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1 Web Appendix A

Proofs of Theorems/Corollaries from Sections 2 and 3
Theorem 1

Proof: By Lemma 1, we only need to show that MAR constraints exist if and only if for all
1 < j < J, the conditional distributions p,(y;|y,;_,) are identical for s > j.

Molenberghs et al. (1998) proved that MAR holds if and only if

pk<yj|gjfl) = ij(yjqu) = Z ps(yjmjfl) (1)

s=j ZSJ:j P(S =)
for all j > 2 and k < j. These conditionals are normal distributions since we assume Y'|S is
multivariate normal.

Suppose that there exists j such that p,(y;|7;_,) is not the same for all s > j. Then from (1),
p>;j(y;17;-1) will be a mixture of normals whereas py(y;]7;_,) will be a normal distribution. Thus,
Molenbergh’s condition will not be satisfied, i.e. the MAR constraints do not exist.

On the other hand, if for all 1 < j < J, the conditional distributions ps(y;|y,_;) are identical
for s > j, then py(y;[y;_;) and p>;(y;|y;_;) are both normally distributed and the identification
restrictions py(y;[y;_1) = p>;(y;l7;_1) will result in MAR.
Corollary 1
Proof: Since Y] is always observed (by assumption), S|Y ~ S|Y; implies that S|Y mis, Y obs =~
S1Y obs, Where Y ;5 and Y s denote the missing and observed data respectively. This shows that
MAR holds.

On the other hand, MAR implies that

P(S = s|Y) = p(S = s|Y ous) = p(S = s|T,).



By Theorem 1, we have that MAR holds only if for all 1 < j < J, the conditional distributions
ps(y;17,-1) are identical for s > j. Thus, under MAR

Pe(Y5lT5-1) = P2 (Wil7;-1) = ps(y517;-1)
for all j > 2, k < j and s > 7. This implies that for all j > 2

p(y;[7,1) Zps yilg;1)p(S = s) = pa(y;7;1)

for all s.
Therefore,

V) = (S — sl ) = P o
p(S = s|Y) =p(S = s[y,) p@s)p(S )

_ Ps(WslUs—1) - - Ps(2ly1)ps(y1)

DolTer) - plply) P =)
- Z;:((il))p(s = 5) = p(S = sly1).

Corollary 2
Proof: First, MCAR implies MAR. Second, in the proof of Corollary 1, we showed that MAR
holds if

p(S = 5|Y) = f,j(%)p(s =)

Thus under the assumption that ps(y1) = p(v1), MAR implies that p(S = s|Y) = p(S = s), i.e.
MCAR.

Corollary 3
Proof By Theorem 1, the MAR constraints imply

Pi(Yil¥i-1) = ps(y;l¥;-1) = P> (Y;[Y;-1)-
Therefore for all k£ < j, the MAR constraints

pk(%’@j—l) = D>j (yj’yj—l)

are identical to CCMV restrictions

Pr(WilT;-1) = ps(5l7;-1)
and to NCMYV restrictions
Pe(Y5l¥5-1) = pi(;[Y;-1)-
Corollary 4
Proof: Theorem 1 shows that identification via MAR constraints exists if and only if conditional

distributions p,(y;[7;_,) are identical for s > j and j > 2. That is, for observed data, we have

(=5) _(29)

ps(Qj‘gjfl) ~ N(:“j\} 1045~ )-



2 Web Appendix B

Missing Data Mechanism under MNAR and Multivariate Normality (Section 3)

To see the impact of the A parameters on the missing data mechanism (MDM), we introduce
notation A;T;_ =AY + S Al(j)Yl and then for k < j we have

i~ i i~

Y}"?jfla S—k~N <M(Zj) + AW eAS;j)U(Z]')) .

The conditional probability (hazard) of observing the first s observations given at least s obser-
vations is derived as follows:

L PS=sY) | P(S=sp(Y)

SP(S>sY)  ®TP(Y.S>s)
P(S = s)ps(V1) [T, ps(Vi[Y1 1)
S PS = B0 TT eV ) )
[T psi(Yi[Y i) P(S = 8)ps (Vi) T, 0 ps (Vi Yio1)
e P (MY o) S PS = ) T eIV i01) }
P(S = $)ps(V1) [TLssy ps(Vi[Y i 1)

= log

= log

= log — —
Sl { PO = Rpe0R) Ty PROGIT 1) T 2 ViIV00) |
2
(5) O NG — ) — Al
o (Y1 —wy”) ete ( T )i~
=log P(S =s) — — + . + - + 0
2 2‘75 ) 1—21 2 268~ ‘71(|l2—l)1
J (k)\2 k Y, — ,ZDy2
_1 Yi—pn (Yo — py=")
— logz {P(S = k)(o¥) "z exp {%} H exp {Tll)
k=s 20, I=s+1 Ii-1
>l I
X ﬁ (eAgl))_% exp { = 'ul(ﬁ) B Al(‘l)i)Q } }
O (1 :
I=k+1 2e8 Ul(\l_—)l

In general the MDM depends on Y s, i.e. MNAR.
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Mean and Variance of [Y;|Y ;_1,S = s] (Section 5)



The mean and variance of [Y;|Y;_;, S = s] under MNAR assumption are derived as follows:

s),MNAR _ AW Yj
R BT, 5 =) =S [y
k=3

J
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Full-data Model for the Growth Hormone Ezample (Section 6)

We specify a pattern mixture model with sensitivity parameters for the two treatment arms.
For compactness, we suppress subscript treatment indicator z from all the parameters in the
following models.



Missing Pattern S
S ~ Mult(¢)

(¢17¢27¢3)) ¢s - P(S =

Observed Response Data Y g5 given S

with the multinomial parameter ¢ =

s)fors € {1,2,3},and 3°_, ¢, = 1.

We specify the same MVN and OMVN model for [Y;]S] as follows:

YilS =1~ N(u",of"
}/’1’5:2NN( (2 _(2)

Ky 7507

YilS =3 ~ N(pi”, of”

)
)
).
For MVN model, we specify

Y|, S =2
YoV, S =3

For OMVN model, we specify

Va1, § =2~ N (80 + B0, ol

99)2-
Yo|Y1,S=3~N (53"‘52 Yi, 2|2)
Yal¥s, Yi, 8 =3 ~ N (853 + 82: + B

Missing Response Data Y s given Yops, S
For MVN model, we specify

2
YoV, 8 =1 ~N (5522) + AP 4 (822 L APy, A

(=2)
T9)2-

(>2) (>2) >2)
}NN< +B }/17 2‘2 >

Y},|Y2,Y1,S:3~N< ((]>3 +5(>3Y1+5(>3Yg, o

(=3)
3|3~

).

)
)

)Ys, o B

313~

).

)

(3)
Y3[V2, V1,8 =2~ N (5823) + AP+ (82 £ AP, + (8D + APy, e §|>3:3>>
Y3Ys, Y1, S =1~ LN( (23) +ﬁ(>3 Y, +ﬁ(>3 Yy, 0;2;))
P2 + &3
()
+ %N (859 + a0 + (BEY + APy + (857 + AP, 2ol
2 3

For OMVN model, we specify

WYL S = 1~ N (AR 4 B+ 8, 7))
2 + @3 ’ 7
05 2 (2) NS e
+ N (A2 + 8+ BEM, e )
¢2+¢3 52 521 1 2|2
(3)
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®3
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o))
* G2 + @3

Y3lYy, V1,5 =1~

l
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AP + B8+ BV, + B Ya, B

(3)
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)

)
T33-
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Simulation for Multivariate t and Multivariate Skewed Normal (Section 7)

For multivariate t (MVT) case, we chose df = 3. For multivariate skewed normal (MSKN), we
let w = 3 to make the distribution right-skewed with marginal mean denoted as p' = {u}, 5, p5 }.
The parameters p, p’ and X, estimated from the observed EG arm data and adjusted to reflect
general setting, are reported in Table 1.

The missing data mechanism model for both the MVT and MSKN cases is constructed as
follows:

logit P(S=1|S>1,Y) = P10+ P11Y1 4+ 01Ys
10glt P(S = 2|S Z 2, Y) = ¢270 + @Z)QJYQ + 52Y3

To generate data according to MAR restraint, we let 17 = 923 = —0.1 and é; = 62 = 0. To
generate data according to MNAR restraint, we let ;1 =51 =0, 4y = —0.09, and J, = —0.1.
For both MAR and MNAR, we let ¢y 9 = 129 = 5.5. The MDM parameters are chosen to have
P(S =1) and P(S = 2) to be roughly 0.2 (dropout rate of 40%).

To choose priors for the sensitivity parameters for MNAR analysis with MVN and OMVN
model, we use the same approach as in Section 6. Based on the observed variety, we set (1) =
[—4.7,0] x [-2.9,0] for MVT simulation and Z(7) = [-2.7,0] x [-1.8,0] for MSKN simulation.

Table 1: Simulation Scenarios

MVT u MSKN g/
nr 69 wy  66.6
o 81 wyo 778
ps T8 Wy 74.6
> for MVT and MSKN
011 11.3 0992 19

o 110 oy 174
013 12.3 033 20.1
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ACMYV (MAR) on the residuals for multivariate case (Section 8)
To incorporate baseline covariates in the multivariate case and apply similar MAR restrictions,
we specify the model for the observed data as follows:

ps(n|X) ~ N+ Xa® o) 1<s<J

PowilT 0, X) ~ NGLoY)  2<i<s <
where
ME-TJ)-— _ M§Z]) L Xa® 4 Zﬁz@])(yl _ MI(ZJ) — X)), (2)

=1
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For the missing data, the conditional distributions are specified as

(il 1) ~ Nl o) 1<s<j<J

where
Hig- = 57 + Xal® + Z - Xa®). 3
The conditional mean structures in (2) and (3) induce the following form for the marginal
mean response
E(Y;|S =) =U" + Xal,

where U ;S) is a function of intercept (e.g. u§ / )) and slope (e.g. B;Zj )) parameters from u§|; , but
not X or a. This marginal mean response reflects the fact that X is the baseline covariates and
« is its time-invariant coefficient. This form is also necessary for resolving over-identification of «
via the MAR on the residuals restrictions as shown later.

Note that since Y] is always observed, a'®) (1 < s < J) are identified by the observed data.
However, in the model given by (2) and (3), there is a two-fold over-identification of a(*) under
MAR:

1. For MAR constraints to exist under the model given in (1), ,ug.T])._ as defined in (2) must be

equal for 2 < j < s < J and for all X. This requires that o®) = o* for 2 < j < s < J.

2. MAR constraints also imply that ME‘TJ)‘* as defined in (3) must be equal to u( Dfor1<s< J.

This places another restriction on a(®).

Similar over-identification exists under CCMV and NCMV.

Similar to the bivariate case, to avoid the over-identification, we again use the MAR on the
residuals restriction,

pre(y; — XaPlyy = Xa® Ly = Xa® X)) =
J
P(S=s '
> Es> ips( — XaFy = Xa® Ly - Xa® X)) k< (4)
s=j

With the conditional mean structures specified as (2) and (3), the MAR on the residuals restriction
places no assumptions on a*. To see this, let [Z;]S] ~ [Y; — Xa(®)]. The MAR on the residuals

constraints are

JPS

PS>] ps Z]|Z.7 17X>

pr(zZj-1, X
S=

Note that

J
s, - yn) = ps(un) [ [ ps(unl@in)
=2

. 2

! s j— > >l s

j GXP{2 L (- 1 = Xa® = S0 B (- pf - Xa)) }
.

=ps(m) ]| = :

1=2 27ml| i




Thus,

pS(Zjv o 21) = ps(21) Hp8(2l|zl—1)

=2

! ; 02
i exp{ —r ( a— ) = Y B —u§2)> }
.

= Ps (Zl) H ®

1=2 27ml|

We can further show that

_ N
241751, 8 = 5, X] ~ ( ”+Zﬁjz” J),aﬁg”_)),

which is independent of s. Therefore,

S >q I >4 > >q
> oS ol ) (2 52637 ) o)

Similarly, we may derive that

pr(2|Z5-1, X) = ( S)+Z@z Zi— ), a(\a) >

The constraints (4) thus imply

B =
_'UJ = +Zﬁal ))

@) _ =9

o =
Jli=?

ili=
which places no restrictions on a(®).
The corresponding MDM is
P(S=slY,X) o P(S =s)pY|S=s,X)
P(S>sY,X) ° P(Y,S>s|X)
P(S = 8)ps(Ya|Y s, X)ps(YyaY 2, X) .. ps (1] X)
Z}I:SPZ(YJ|YJ—1, X)p(YyalY joo, X) ...V | X)P(S = 1)

It does not have a simple form in general. However, if o®) = o* for all s, then

1o P(S:S|Y7X) — 1o ps(Yi|X)P(S:S)
SPESY.X) T S aiX)PS = 1)

i.e. the MDM only depends on Y; and X. Otherwise, the missingness is MNAR.

log

= log
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