 0.0045 (0.037) 0.0012 (0.038) 0.00075 (0.038)

χ = 1.15
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.021 (0.053) 0.029 (0.052) 0.028 (0.061)

Truth 0.021 (0.053) 0.029 (0.052) 0.028 (0.061)

β2 = 1.28
Our Approach -0.0046 (0.056) 0.0026 (0.058) 0.0057 (0.049)

Truth -0.0075 (0.056) 0.00001 (0.056) 0.0032 (0.047)

β2 = 2.56
Our Approach -0.015 (0.062) -0.015 (0.055) -0.016 (0.053)

Truth 0.0042 (0.057) 0.0038 (0.055) 0.0033 (0.050)

β2 = 5.12
Our Approach -0.060 (0.047) -0.048 (0.051) -0.075 (0.060)

Truth -0.0007 (0.031) 0.0072 (0.039) -0.010 (0.044)

χ = 1.3
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.020 (0.055) 0.030 (0.060) 0.017 (0.054)

Truth 0.020 (0.055) 0.030 (0.060) 0.017 (0.054)

β2 = 1.28
Our Approach 0.00052 (0.055) -0.0015 (0.053) -0.0055 (0.058)

Truth -0.0014 (0.056) -0.0049 (0.053) -0.0076 (0.058)

β2 = 2.56
Our Approach -0.012 (0.053) -0.011 (0.054) -0.015 (0.062)

Truth 0.0044 (0.052) 0.0056 (0.051) 0.0022 (0.058)

β2 = 5.12
Our Approach -0.040 (0.052) -0.054 (0.051) -0.051 (0.052)

Truth 0.014 (0.037) 0.0021 (0.040) 0.0066 (0.042)

χ = 2
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.015 (0.052) 0.010 (0.062) 0.021 (0.055)

Truth 0.015 (0.052) 0.010 (0.062) 0.021 (0.055)

β2 = 1.28
Our Approach -0.0053 (0.052) 0.010 (0.054) 0.012 (0.059)

Truth -0.0068 (0.053) 0.010 (0.052) 0.010 (0.057)

β2 = 2.56
Our Approach 0.016 (0.057) 0.00037 (0.058) 0.00064 (0.061)

Truth 0.023 (0.052) 0.0098 (0.053) 0.012 (0.057)

β2 = 5.12
Our Approach -0.0049 (0.064) -0.018 (0.055) -0.020 (0.055)

Truth 0.030 (0.048) 0.022 (0.040) 0.020 (0.043)
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Table 2
Posterior means and credible intervals for NDE, NIE, and TE for ε ∈ {50, 75, 100}, χ ∈ {1.0, 1.15, 1.3} and ρ=0.

ε χ NDE NIE TE

50 1 0.077 0.007 0.085
(-0.078,0.25) (-0.088,0.12) (-0.070,0.25)

50 1.15 0.083 0.001 0.085
(-0.073,0.26) (-0.10,0.11) (-0.070,0.25)

50 1.3 0.089 -0.003 0.085
(-0.085,0.26) (-0.10,0.10) (-0.070,0.25)

75 1 0.078 0.006 0.085
(-0.070,0.25) (-0.086,0.11) (-0.070,0.25)

75 1.15 0.082 0.002 0.085
(-0.083,0.25) (-0.095,0.11) (-0.070,0.25)

75 1.3 0.086 -0.001 0.085
(-0.073,0.26) (-0.10,0.099) (-0.070,0.25)

100 1 0.078 0.007 0.085
(-0.075,0.25) (-0.090,0.11) (-0.070,0.25)

100 1.15 0.081 0.004 0.085
(-0.077,0.25) (-0.091,0.11) (-0.070,0.25)

100 1.3 0.086 -0.0007 0.085
(-0.072,0.26) (-0.10,0.10) (-0.070,0.25)
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Table 3
Posterior means and credible intervals for NDE, NIE, and TE for ε ∈ {50, 75, 100}, χ ∈ {1.0, 1.15, 1.3} and ρ=0.3.

ε χ NDE NIE TE

50 1 0.078 0.007 0.085
(-0.073,0.25) (-0.086,0.12) (-0.070,0.25)

50 1.15 0.082 0.003 0.085
(-0.074,0.25) (-0.10,0.10) (-0.070,0.25)

50 1.3 0.087 -0.0023 0.085
(-0.078,0.26) (-0.10,0.10) (-0.070,0.25)

75 1 0.077 0.007 0.085
(-0.076,0.25) (-0.095,0.12) (-0.070,0.25)

75 1.15 0.081 0.003 0.085
(-0.076,0.25) (-0.091,0.11) (-0.070,0.25)

75 1.3 0.086 -0.001 0.085
(-0.079,0.26) (-0.10,0.10) (-0.070,0.25)

100 1 0.078 0.006 0.085
(-0.071,0.25) (-0.095,0.12) (-0.070,0.25)

100 1.15 0.080 0.004 0.085
(-0.076,0.26) (-0.092,0.11) (-0.070,0.25)

100 1.3 0.085 0.0001 0.085
(-0.079,0.26) (-0.10,0.10) (-0.070,0.25)
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Table 4
Posterior means and credible intervals for NDE, NIE, and TE for ε ∈ {50, 75, 100}, χ ∈ {1.0, 1.15, 1.3} and ρ=0.7.

ε χ NDE NIE TE

50 1 0.077 0.007 0.085
(-0.073,0.25) (-0.092,0.13) (-0.070,0.25)

50 1.15 0.082 0.002 0.085
(-0.079,0.25) (-0.10,0.11) (-0.070,0.25)

50 1.3 0.088 -0.003 0.085
(-0.085,0.26) (-0.10,0.099) (-0.070,0.25)

75 1 0.077 0.007 0.085
(-0.066,0.25) (-0.088,0.12) (-0.070,0.25)

75 1.15 0.082 0.003 0.085
(-0.075,0.25) (-0.096,0.11) (-0.070,0.25)

75 1.3 0.086 -0.001 0.085
(-0.087,0.26) (-0.097,0.10) (-0.070,0.25)

100 1 0.078 0.007 0.085
(-0.069,0.25) (-0.091,0.12) (-0.070,0.25)

100 1.15 0.080 0.004 0.085
(-0.076,0.25) (-0.088,0.11) (-0.070,0.25)

100 1.3 0.084 0.0006 0.085
(-0.084,0.26) (-0.10,0.10) (-0.070,0.25)
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Table 5
Posterior means and credible intervals for NDE, NIE, and TE for priors ρ ∼ Unif [0, 1], ε ∼ Unif [50, 100], χ ∼ Unif [1, 1.3].

NDE NIE TE

0.081 0.003 0.085
(-0.073,0.25) (-0.086,0.12) (-0.070,0.25)


