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Abstract

In seasonal influenza epidemics, pathogens such as respiratory syncytial virus (RSV) often

cocirculate with influenza and cause influenza-like illness (ILI) in human hosts. However, it is

often impractical to test for each potential pathogen or to collect specimens for each observed

ILI episode, making inference about influenza transmission difficult. In the setting of infectious

diseases, missing outcomes impose a particular challenge because of the dependence among in-

dividuals. We propose a Bayesian competing-risk model for multiple cocirculating pathogens

for inference on transmissibility and intervention efficacies under the assumption that missing-

ness in the biological confirmation of the pathogen is ignorable. Simulation studies indicate
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a reasonable performance of the proposed model even if the number of potential pathogens is

misspecified. They also show that a moderate amount of missing laboratory test results has only

a small impact on inference about key parameters in the setting of close contact groups. Using

the proposed model, we found that a nonpharmaceutical intervention is marginally protective

against transmission of influenza A in a study conducted in elementary schools.
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1 Introduction

In seasonal influenza epidemics, pathogens such as respiratory syncytial virus (RSV) often cocir-

culate with influenza and cause influenza-like illness (ILI) in human hosts (Fleming et al., 2003).

Consequently, ILI alone is not a reliable indicator for the infection status of influenza. Ideally, ILI-

triggered specimen collection and laboratory tests are used to ascertain the responsible pathogen.

However, test results may be incomplete because of either budgetary limits or administrative dif-

ficulty. Inference may be biased if the missing infection status is not appropriately imputed or

integrated out (Rubin, 1976; Little and Rubin, 2002). In situations with small close contact groups

such as households, the contact groups of individuals with missing infection status may be excluded

from the analysis without invalidating the inference if there is no between-group transmission and

assuming the data are missing at random (MAR). By MAR we mean that whether a subject with

ILI is tested or not is independent of his/her infection status given the observed data. However,

with larger contact groups such as schools, it is impractical to discard a contact group because a

few cases are missing laboratory test results.

The issue of incomplete laboratory test results has been addressed in the setting of influenza

vaccine studies with validation sets. In these studies, surveillance cultures were obtained from a

small proportion of study subjects. Under the assumption of MAR, the mean score approach can be
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used to estimate the vaccine efficacy (VE) (Halloran et al., 2003). In the situation of nonignorable

missingness, for example, the vaccine reduces symptom severity but cases with severe symptoms

are likely to be over-sampled, an informative prior distribution can be imposed on the selection

bias of the validation set to estimate the VE (Scharfstein et al., 2006). These two methods are

unconditional on individual-level exposure to the risk of infection and are suitable for cumulative

incidence or time-to-event (Halloran et al., 2007) data with categorical covariates. When individual-

level exposure to infection is considered, missing data impose a greater challenge because of both the

dependence among individuals and the continuous nature of the individual-level exposure history.

To account for individual exposure to infection and missingness in infection status, we propose

a Bayesian competing-risk model for multiple cocirculating pathogens under certain pathogenic-

ity and interference assumptions. The use of MCMC for posterior computation in the setting of

transmission of infectious diseases can be traced back to the late 1990s (Gibson, 1997; Gibson and

Renshaw, 1998; O’Neill et al., 2000; Auranen et al., 2000). Recent applications to influenza include

analyses of household data with illness onset dates (Cauchemez et al., 2004) and asymptomatic

infections identified by laboratory tests (Yang et al., 2009a). However, none of this methodology

has explicitly addressed missingness in infection status. For an ILI episode with unknown infec-

tion status, the evaluation of p(infection with influenza | ILI is untested) requires knowledge about

p(ILI is untested | infection with a noninfluenza pathogen). Therefore, it seems natural to simul-

taneously model the spreading of both influenza and noninfluenza pathogens in the framework of

competing risks. The performance of the proposed model and the effect of missing data on the

inference about key parameters, such as the transmissibility of pathogens and the efficacies of an

intervention, are evaluated in simulation studies. The model is used to analyze a recent study of

nonpharmaceutical intervention (NPI) against influenza illness conducted in elementary schools in

Pittsburgh, Pennsylvania, in the United States.
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2 Methods

2.1 Data Structure

Consider a prospective clinical study to evaluate the efficacy of an intervention against influenza

that is implemented in a collection of close contact groups. These groups could be households in a

community or schools in a school district. The intervention could be a vaccine, an antiviral agent or

a nonpharmaceutical program. Let N denote the total number of individuals under study. Starting

from day 1, M different pathogens including influenza are cocirculating in the community, each

imposing a hazard of community-to-person infection on susceptibles. Individuals infected with any

of the pathogens can initiate within-group transmission of the same pathogen. Let day T be the

stopping time of the study.

During the study period, we observe sequential ILI onset times in infected subjects. The

observation is made on a daily basis with an integer day t corresponding to the continuous time

scale (t − 1, t]. Each individual may have no episodes, a single episode, or multiple episodes

of ILI. Let t̃i = (t̃i1, . . . , t̃iKi
) denote the ordered sequence of ILI onset days for individual i,

i = 1, . . . , N , where Ki is the number of ILI episodes person i has during the observation period.

Upon ILI onset, the individual’s specimen will be collected immediately to identify the pathogen

type in the laboratory. In many studies, noninfluenza pathogens are not specifically tested. When

only one noninfluenza pathogen is cocirculating, a negative test for influenza is equivalent to a

positive test for this pathogen. When there are multiple noninfluenza pathogens, one may treat

all unknown ILI-causing viruses as a single hypothetical pathogen. How this simplification may

affect the inference about the pathogen of primary interest, influenza in our case, will be assessed

in simulation studies. Let vi = (vi1, . . . , viKi
)′ indicate the pathogen types responsible for the ILI

episodes, where vik = m if the pathogen at the kth onset is type m, k = 1, . . . ,Ki, m = 1, . . . ,M .

4



We assume competing risks, that is, each ILI episode is caused by a single type of pathogen. If all

ILI onsets are tested, vi is completely observed. In reality, some components of vi may be missing

because the specimens are either not collected or not tested. Let ui = (ui1, . . . , uiKi
)′ denote the

set of missingness indicators such that uik = I(vik is observed), where I(·) is the indicator function.

Let xi(t) be the covariates, including the intervention, associated with individual i on day t, and

define xi = {xi(t) : 1 ≤ t ≤ T}. Hence, {t̃i,ui,xi} is completely observed, vi is potentially only

partially observed, and the infection days, denoted by t̂i = (t̂i1, . . . , t̂iKi
)′ with t̂i < t̃i element-wise,

are not directly observable, i = 1, . . . , N .

2.2 Natural History of Disease

While transmissibility of the pathogens, primarily influenza, and intervention efficacies are the

major quantities of inferential interest, our parameters for transmissibility are closely related to

how we define the infectious period, part of the natural history of disease. For a clear presentation of

the model, we first introduce assumptions about the natural history of disease that has the following

elements: the incubation period (time from infection to ILI onset), the latent period (time from

infection to infectiousness onset), the infectious period for each pathogen, and the interference,

or competing risk, mechanism among pathogens. The parameterization of the natural history is

chosen to reduce the need for strong empirical information that may not be available for newly

emerging pathogens, for example, the novel influenza A(H1N1) virus. Figure 1 presents a diagram

for the type of natural history under consideration.

2.2.1 The incubation and latent periods

Without loss of generality, we assume the actual infection and symptom onset occur at the end

of the days t̂ik and t̃ik. We further assume that both the incubation and the infectious periods
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Figure 1: A possible scenario of the natural history of two pathogens that infect the same individual.

(a) two ILI onsets are observed at t̃i1 and t̃i2 for individual i. The lab-test result vi1 (vi2) indicates

that the responsible pathogen for the first (second) ILI is pathogen 1 (2). The maximum duration

of the incubation period is Hm days for pathogen m, with H1 = 4 and H2 = 3, and thus the 4 (3)

days before t̃i1 (t̃i2) are possible infection times. djk is the duration of immunity in number of days

that infection by pathogen j provides to pathogen k. The values of djk’s suggest that the infection

of either pathogen provides long-term immunity to the same type but only short-term immunity to

the other type. (b) For the second ILI episode, given that the infection occurred during day t̂i2, the

infectiousness of individual i starts at the end of day t̂i2 and lasts for a period of ∆2 = 7 days.

During the infectious period, the relative infectiousness curve takes the shape of a beta density

function with parameters a2 and bi2, and the infectiousness peaks at the end of the symptom onset

day, t̃i2. 6



start at the beginning of day t̂ik + 1, the day after infection, which implies that the duration

of the latent period is 0. As most ILI-causing pathogens commonly seen in an influenza season

have short incubation periods, we consider a discrete distribution over a duration of Hm days for

pathogen m. Namely, we assume p(t̃ik = t̂ik + l|t̂ik, vik = m) = qml, l = 1, . . . ,Hm, m = 1, . . . ,M ,

where the qml are unknown parameters. If the incubation period is relatively long, it is possible to

let the distribution be governed by a continuous distribution. Define qm = (qm1, . . . , qmHm)′ and

q = (q1, . . . ,qm)′. Although the distribution of the incubation period is of biological importance,

q can not be reliably estimated because the infection times are not observed and the posterior

distribution of the infection times is governed by unknown transmission and intervention efficacy

parameters. As a result, we do not make inference on q, and examine in simulation studies whether

it affects inference on the parameters of interest.

2.2.2 The infectious period

While the data are generally observed on a discrete-time basis, it is more convenient to consider

the infectious period in continuous time. Yang et al. (2009a) use a beta density, fbeta(·|α, β), to

model the variation of infectiousness over a duration of ∆ days. We refer to fbeta(α, β) as the

relative infectiousness curve (RIC). Under this setting, the hazard of a secondary infection at time

0 ≤ t ≤ ∆ after the primary infection is γfbeta(
t
∆ |α, β), where γ is the average hazard. Daily

cumulative hazards can be calculated to construct a discrete-time likelihood. However, reliable

estimation of α and β is difficult with household data. The problem worsens when the distribution

of the incubation period is assumed unknown. One factor contributing to this problem is the

dependence between the infectious period and the incubation period: (1) both periods start from

the same time point; and (2) the location of the peak infectiousness in an index case affects the

possible infection time and thus the incubation period of a secondary case. A strong association
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between the observed ILI onset time and the infectious period can be helpful in reducing the

dependence. For instance, some likelihood methods assume that the infectious period starts from

ILI onset (Yang et al., 2006). In this model, we link the peak of the RIC directly to the ILI

onset time. Let the duration of the infectious period of pathogen m, ∆m, m = 1, . . . ,M , be fixed

and assumed known. The RIC for pathogen m has the shape fbeta(·|am, bm) (Figure 1(b)), where

the unknown parameters am and bm are related to the usual shape parameters αm and βm via

am = αm + βm and bm = αm−1
αm+βm−2 . The parameter am represents the scale, with a larger value for

a higher peak, and the parameter bm is the mode representing the location of the peak. As a mode

is forced with this parameterization, we have αm > 1 and βm > 1. We further assume that the

mode of the RIC is specific to each ILI episode, denoted by bik, and is located at the end of the ILI

onset day, that is, bik = (t̃ik − t̂ik)/∆m if vik = m. This setting partially accounts for individual

variation in the RIC. In addition, the number of parameters characterizing the RIC is reduced as

compared to the setting in Yang et al. (2009a), which makes the joint estimation of the incubation

and infectious periods possible.

2.2.3 The interference mechanism via cross-immunity

Within a host, the infection by one pathogen may interfere with the infection by another pathogen

via two immunological mechanisms: (1) a certain level of specific immunity to a spectrum of

pathogens that share similar antigenic structures with the invaded pathogen, and (2) nonspecific

immunity activated by the innate and/or the complement immune system to a much broader range

of pathogens. Specific immunity lasts relatively long, for example, two influenza strains of the same

type rarely infect the same person in the same season, whereas nonspecific immunity often lasts

for days. Epidemiological effects of biological interference among pathogens have been previously

studied in simulations (Ackerman et al., 1990), but its implications for statistical inference have,
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to our knowledge, never been addressed.

We assume infection with pathogen m provides immunity against pathogen n from the time of

infection up to and including the ILI onset day and for an additional period of dmn days beyond.

After that, the immunity against pathogen n is reduced to 0. For specific immunity, we assume

dmn = ∞. An example of immune periods is given in Figure 1(a). The assumption of short-term

nonspecific immunity allows two ILI episodes to be distinguishable from each other. We further

assume the values of dmn’s are known to avoid an identifiability problem, because the immunity

level is confounded with the hazard of infection which is defined under complete susceptibility.

In the data analysis, sensitivity to a reasonable range of dmn’s will be investigated. We refer to

D = {dmn}M×M as the interference matrix.

2.3 Transmission model

Let ωm be the constant hazard of community-to-person transmission for pathogen m. It is possible

to model a time-dependent community-to-person transmission hazard, for example, multiply ωm by

a relative intensity curve varying over time. In such a case, ωm would be interpreted as the average

hazard over the season. Let δi(m, t) indicate whether individual i is susceptible to pathogen m on

day t (1=yes, 0=no), then δi(m, t) = 1 −
∨Ki

k=1 I(t̂ik ≤ t < t̃ik + dvik m), where
∨

denotes logical

“or”. The covariate-adjusted transmission hazard of pathogen m from an infectious individual j

with infection day t̂jk to a susceptible individual i in the same group at time t is

λj→i(m, t) = δi(m, t) exp{β′
S,mxi(t) + β′

I,mxj(t)}γmfbeta(
t − t̂jk
∆m

|am, bjk), (1)

where βS,m and βI,m are covariate effects associated with the susceptible and the infective, and

γm is the average person-to-person hazard of infection specific to pathogen m. Let si denote the

close contact group to which individual i belongs. The total instantaneous hazard of infection with
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pathogen m for individual i in group si at time t is then given by

λi(m, t) = δi(m, t) exp{β′
S,mxi(t)}ωm +

∑

j∈si
j 6=i

λj→i(m, t). (2)

The probability of escaping infection with pathogen m during day t is given by exp {−Λi(m, t)},

where Λi(m, t) =
∫ t
t−1 λi(m, τ)dτ . We assume the M pathogens are competing risks, that is, only

one pathogen can infect an individual on any day. The exact probability of infection with pathogen

m on day t, denoted by Pi(m, t), depends on the assumption about the mechanism of competition.

A typical choice is that the earliest infection is the winner, which leads to

Pi(m, t) =

∫ t

t−1

{

λi(m, τ)

M
∏

l=0

exp
{

−

∫ τ

t−1
λi(m, ǫ)dǫ

}

}

dτ. (3)

The evaluation of (3) requires numerical integration and hence substantially increases the compu-

tational burden. If λi(m, τ) is assumed constant over (t − 1, t] for all m = 1, . . . ,M , (3) simplifies

to

Pi(m, t) =
Λi(m, t)

∑M
l=1 Λi(l, t)

(

1 −
M
∏

l=1

exp {−Λi(l, t)}
)

. (4)

The above expression implies an infection process that first selects infection from any pathogen

via the probability 1 −
∏M

l=1 exp {−Λi(l, t)} and then chooses pathogen m via the probability

Λi(m, t)/
∑M

l=1 Λi(l, t). This mechanism of competition is computationally affordable. Conse-

quently, although the true hazards are not constant over time, we assume (4), not (3), is the

true mechanism of competition.

Let ψ = {ωm, γm,βS,m,βI,m, am : m = 1, . . . ,M} be the collection of all unknown parameters

except for q. Let Ri denote the history of exposure to the risk of infection for individual i. Note

that Ri is determined by the realized infections in the group si. Given ψ and the exposure history,

the individual-level probability of transmission is

p(t̂i,vi|ψ, Ri) =
(

∏

t/∈t̂i

M
∏

m=1

exp {−Λi(m, t)}
)(

Ki
∏

k=1

Pi(vik, t̂ik)
)

, (5)
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the individual-level probability for the incubation period is

p(t̃i |̂ti,vi,q) =

Ki
∏

k=1

qvik(t̃ik−t̂ik). (6)

The conditioning on Ri, the exposure history, in (5) is for notational convenience only, because the

infection status of person i for each day t is really conditional only on infections occurring before t.

2.4 Prior distributions

The following flat priors are assumed:

ωm ∼ Uniform(10−6, 10), γm ∼ Uniform(10−6, 10),

am ∼ Uniform(2, 10), qm ∼ Dirichlet(1Hm×1),

(7)

m = 1, . . . ,M . A flat prior with a wide range is adopted for most parameters to allow for assessment

of the posterior with minimal prior information. For transmission parameters, the boundaries are

chosen to be wide and contain historic estimates for ωm and γm. Historic estimates of community-

to-person and person-to-person transmission hazards for influenza have a scale of 10−3 – 10−2 (Yang

et al., 2006). For am, the lower bound is required for the existence of the mode, and the upper bound

is chosen to avoid an unrealistically sharp peak. Flat priors could also be used for the covariate

effects, βS,m and βI,m, with a range centered around the null value 0. In some situations such

as intervention studies, it may be preferable to reparameterize the covariate effects, for example,

exp(βS,m), and assign flat or other noninformative priors to the transformed parameters. Let π(ψ)

be the joint prior distribution of the parameters in ψ, and let π(q) be the prior distribution of q.

2.5 The full-joint probability distribution

We assume that the missingness of the laboratory test results is ignorable (MAR), that is, the

probability of ui does not depend on vi given the observed data. Such an assumption is reasonable

because the missingness of the test result for an ILI is often driven by availability of resources for
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collecting specimens that largely depends on the observed onset time. An ILI case occurring near

the peak of an epidemic may be less likely to have a specimen drawn.

Define t̂ = {t̂i : i = 1, . . . , N}, v = {vi : i = 1, . . . , N}, and t̃ = {t̃i : i = 1, . . . , N}. The

full-joint probability distribution of t̃, v, t̂, ψ and q is given by

p(t̃,v, t̂,ψ,q) =

(

π(ψ)

N
∏

i=1

{

p(t̂i,vi|ψ, Ri)
}

)(

π(q)

N
∏

i=1

{

p(t̃i |̂ti,vi,q)
}

)

(8)

The factorization in (8) suggests that, conditioning on t̂ and v, ψ and q are independent. Let Cmh

be the number of episodes caused by pathogen m having an incubation period of h days, and let

Cm = (Cm1, . . . , CmHm)′. The nuisance parameter q can be integrated out to obtain the full-joint

probability distribution of t̃, v, t̂ and ψ:

p(t̃,v, t̂,ψ) =

∫

p(t̃,v, t̂,ψ,q)dq =

(

∏

m

B(Cm + 1)

)(

π(ψ)

N
∏

i=1

{

p(t̂i,vi|ψ, Ri)
}

)

, (9)

where B(Cm + 1) =
∏Hm

h=1 Γ(Cmh + 1)/Γ
(

∑Hm

h=1(Cmh + 1)
)

is the multinomial beta function with

respect to the vector Cm + 1, and
∏

m B(Cm + 1) = p(t̃|v, t̂). Note that ψ is also independent of

t̃ given v and t̂. The posterior distribution of ψ given the full data is

p(ψ|̃t,v, t̂) = p(ψ|v, t̂) ∝ p(v, t̂,ψ) = π(ψ)
N
∏

i=1

{

p(t̂i,vi|ψ, Ri)
}

. (10)

The posterior distribution of ψ given the observed data, p(ψ|̃t,vobs), where vobs is the observed

components of v, is analytically intractable, but we do not need to evaluate it explicitly since we

use data augmentation in the MCMC algorithm described below.

2.6 Markov chain Monte Carlo (MCMC) algorithm

All parameters in ψ are sampled using a random walk Metropolis-Hastings algorithm. We de-

scribe the sampling procedure for γm to illustrate. Let ψ−(γm) denote the collection of param-

eters excluding γm. To update γm, we draw a new value γ⋆
m from the proposal distribution
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Log-Normal
(

log(γ#
m), σ2

γm

)

, where γ#
m is the current value, and accept the new sample with the

probability min
{

1,
γ⋆

mp
(

v,t̂,ψ
−

(γm),γ⋆
m

)

γ#
mp
(

v,t̂,ψ
−

(γm),γ#
m

)

}

. The value of σ2
γm

is determined adaptively to reach an

average acceptance rate of 0.25–0.45, and then fixed to obtain posterior samples for inference.

The data augmentation step involves sampling all infection times and missing pathogen types,

if any, per individual simultaneously. Let {(v
(l)
i , t̂

(l)
i ) : l = 1, . . . , Li} be the collection of candidate

values of (vi, t̂i) that satisfies p(v
(l)
i , t̂

(l)
i |ψ, Ri) > 0. We sample the value of (t̂i,vi) from its

conditional distribution:

p
(

vi = v
(l)
i , t̂i = t̂

(l)
i |̃ti,ψ, {vj , t̂j, t̃j : j ∈ si, j 6= i}

)

=

{

∏

m B(C
(l)
m + 1)

}

p(v
(l)
i , t̂

(l)
i |ψ, Ri)

{

∏

j∈si
j 6=i

p(vj, t̂j|ψ, R
(l)
j )
}

∑Li

k=1

{

∏

m B(C
(k)
m + 1)

}

p(v
(k)
i , t̂

(k)
i |ψ, Ri)

{

∏

j∈si
j 6=i

p(vj, t̂j|ψ, R
(k)
j )
} ,

l = 1, . . . , Li.

(11)

Note that because Rj for j 6= i and Cmh are dependent on the value of (vi, t̂i), we use R
(l)
j and

C
(l)
mh. To monitor convergence of the MCMC algorithm, we examine trace plots and compute the

Gelman and Rubin’s scale reduction factor (Gelman and Rubin, 1992) for each component in ψ.

3 Simulation Study

We conduct simulations to evaluate the performance of the model and the impact of missing

laboratory test results under several different settings. We simulate epidemics in a population

composed of 100 households, each of size 5. Prior to the epidemics, the individuals are randomized

to either vaccine or placebo, and vaccine status is the only covariate for simplicity. Let zi denote

the intervention arm, 1 for vaccine and 0 for control. Then, in Equations (1) and (2), we have

β′
S,mxi(t) = zi log(θm) and β′

I,mxj(t) = zj log(φm). The parameters θm and φm are related to

vaccine efficacies in reducing susceptibility (VES) and infectiousness (VEI) via VES,m = 1 − θm

and VEI,m = 1 − φm. If pathogen m is the target of the vaccine or cross-immunity exists between
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pathogen m and the target, we would expect 0 ≤ θm < 1 and 0 ≤ φm < 1; otherwise, we would

expect θm = φm = 1 in general. The following priors are used for the vaccine effects:

θm ∼ Uniform(10−2, 102), and φm ∼ Uniform(10−2, 102).

We start by evaluating the performance of the proposed model when the number of cocirculating

nonprimary pathogens is either correctly specified or misspecified. We simulate epidemics of three

pathogens (M=3) for this purpose, and index the primary pathogen by 1 and the nonprimary

pathogens by 2 and 3. The primary pathogen has transmission parameters similar to that of

interpandemic influenza, with about 0.26 for the community probability of infection (CPI) during

the 100-day epidemic and 0.19 for the secondary attack rate (SAR) (Yang et al., 2006). To ensure a

sufficient number of cases, the two nonprimary pathogens have parameters not much different from

those of the primary pathogen. When simulating the epidemics, we set dmn = 7 for m 6= n and ∞

for m = n. Under this setting, an individual could have at most three observed ILI episodes, one

caused by each pathogen.

We generate missing data under an assumption of MAR. In particular, we let the proportion of

missing laboratory test results depend on the ILI onset day t̃ik: 50% for t̃ik < T
2 and 10% otherwise.

Misspecification is introduced by analyzing the simulated data as if there were only two pathogens

(not three), the primary one and a hypothetical nonprimary one indexed by 1 and 2 respectively.

We have to assume in the analysis that the nonprimary pathogen does not induce specific immunity

to itself, so that the misspecified model is compatible with possible situations of three ILI episodes

per individual in the simulated data. For illustration, we set d22 = 7 in the analysis for the scenario

of misspecification.

The true parameter settings and simulation results for the primary pathogen are shown in

Table 1. The estimates are very similar under the correctly specified and the misspecified scenarios,

suggesting that the model is tolerant to this type of model misspecification at least when M is small.
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Table 1: Average posterior summaries over 100 simulated epidemics of 3 cocirculating pathogens

with laboratory test results missing for 30% of the ILI episodes. Estimates for the primary pathogen

(m=1) are presented. Comparison is made between the scenarios that the number of nonprimary

pathogens (m=2, 3) is correctly specified as two versus misspecified as one, and between a small

population (100 households of size 5) versus a large population (100 households of size 10 or 200

households of size 5). True parameters generating the epidemics are given in the second column

and in the footnote.

100 households of size 5 100 households of size 10 200 households of size 5

Para- True Correctly specified Misspecified Correctly specified Correctly specified

meter Value M = 3 M = 2 M = 3 M = 3

ω1 0.003 0.0030 (0.0023,0.0039) 0.0030 (0.0023,0.0039) 0.0030 (0.0025,0.0036) 0.0029 (0.0024,0.0035)

γ1 0.030 0.029 (0.020,0.042) 0.029 (0.020,0.042) 0.030 (0.025,0.036) 0.029 (0.022,0.038)

θ1 0.70 0.70 (0.50,0.97) 0.69 (0.49,0.97) 0.69 (0.57,0.82) 0.71 (0.56,0.90)

φ1 0.70 0.74 (0.37,1.41) 0.74 (0.37,1.42) 0.70 (0.51,0.95) 0.72 (0.45,1.12)

a1 6.0 6.39 (3.59,9.47) 6.39 (3.57,9.48) 6.01 (4.16,8.75) 6.40 (4.04,9.36)

True parameters for pathogen 1: q11 = 0.2, q12 = 0.6.

True parameters for pathogen 2: ω2 = 0.003, γ2 = 0.015, θ2 = 0.6, φ2 = 1.0, a2 = 4.0, q21 = 0.8, q22 = 0.3.

True parameters for pathogen 3: ω3 = 0.0015, γ3 = 0.040, θ3 = 1.0, φ3 = 0.6, a3 = 5.0, q31 = 0.6, q32 = 0.5.

The results also imply that the transmission hazards, ω1 and γ1, and the vaccine effect in reducing

susceptibility, θ1, can be estimated with little or no bias even for a moderate sample size. The

decreased information for φ1 as compared to θ1 in the household data has been reported elsewhere

(Yang et al., 2006). The last two columns of Table 1 show that increasing the sample size generally

leads to improved inference for all parameters, particularly for φ1 and a1. In addition, given an

equal total sample size, having larger contact groups is preferable to having more contact groups

in terms of both reducing bias and narrowing the credible sets (CS).
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It is also of interest to investigate how the proportion of missing laboratory test results would

alter inference about the primary pathogen, and whether such an effect is related to the number

cocirculating pathogens. We first simulate pathogens with identical transmission characteristics and

natural history. This is because any difference in parameters can help to differentiate the pathogens

from each other and will thus limit the impact of missing laboratory results. In addition, we assume

specific immunity within and between pathogens for simplicity. The assumption of within-pathogen

specific immunity is also employed for similarity of the primary pathogen to influenza. In this

simulation study, we let ωm = 0.002, γm = 0.03, and θm = φm = 1 for all m, i.e., no vaccine

efficacy for any pathogen. The proportion of ILI episodes with missing laboratory results takes five

possible values: 0%, 30%, 70%, 90% and 95%. We show the average posterior medians and 95%

credible sets over 100 epidemics in Figure 2 for ω1, γ1, θ1 and φ1 only. The 95% CS bars with

circles and triangles depict results for two and three cocirculating pathogens. Estimates for φ1 are

shown on the log scale so that the bars can be shown with the same axes.

Overall, when two pathogens are cocirculating, a missingness proportion of 70% or less does not

increase the uncertainty about the parameters by much. Dramatic increases in the length of 95%

CS are observed for the efficacy parameters θ1 and φ1 when the proportion of missingness reaches

90%. Even more dramatic changes in the two efficacy parameters are seen at 95% missingness, but

only moderate increases are observed for the transmission rates. The more cocirculating pathogens

there are, the more sensitive the parameters are to the proportion of missingness. When three

pathogens are cocirculating, a substantial rise in uncertainty is observed for φ1 at the missingness

proportion of 70% and for both θ1 and φ1 at 90% and higher. In addition, there is a large increase

in the length of the 95% CS for γ1 at 95% missingness. The reduced information about φ1 in the

simulated epidemics compared to other parameters accounts for its extreme level of sensitivity. The

pattern of larger bias and higher uncertainty with increasing missingness is also obvious for all the
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Figure 2: Comparison of posterior estimates for parameters by the proportion of missing laboratory

test results and the number of cocirculating pathogens. Bars with circles (triangles) denote average

95% credible sets, the middle point representing the average posterior medians, for the primary

pathogen over 100 epidemics of two (three) equally transmissible cocirculating pathogens. The dashed

lines indicate the true values of the parameters.

parameters in Figure 2.

Figure 3 compares the variability in parameter estimates in response to increasing the pro-

portion of missing laboratory test results between two cocirculating pathogens with very different

transmission rates. The weaker (stronger) pathogen has ω1 = 0.0015 (0.0025) and γ1 = 0.02 (0.04),

corresponding to a CPI of 0.14 (0.22) and a SAR of 0.13 (0.24). We index the weaker (stronger)

pathogen by 1 (2) in the subscripts. The estimates for all parameters are presented on the log

scale. As expected, credible sets are shorter for the stronger pathogen that generates more cases.
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The parameter estimates associated with the weaker pathogen are much more sensitive to the pro-

portion of missing laboratory results compared to those of the stronger pathogen. However, for all

parameters except for φ1, uncertainty does not increase dramatically until the missingness reaches

90% even for the weaker pathogen. Similar to Figure 2, a dramatic increase in uncertainty and

bias may occur for the transmission rate γ1 when the information is decreased by an extremely

high missingness rate. Among the key parameters, ω1 and φ1 are the parameters least and most

affected by missingness respectively. Figure 3 also suggests that a fairly transmissible pathogen

(with a SAR of 0.24) can provide nearly unbiased estimates for φ1, and thus the VEI , even at high

missingness proportions.

4 Data Analysis

The Pittsburgh Influenza Prevention Project (PIPP) is a prospective randomized study of the ef-

fectiveness of nonpharmaceutical interventions (NPI) conducted in 10 public elementary schools in

the city of Pittsburgh. The five schools in the intervention arm were provided with NPI training

program including hand hygiene, hand etiquette, and cover your cough behaviors, as well as sup-

plies of alcohol-based hand sanitizer for all classrooms. In addition, parents received educational

materials about NPIs. Prior to and during the influenza season, absences were monitored and ab-

sentees were screened by phone for the presence of ILI. During the season, home visits were made

to collect specimens for laboratory tests (rapid test and PCR). ILI is defined as fever (≥ 100◦F)

plus cough or sore throat.

The 2007–2008 influenza season started near the end of December and ended around the end

of April. The epidemic curves for overall and pathogen-specific ILI episodes are shown in Figure 4.

Most ILI episodes that occurred prior to the influenza epidemic were not lab tested by design.

We restrict all analyses to the period of 12/31/2007–4/18/2008, during which a total of 380 ILI
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Figure 3: Comparison of posterior estimates for parameters by the proportion of missing laboratory

test results and the two cocirculating pathogens. Bars with circles (triangles) denote 95% credible

sets for the pathogen with weaker (stronger) transmissibility. The dashed lines indicate the true

values of the parameters.
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Table 2: Summary of outcomes during 12/31/2007–4/18/2008 by intervention arm in the PIPP study of

NPI effectiveness in the 2007–2008 winter season. Five schools were in each intervention arm.

Intervention Population # of Subjects # of ILI Influenza Lab-test result

Arm Size with ≥ 1 ILI episodes A B Negative Untested

NPI 1999 162 173 21 31 70 51

Control 1960 190 207 32 19 97 59

episodes were observed in 352 out of 3959 students. Further breakdown of these numbers by

pathogen type and laboratory test is given in Table 2. The influenza B epidemic occurred slightly

later than influenza A, and only a single person was infected by both influenza types. We assume

that ILI episodes with negative laboratory results for both influenza types were caused by a single

noninfluenza pathogen. The distribution of pathogen types among infected students does not differ

significantly across schools (not shown).

We denote the noninfluenza pathogen, influenza A and influenza B as pathogens 1, 2 and 3.

For a study of large contact groups, it is reasonable to assume that the community-to-person

infection rate is time dependent and proportional to the number of cases in the community which

may be represented by the observed number of ILI onsets in the schools. Let T0=12/31/2007 and

T1=4/18/2008 be the starting and stopping dates. We assume each student in the study population

was susceptible to the three pathogens at T0, unless infection with either influenza A or influenza

B was lab confirmed before T0 in the same season. If vaccination and infection history before the

epidemic season were known at the individual level, prior immunity could be built into the model.

Let Cm(t) be the average number of ILI onsets corresponding to pathogen m reported over the three

days t − 1, t and t + 1. This smoothing step ensures a nonzero infection rate for days with zero

ILI counts by chance. We assume that the community-to-person infection hazard is ωmCm(t)/C̄m,

where C̄m =
∑

t I(Cm(t) > 0)Cm(t)/
∑

t I(Cm(t) > 0).
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(c). Influenza B (n=50)
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(d). Non−influenza Pathogen (n=167)
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Figure 4: Epidemic curves of ILI onsets in the PIPP study during the 2007-2008 influenza season.

(a) All ILI onsets; (b) Influenza A; (c) Influenza B; (d) ILI episodes tested negative for influenza.
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The observed numbers of influenza A and B cases in this study are relatively low, on average

about 5 cases per school. To avoid nonidentifiability of parameters, we assume the two types of

influenza share the same natural history parameters, that is, a2 = a3 and q2l = q3l, l = 1, 2, 3.

Based on knowledge from influenza challenge studies (Murphy et al., 1980), we set ∆m = 7 days

for all m. The interference matrix used for the analysis is

D =































3 3 3

3 ∞ 7

3 7 ∞































, (12)

which reflects that infection with influenza A (pathogen 2) or influenza B (pathogen 3) generates

specific immunity to the same kind of infection. For infections with the noninfluenza pathogen,

the short-term nonspecific immunity against all pathogens is the only choice compatible with the

data. The exact duration of nonspecific immunity is arbitrarily chosen and subject to sensitivity

analysis.

In an initial analysis assuming that all schools shared the same ωm for all m, the estimated

transmission hazard of influenza B is more than 60% higher in the intervention arm than that in the

control arm with marginal statistical significance. Although the influenza B epidemic occurred later

than influenza A, this counter-intuitive association is unlikely due to the depletion of susceptibles by

influenza A because (1) the cross-immunity is limited, if any, between the two different influenza

types, and (2) the numbers of cases are small compared to the pool of uninfected subjects. A

careful examination of the data revealed that the four schools with the most frequent influenza B

cases, one in the control arm and three in the intervention arm, are all located to the south of

the remaining six schools (Figure 5). It is likely that schools in different geographical areas were

subject to different levels of risk of influenza B from the communities. As a result, we assume

that the four schools in the south had a different baseline community-to-person infection hazard of
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Figure 5: Geographic location of schools in the PIPP study downloaded from google.com. Schools

labeled red (blue) are in the active intervention (control) arm. The four schools in the box, three in

the intervention arm and one in the control arm, have the highest influenza B attack rates.

influenza B and denote it by ω3b.

As the intervention was implemented at the school level, only the product ξm = θmφm (assuming

multiplicativity) is estimable, which corresponds to the total efficacy VET.m = 1−ξm. Some features

of this study warrant further consideration and yield several candidate models. First of all, the

contact level of students with their home community during the holidays in which the schools

were closed may differ from that during regular school days. A possible solution is to assume the

community-to-person infection hazard of pathogen m is ρωm during holidays and ωm during school
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days, where ρ ∈ (0,∞). Intuitively, one would expect ρ > 1. For a susceptible individual absent

during school days for personal reasons, ρωm also applies. Secondly, within-school contacts tend to

be more frequent within grades compared to between grades. To account for this extra clustering,

we may let the transmission hazard be γm within school but between grades and ηγm within grade

for pathogen m, with η > 0. We used the following three models to analyze the data:

1. Model I: ρ = 1, and η = 1.

2. Model II: ρ is unknown, but η = 1.

3. Model III: both ρ and η are unknown.

A convenient criterion for model selection in the Bayesian paradigm is the deviance information

criterion (DIC) (Spiegelhalter et al., 2002). However, minimal exploration has been done with the

DIC in missing data problems (Celeux et al., 2006; Daniels and Hogan, 2008). Two proposals

for the DIC in models with missing data are the DIC based on the observed data likelihood and

the DIC based on the full data likelihood. The former is very difficult to compute for the models

proposed here as the observed data likelihood cannot be expressed in closed form; the latter is

computationally more tractable but has not been well studied. Alternatively, a Reversible-Jump

MCMC algorithm (Green, 1995) could be used to account for uncertainty about the underlying

model. Here we compare models based on posterior credible sets due to the nesting structure of

the three models under consideration.

As there are 395 students for whom grade is unknown, an extra data augmentation step is

necessary in Model III to incorporate these students into the analysis. Note that there are 10

schools, each with 6 grades, in the PIPP study. We assume the grade of individual i in school s

follows a multinomial distribution with probability vector ζs = (ζs1, . . . , ζs6)
′, where

∑6
g=1 ζsg = 1,

s = 1, . . . , 10. We specify a Dirichlet(16×1) prior for ζs, s = 1, . . . , 10. Let ysg is the number
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of individuals in grade g of school s. The following term for grade assignment,
∏10

s=1 p(ys|ζs) =

∏10
s=1

{

Γ(6)
∏6

g=1 ζsg
ysg

}

, is appended to the full-joint probability in (8). Assuming that grades

are MAR, in the MCMC algorithm we add the following: (1) sample ζs from Dirichlet(ys1 +

1, . . . , ys6 +1), s = 1, . . . , 10; and (2) sample each missing grade Gi of individual i in school si from

the conditional probability

p(Gi = G
(l)
i |ψ, {vj, t̂j, t̃j : j ∈ si}) =

p(y
(l)
si |ζsi

)
{

∏

j∈si
p(vj , t̂j |ψ, R

(l)
j )
}

∑6
k=1 p(y

(k)
si |ζsi

)
{

∏

j∈si
p(vj , t̂j |ψ, R

(k)
j )
} , l = 1, . . . , 6,

(13)

if individual i had no ILI; otherwise, sample Gi together with (vi, t̂i) from

p
(

vi = v
(l)
i , t̂i = t̂

(l)
i , Gi = G

(l)
i |̃ti,ψ, {vj , t̂j, t̃j : j ∈ si, j 6= i}

)

=

{

∏

m B(C
(l)
m + 1)

}

p(v
(l)
i , t̂

(l)
i |ψ, R

(l)
i )p(y

(l)
si |ζsi

)
{

∏

j∈si
j 6=i

p(vj , t̂j|ψ, R
(l)
j )
}

∑Li

k=1

{

∏

m B(C
(k)
m + 1)

}

p(v
(k)
i , t̂

(k)
i |ψ, R

(k)
i )p(y

(k)
si |ζsi

)
{

∏

j∈si
j 6=i

p(vj, t̂j |ψ, R
(k)
j )
} ,

l = 1, . . . , Li,

(14)

where Li is the number of all possible values of the triple (vi, t̂i, Gi). Slightly different from (11), we

have p(v
(l)
i , t̂

(l)
i |ψ, R

(l)
i ) instead of p(v

(l)
i , t̂

(l)
i |ψ, Ri) because here the exposure history of individual

i depends on his/her grade Gi.

The estimates for η, 1.91 (95% CS:0.18, 9.4), in model III do not provide strong evidence for

η > 1, whereas those for ρ, 2.05 (95% CS:1.31, 3.01) in model II and 2.02 (95% CS:1.36, 2.91) in

model III, do for ρ > 1. Therefore, we chose model II for the subsequent analyses. Table 3 presents

results in the left and the right panels assuming that the RIC mode is located at the end of day

t̃ik and of day t̃ik + 1, respectively, with the left panel as our primary results. We do not find

statistical significance for the effectiveness of the NPI intervention in preventing influenza-related

ILI. However, the NPI intervention tends to reduce the risk of symptomatic infection with influenza

A by 32% (95% CS:−13%, 60%) and the risk of symptomatic infection with the noninfluenza

pathogen by 27% (95% CS:2%, 45%). The intervention showed no effect on the risk of symptomatic
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infection with influenza B.

Influenza A tended to be more transmissible person to person than influenza B in this epidemic,

the posterior median of γ2/γ3 being 4.73 (95% CS: 0.77, 112.33). While the two pathogens generated

about the same number of cases, the average length between successive ILI onsets within schools

in the control arm is 4.4 days for influenza A and 9.7 days for influenza B. Consequently, influenza

B cases are far less likely to be explained by secondary infections. The estimates for the SAR in

Table 3 do not take into account the possibility of absence due to the disease or holidays. To obtain

an estimate for the effective SAR adjusted for absence, we fixed the duration of the incubation

period for influenza A and influenza B at two days, the average duration estimated for seasonal

influenza. As a result, the infectious period is now fixed relative to the symptom onset day and can

be represented by days 1–7 with day 2 being the symptom onset day. Let ek be the probability of

absence for day k of the infectious period, k = 1, . . . , 7, which we assume depends only on k but not

the underlying pathogen. Next, we estimate (e1, . . . , e7)
′ by the proportions of absence regardless

of the reason among all ILI episodes, (0.488, 0.472, 0.312, 0.375, 0.436, 0.512, 0.474)′ . The effective

SAR can be formulated as 1 −
∑7

k=1

{

ek + (1 − ek) exp
(

−γm

∫ k
k−1 fbeta(

t
7 |am, 2

7)dt
)

}

, m = 2, 3,

where 2/7 is the mode of the RIC. We estimate the effective SAR as 0.00093 (95% CS:0.00027,

0.0018) for influenza A and 0.00020 (95% CS:0.0000077, 0.00079) for influenza B in the PIPP study.

Yang et al. (2009b) reported an effective SAR of 0.00075 (95% CI: 0.00055, 0.0010) for the novel

pandemic influenza A(H1N1) strain in an outbreak that occurred in a private high school in New

York City. Our estimate for the PIPP study is likely higher because elementary-school students

are more susceptible than high-school students.

The community-to-person infection hazard during the holidays is more than 2 times that during

school days. The four schools in the south experienced twice the community-to-person hazard of

influenza B compared to the six schools in the north, but the 95% CS of the difference covers zero,
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possibly due to the small number of cases per school.

The estimates were not sensitive to the location of the mode of the RIC, as indicated by the

similarity between the two panels in Table 3. Sensitivity to the natural history parameter setting

was assessed assuming (1) a longer incubation period with Hm = 4; (2) a longer maximum infectious

period with ∆m = 10; and (3) a fixed one-day latent period when the incubation period is at least

two days. Only mild to moderate changes were observed in the estimates for the transmission

hazards, and the estimates for the intervention effects are highly robust. The key estimates are

also not sensitive to moderate changes in the interference matrix. Sensitivity to the assumed prior

distributions was only examined for the person-to-person transmission hazards and the intervention

efficacies for the two influenza types. For each of these parameters, we replace the uniform prior

with a prior that imposes high prior mass on the 1%, 10%, 50%, 90% and 99% quantiles of the

posterior distribution obtained from the model using the uniform prior. Each time, the prior of

only one parameter is changed. The nonflat prior is proportional to exp
{

−(g(x) − g(µ))2/(2σ2)
}

,

where µ is the chosen quantile, σ = 2, and g(x) = logit
(

(x − min)/(max − min)
)

with min and

max being the prior bounds of the parameter. In Figure 6, we plot the posterior medians under

the nonflat priors relative to the primary estimates in Table 3. A steeper slope indicates higher

sensitivity. Among the hazard and efficacy parameters for influenza A and B, only the person-to-

person transmission hazard of influenza B is relatively sensitive to its prior distribution.

5 Discussion

We have demonstrated via a simulation study the usefulness of the Bayesian approach in estimating

transmissibility of cocirculating pathogens and pathogen-specific intervention efficacies with incom-

plete laboratory test results. Under the assumption of ignorability (MAR), a moderate amount

of missing laboratory results for ILI episodes had a very limited effect on the inference for most
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Table 3: Analysis of the PIPP Study with influenza A and influenza B epidemics in the 2007–2008

winter season. Posterior medians and 95% credible sets are presented.

Mode Location of RIC

End of day t̃ik End of day t̃ik + 1

parameter Noninfluenza Influenza A Influenza B Noninfluenza Influenza A Influenza B

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

ωm(×10−4) 3.98 (2.76,5.53) 1.55 (0.93,2.52) 0.83 (0.47,1.39) 4.00 (2.82,5.43) 1.57 (0.98,2.41) 0.83 (0.47,1.38)

ω3b(×10−4) 1.65 (0.84,3.06) 1.68 (0.86,2.96)

ρ 2.05 (1.31,3.01) 2.06 (1.39,2.90)

γm(×10−5) 5.83 (0.36,16.27) 23.29 (7.18,44.60) 4.96 (0.21,18.90) 5.50 (0.27,15.76) 23.35 (7.57,46.86) 4.81 (0.17,18.61)

ξm 0.73 (0.55,0.98) 0.68 (0.40,1.13) 1.21 (0.68,2.20) 0.73 (0.55,0.96) 0.66 (0.39,1.07) 1.19 (0.70,2.12)

am 4.24 (2.08,9.61) 5.46 (2.21,9.70) 3.70 (2.04,9.49) 5.90 (2.19,9.78)

SAR(×10−4)† 16.29 (5.03,31.17) 3.47 (0.15,13.22) 16.33 (5.30,32.75) 3.37 (0.12,13.02)

† SAR=1 − exp(−∆mγm).
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Figure 6: Sensitivity to the prior distribution on the person-to-person transmission hazards and

intervention effects for influenza A and B. The prior is changed by adding substantial mass at

locations corresponding to 1%, 10%, 50%, 90%, and 99% quantiles of the posterior distribution

based on a flat prior in the primary analysis. The vertical axes are the posterior medians under

the non-flat priors relative to the primary estimates in Table 3.
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key parameters. The reason for such insensitivity is intuitive: uncertainty about the responsible

pathogen is restricted to two or three candidates, providing far more information than not ob-

serving the ILI episode at all. This finding justifies the efforts to obtain a small validation set of

laboratory test results to improve statistical inference. However, the simulation study also warns

that the missing results may be a concern if the number of cocirculating pathogens is high or the

number of cases of the pathogen of interest is very low.

Randomized studies of large close contact groups provide unique opportunities for estimating

characteristics of the natural history of infectious pathogens. Yet both our simulation study and

the data analysis showed that reasonable accuracy is difficult to obtain without a sufficiently large

number of secondary cases. To minimize the required amount of information for such estimation,

we have assumed that the mode of the RIC is strongly associated with symptom onset. This

assumption of a known location of the RIC mode can be slightly relaxed. An additional simulation

study (results not shown) suggests that allowing the mode to vary uniformly over a short period,

such as (t̃ik − 1, t̃ik + 1), does not affect the estimability of the parameters. However, the price

is a substantially increased computational burden, as the sampling of the individual-level mode

involves recalculation of the RIC.

We have assumed the number of cocirculating pathogens is known in the data analysis. As

shown in the simulation study, the model is robust to misspecification of the number of cocirculating

pathogens, M , when there are few. When M is large and unknown, a Reversible-Jump MCMC

approach could be used. However, when laboratory results are not available for two or more

pathogens, one or more of the following conditions must hold for identifiability of parameters for

the nontested pathogens: (1) these pathogens differ substantially in transmissibility; (2) sufficiently

many clusters are infected by each pathogen; and (3) an informative prior is assumed for M . In

addition, the specification of the immunity matrix and/or other natural history characteristices
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may be difficult for the unknown pathogens.

Our analysis also demonstrates the need for careful randomization of groups in studies like

PIPP. Balance in geographical distributions between study arms is often critical to minimize the

effects of unmeasured risk factors that are geographically heterogeneous. In the PIPP study, it

was not possible to predict before hand that influenza B would circulate more in one area of the

study. Accordingly, it is also important to examine and adjust for such potential imbalance to

obtain interpretable results.

In the best scenario, the ILI cases that are confirmed biologically would be a random sample,

possibly stratified by covariate values. We have assumed MAR for the missing laboratory test

results, which may not necessarily hold in some studies, as discussed in Scharfstein et al. (2006).

The biased selection of severe cases for surveillance culture mentioned in the introduction is such

an example. Another possible scenario is that one pathogen is highly pathogenic and more likely to

cause immediate hospitalization and thus prevent the collection of the specimen. A viable approach

to allow for nonignorable missingness is a pattern mixture model (Rotnitzky et al., 2001; Daniels

and Hogan, 2008) that assumes different transmission and competing probability structures for the

two data-missing patterns: laboratory test result is available versus missing. An example is an

exponential tilt relationship: Pi(m, t̂ik|uik = 0) = Pi(m, t̂ik|uik = 1) × exp(ζm)/Ωik, m = 1, . . . ,M ,

with ζM = 1 and Ωik =
∑M

m=1 Pi(m, t̂ik|uik = 1) × exp(ζm). Informative priors based on expert

opinions can be elicited for the sensitivity parameters ζm, m = 1, . . . ,M − 1. Further research is

needed to accomodate nonignorable missing data in the complex transmission models presented

here.

Unobserved pathogen types are updated individual by individual in our algorithm. In a cluster

whose laboratory test results are completely missing, the MCMC algorithm can get stuck with a

single pathogen. This situation is likely to occur if the cluster sizes are small, for example, in house-
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hold transmission studies. Updating the infection status for a whole cluster at the same iteration

could circumvent this problem. However, it would be necessary to specify a candidate distribu-

tion for proposing the set of infection status for all individuals in the cluster since enumerating

all possible infection status, as we did for individual-level updating, is not computationally feasi-

ble even with a moderate cluster size. A possible approach to improve the mixing of the MCMC

is the multiset sampler proposed in Leman et al. (2009), in which multisets of missing pathogen

types and infection times for each cluster or the whole study population may be constructed and

assigned appropriate probability densities to facilitate the move of the MCMC across potential

pathogen types. The feasibility and operating characteristics of this approach in the presence of

high-dimensional missing data has yet to be explored.
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