
A Flexible Approach to Bayesian Multiple Curve Fitting

Carsten H. Botts Michael J. Daniels
Department of Mathematics and Statistics Department of Epidemiology and Biostatistics, and
Williams College Department of Statistics
Williamstown, Massachusetts 01267, USA University of Florida
cbotts@williams.edu Gainesville, Florida 32611, USA

mdaniels@stat.ufl.edu

Summary

We model sparse functional data from multiple subjects with a mixed-effects regression spline. In this

model, the expected values for any subject (conditioned on the random effects) can be written as the sum

of a population curve and a subject-specific deviate from this population curve. The population curve

and the subject-specific deviates are both modeled as free-knot b-splines with k and k′ knots located at

tk and tk′ , respectively. To identify the number and location of the “free” knots, we sample from the

posterior p (k, tk, k
′, tk′ |y) using reversible jump MCMC methods. Sampling from this posterior distribution

is complicated, however, by the flexibility we allow for the model’s covariance structure. No restrictions

(other than positive definiteness) are placed on the covariance parameters ψ and σ2 and, as a result, no

analytical form for the likelihood p (y|k, tk, k
′, tk′) exists. In this paper, we consider two approximations

to p(y|k, tk, k
′, tk′) and then sample from the corresponding approximations to p(k, tk, k

′, tk′ |y). We also

sample from p(k, tk, k
′, tk′ , ψ, σ

2|y) which has a likelihood that is available in closed form. While sampling

from this larger posterior is less efficient, the resulting marginal distribution of knots is exact and allows us

to evaluate the accuracy of each approximation. We then consider a real data set and explore the difference

between p(k, tk, k
′, tk′ , ψ, σ

2|y) and the more accurate approximation to p(k, tk, k
′, tk′ |y).
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1 Introduction

Social and physical scientists are often interested in how certain variables depend on one another. They

often assume that a functional relationship exists between these two variables, and they run experiments or

collect samples to learn about this relationship. They are aware, however, that the data does not follow a

deterministic equation, but follows the general stochastic equation

Y = f(x) + ǫ, (1)

where Y is a dependent variable, x is an independent or controlled variable, and ǫ is random error with mean

0. One of the simplest models relating a response, Y , to a single predictor, x, is the pth−order polynomial

regression model

Y (x) = β0 +

p∑

j=1

βjx
j + ǫ.

While this model is appealing and can be very useful, it may be inadequate since it assumes that only one

polynomial describes the average relationship between Y and x. A more complex model would allow several

polynomials to do this. An example of such a model is a piecewise polynomial regression spline. A piecewise

polynomial regression spline with k knots divides the domain of f(x) into k + 1 mutually exclusive regions,

and to each region corresponds a unique polynomial describing the average relationship between Y and x.

With different polynomials describing different parts of the function, f(x) is not restricted to have the same

smoothness throughout its domain. A piecewise polynomial regression spline of order p with k knots at

tk = (t1, t2, . . . , tk) is written as

f(x) = β0 + β1x+
k∑

i=1

(x− ti)
p
+ β1+i +

p∑

j=2

βk+jx
j , (2)

where β = (β0, β1, . . . , βp+k) is a fixed set of parameters and (z)
p

+ = zpI(z ≥ 0).

A natural polynomial regression spline takes a form nearly identical to the piecewise regression spline

seen above. It is different, however, in that it restricts the function to be linear at the boundaries. This sets

the last term on the right-hand side of (2) to 0. A natural polynomial regression spline of order p thus takes

the form

f(x) = β0 + β1x+

k∑

i=1

(x− ti)
p

+ β1+i.

If f (x) were modeled as such, (1) could then be re-written as

Y (x) = c (x, tk)β + ǫ,
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where c (x, tk) =
(
1, x, (x− t1)

p

+ , . . . , (x− tk)
p

+

)
and β = (β0, β1, β2, . . . , β1+k), and for m observations

collected at (x1, x2, . . . , xm), it would be written as

Y (x) =




Y (x1)
Y (x2)

...
Y (xm)


 =




c(x1, tk)
c(x2, tk)

...
c(xm, tk)


β +




ǫ1
ǫ2
...
ǫm


 . (3)

The natural polynomial regression spline written in Equation (3) illustrates the concept behind splines,

but the design matrix composed of the row vectors c (x1, tk) , . . . , c (xm, tk) is unstable and thus rarely

used. B-splines, which are computationally more stable, are preferred (Hastie and Tibshirani, 1990; Zhou

and Shen, 2001). The functional form of a b-spline is more complex than that of the natural polynomial

regression spline, but is readily available (deBoor, 1978). We write it as

f(x) = b(x, tk)α,

where b(x, tk) is the design vector associated with a b-spline evaluated at x with k knots at tk = (t1, t2, . . . , tk),

and α is a fixed set of parameters. For m observations collected at (x1, . . . , xm), the model would be written

as

Y (x) =




Y (x1)
Y (x2)

...
Y (xm)


 =




b(x1, tk)
b(x2, tk)

...
b(xm, tk)


α+




ǫ1
ǫ2
...
ǫm


 .

With this model, estimating f(x) becomes a problem of estimating the number of knots, k, the locations of

those knots, tk, and α.

A variety of methods have been developed in estimating k and tk. Halpern (1973) approached this

problem using Bayesian methods. Allowing knots to only be placed at the design points in the experiment,

he considered all of the subsets of the design points. Halpern assigned prior probabilities to all of these

subsets, and calculated the corresponding posterior probabilities of these subsets. His estimator of the

function was based on these posterior probabilities. Denison, Mallick, and Smith (1998) placed priors on the

number of knots, k, and their locations, tk. With these priors, they calculated a joint posterior distribution

which included the variables k and tk and then sampled from this posterior distribution using reversible jump

MCMC methods. They too restricted the knots to be located only at the design points of the experiment.

DiMatteo, Genovese, and Kass (2001) proposed a method similar to that of Denison, et al. They did not

restrict the knots to be located only at the design points of the experiment and they penalized models with

unnecessarily large values of k by averaging over the fixed effect coefficients, α.
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Friedman (1991) and Stone et al. (1997) try to solve the problem of knot selection using backward and/or

forward knot selection. This process continues until the “best” model has been identified. Zhou and Shen

(2001) used an alternative method in identifying the locations of the knots. They constructed an algorithm

which favored adding knots in locations where several knots had already been added. Lindstrom (1999) used

similar methods when selecting knot locations.

Splines have also been used to model curves that vary within and between subjects (Shi et al., 1996,

Rice and Wu, 2001, Behseta et al., 2005, Crainiceanu et al., 2005). Brumback and Rice (1998) use splines

to model nested functions which vary between subjects and between groups of subjects. Functional models

which only account for variation between and within subjects take the general form

Yi (xj) = fi(xj) + ǫij

= f (xj) +Gi (xj) + ǫij , (4)

where Yi (xj) is the observation of the ith individual at xj , f (x) can be thought of as a population curve,

and Gi (x) is a random curve specific to subject i. While these functions can be modeled in a variety

of ways, we model these two functions as free-knot b-splines with k and k′ knots located at tk and tk′ ,

respectively. Setting f(x) = b(x; tk)α and Gi(x) = b(x; tk′ )γi, where γi are independent random vectors

such that γi ∼ N(0,Σγ), equation (4) becomes

Yi(xj) = b(xj ; tk)α+ b(xj ; tk′)γi + ǫij . (5)

Bigelow and Dunson (2007) consider a variation of this model and identify the location of the knots by sam-

pling from the full posterior distribution. They lessen the computational burden of this sampling procedure

by setting tk′ = tk and restricting Σγ to be diagonal. In this paper, we consider a more flexible model

and explore the computational issues associated with it. To be more specific, we eliminate the restrictions

imposed by Bigelow and Dunson and then try to identify the number and location of the knots by sampling

from p(k, tk, k
′, tk′ |y). This posterior can not be sampled from exactly, however, because eliminating the

diagonal restriction on Σγ makes the likelihood p (y|k, tk, k
′, tk′) intractable. We thus sample from two ap-

proximations to this posterior; each approximation corresponds to a different approximation to the likelihood

p (y|k, tk, k
′, tk′ ). To assess the accuracy of these approximations, we compare the posterior distribution of

knots in each case to the marginal distribution of knots when sampling from p(k, tk, k
′, tk′ , ψ, σ

2|y), where

ψ is a set of covariance parameters and σ2 is the within-subject variability. The marginal distribution of

knots when sampling from this higher-dimensional posterior is exact as its corresponding likelihood is avail-
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able in closed form. Sampling from this larger posterior, however, is less efficient because of the additional

parameters that need to be sampled.

In Section 2, we discuss the linear model given in (5) in more detail. In Section 3, the likelihood of

interest, p(y|k, tk, k
′, tk′), is discussed as are the two methods we use to approximate this likelihood. Section

4 shows the algorithm used to sample from the resulting approximate posterior distributions, and Section

5 shows the algorithm we use to sample from p(k, tk, k
′, tk′ , ψ, σ

2|y). Section 6 theoretically compares the

approximations, and in Section 7, we describe a simulation study performed to explore the differences in

these approximations. In Section 8, we apply the preferred approximation to a real data set.

2 The model and priors

Let Yi (xj) be the observed value of the ith curve (i = 1, . . . , n) at xj . We specify the following mixed model

for functional data,

Yi(xj) = b(xj , tk)α+ b(xj , tk′)γi + ǫij , (6)

where b(xj , tq) is the design vector of a b-spline with q knots at tq, k is the number of fixed effect knots at

locations tk, k
′ is the number of random effect knots at tk′ , α is a fixed set of parameters with dim (α) = k+2,

γi are independent and identically distributed random vectors such that γi ∼ N (0,Σγ) and dim (γi) = k′+2,

ǫij are independent random variables with ǫij ∼ N(0, σ2) for all pairs (i, j), and the random vectors γi are

independent of all random variables ǫij . The appealing feature of this model is its flexibility; recall that no

restriction is being placed on Σγ (other than |Σγ | > 0), and that the random and fixed effect knots are not

set equal to one another. We do assume, however, that all individuals have the same random effect knots,

and that k′ ≤ k. When the number of observations per subject is small, such assumptions are needed, as

they limit the number of complicated models proposed in the Markov chain we consider.

We place prior distributions on k, k′, tk, tk′ , α, Σγ , and σ2. Poisson priors are given to k and k′.

Additionally, since there is no reason to favor knots at any particular location on the domain of f and G,

flat priors are placed on both tk and tk′ . These priors are written as

k ∼ Poi (µk) , p (tk| k) ∝ I
(
a < tk(1) < tk(2) < · · · < tk(k) < b

)
,

k′|k ∼ Poi (µk′) I(k′ ≤ k), p (tk′ | k
′) ∝ I

(
a < tk′(1) < tk′(2) < · · · < tk′(k′) < b

)
,

where tq(j) is the jth smallest knot in the vector tq, and (a, b) is the domain of f and G.
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For Σγ and σ2, we place prior distributions on transformed values of these parameters. The transfor-

mations we consider create a set of unconstrained parameters which are preferable to work with since their

sampling distributions can be well approximated with the normal density. For Σγ , we applied the modified

Cholesky parameterization proposed by Pourhamadi (1999). Pourhamadi decomposes the inverse of the

covariance matrix Σγ as Σ−1
γ = TDT ′, where

T =




1 0 0 · · · 0
−φ2,1 1 0 · · · 0
−φ3,1 −φ3,2 1 · · · 0

...
. . .

...
−φp,1 −φp,2 · · · −φp,p−1 1



, and D =




σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

. . . · · ·
0 · · · 0 σ2

p


 .

These parameters can be calculated directly from the elements of the covariance matrix using the func-

tions g (·; ·) and h (·; ·), where σ2
j = g (Σγ ; j) = Σγ [j, j] − σ′

jΣ
−1
γ,jσj for 2 ≤ j ≤ p (σ2

1 = Σγ [1, 1]),

φj = (φj,1, φj,2, . . . , φj,j−1)
′ = h (Σγ ; j) = Σ−1

γ,jσj , Σγ,j is the minor matrix within Σγ composed of its

first j − 1 columns and rows, and σj is the vector within Σγ composed of the first j − 1 elements of the jth

column. To ease our notational burden, we will refer to these modified Cholesky parameters collectively as

ψ, where ψ =
(
φ2,1, log(σ2

1), φ3,1, φ3,2, log(σ2
2), . . . , log(σ2

p)
)
, and we will replace the symbol Σγ with ψ (or, to

illustrate that Σγ is a function of ψ, with Σγ(ψ)). All of the elements in the vector ψ are unconstrained, and

a multivariate normal unit-information prior is assigned to them. The mean of the unit-information prior

on ψ is the maximum likelihood estimate of the parameters, ψ̂, and the variance is inversely proportional to

approximately one unit of information on ψ. The prior can be written as

ψ| tk, tk′ ∼MVN

(
ψ̂,−

[
1

n− (k + 2)
Iψ

]−1
)
,

where

Iψ =
∂2 log

{
p
(
y|k, tk, k

′, tk′ , α, ψ, σ
2
)}

∂ψ′∂ψ

∣∣∣∣∣
α=α̂,ψ=ψ̂,σ2=σ̂2

,

p(y|k, tk, k
′, tk′ , α, ψ, σ

2) is the distribution of all the observed data in the study, n is the number of subjects

in the study, and α̂, ψ̂, and σ̂ are the maximum likelihood estimates of α, ψ, and σ, respectively. The exact

formula for Iψ is given in the Appendix.

For σ2, a unit-information prior was placed on log
(
σ2
)
. The prior can be written as

log
(
σ2
)∣∣ tk, tk′ ∼ N


log(σ̂2),−

(
1

n

n∑

i=1

1

mi −
k+2
n

Ilog(σ2),i

)−1

 ,

where

Ilog(σ2),i =
∂2 log

{
p(yi|k, tk, k

′, tk′ , α, ψ, σ
2)
}

∂ (log(σ2))2

∣∣∣∣∣
α=α̂,ψ=ψ̂,σ=σ̂

,
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and mi is the number of observations for subject i. The exact formula for Ilog(σ2),i is given in the Appendix.

The prior placed on α is another unit-information prior and can be written as

α|tk, tk′ ∼MVN


α̂,−

(
1

n

n∑

i=1

1

mi

Iα,i

)−1

 ,

where

Iα,i =
∂2 log

{
p(yi|k, tk, k

′, tk′ , α, ψ, σ
2)
}

∂α′∂α

∣∣∣∣∣
α=α̂,ψ=ψ̂,σ2=σ̂2

.

The exact formula for Iα,i is given in the Appendix.

Kass and Wasserman (1994) and Pauler (1998) defend the use of unit-information priors, especially in

the context of model selection. They show that when using such priors, the resulting Bayes factors can

be well approximated with the Bayesian information criterion. Although centering unit-information priors

at the maximum likelihood estimates has been suggested in Bayesian adaptive regression splines (Paciorek,

2006), the final results presented in this paper were not sensitive to the means selected for these three prior

distributions.

Estimating the fixed and random effect functions now becomes a problem in estimating k, tk, k
′, and tk′ .

We do this by sampling from the posterior distribution p (k, tk, k
′, tk′ |y). While this procedure is intuitively

appealing, a problem arises since the likelihood p (y|k, tk, k
′, tk′) can not be calculated analytically. We

consider two approximations to this likelihood in the next section.

3 Approximating p (y|k, tk, k
′, tk′)

The likelihood of interest can be expressed as

p (y|k, tk, k
′, tk′) =

∫

σ2

∫

ψ

∫

α

n∏

i=1

[∫

γi

p
(
yi|k, tk, k

′, tk′ , α, γi, σ
2
)
p(γi|ψ)dγi

]

×p(α|tk, tk′ )p (ψ|tk, tk′) p
(
σ2|tk, tk′

)
dαdψdσ2

=

∫

σ2

∫

ψ

p
(
yi|k, tk, k

′, tk′ , ψ, σ
2
)
p (ψ|k′, tk′) p

(
σ2|tk, tk′

)
dψdσ2, (7)

where
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p
(
y|k, tk, k

′, tk′ , ψ, σ
2
)

=
∣∣A−1

∣∣ 12 ∏

i

(2π)
−
mi
2

∣∣BRiΣγ(ψ)B′
Ri

+ σ2Imi
∣∣− 1

2 |Σα|
− 1

2 ×

exp

(
−

1

2

(
n∑

i=1

y′i
(
BRiΣγ(ψ)B′

Ri
+ σ2Imi

)−1
yi + α̂Σ−1

α α̂− d′Ad

))
, (8)

d = A−1
n∑

i=1

B′
Fi

(
BRiΣγ(ψ)B′

Ri
+ σ2Imi

)−1
yi + Σ−1

α α̂

A =

n∑

i=1

B′
Fi

(
BRiΣγ(ψ)B′

Ri
+ σ2Imi

)−1
BFi + Σ−1

α ,

BFi =
(
b (x1i ; tk)

′
,b (x2i ; tk)

′
, . . . ,b (xmi ; tk)

′)′
,

BRi =
(
b (x1i ; tk′ )

′
,b (x2i ; tk′)

′
, . . . ,b (xmi ; tk′ )

′)′
,

xi = (x1i , x2i , . . . , xmi) is the vector containing the x−values corresponding to subject i, n is the total

number of subjects (curves) in the study, and mi is the total number of observations for subject i.

The integral in (7) can not be calculated analytically. We thus explore two different approximations

to p (y| k, tk, k
′, tk′). The first simply plugs in the maximum likelihood estimate of ψ and σ2. The second

approximates (7) using a Laplace approximation.

The first approximation that we consider estimates p (y|k, tk, k
′, tk′) with

p
(
y|k, tk, k

′, tk′ , ψ̂ (tk, tk′) , σ̂
2 (tk, tk′)

)
,

where ψ̂ (tk, tk′) and σ̂2 (tk, tk′) are the maximum likelihood estimators of ψ and σ2 corresponding to the

model with fixed effect knots at tk and random effect knots at tk′ . The dependence of these maximum

likelihood estimators on (tk, tk′ ) will be suppressed, and the estimators will now simply be denoted as ψ̂

and σ̂2. We refer to this likelihood approximation as the “plugged-in” approximation and denote it as

p̂Plugged In(y|k, tk, k
′, tk′ ). Although this approximation ignores the penalty from increasing the dimension

of ψ, it is computationally inexpensive and is similar to the methods employed by Taplin (1993), Draper

(1995), Raftery et al. (1996), and Dominici et al. (2002). They approximate marginal likelihoods by plugging

in the maximum likelihood estimates of the nuisance parameters that can not be integrated out.

An alternative, but computationally more complex approach, is to integrate out ψ and σ2 using an

approximation method. We use a Laplace approximation to estimate p (y|k, tk, k
′, tk′). The approximate

likelihood is given by

p̂Laplace (y|k, tk, k
′, tk′ ) = p(y|k, tk, k

′, t′k, ψ̂, σ̂
2)(2π)

dim(ψ̂)+1

2

∣∣∣Ĉov
(
ψ̂, log

(
σ̂2
))∣∣∣

1
2

,
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where

Ĉov
(
ψ̂, log

(
σ̂2
))

= −

(
∂2 log

{
p(y|k, tk, k

′, tk, α, ψ, σ
2)p(α|tk)p(ψ|tk, tk′ )p(σ

2|tk, tk′)
}

∂ (ψ, log(σ2))′ ∂ (ψ, log(σ2))

)−1
∣∣∣∣∣∣
α=α̂,ψ=ψ̂, σ2=σ̂2

,

and dim(ψ) = (k′+3)(k′+2)/2. We chose the unconstrained parameterization for Σγ , ψ, and σ2, log(σ2), to

make this Laplace approximation more accurate. The optimal parameterization is an area of future research.

Calculating Ĉov
(
ψ̂, log

(
σ̂2
))

makes the computational expense of the Laplace approximation greater than

that of the “plugged-in” approximation; the matrix of second derivatives takes time to compute and can be

numerically unstable when dim(ψ) is large and the total number of subjects, n, is small. We still expect,

however, that the Laplace approximation will be more accurate than the “plugged-in” approximation. A

major question of interest addressed in this paper is whether the Laplace’s gain in accuracy is worth its

computational cost.

4 Sampling from p̂(k, tk, k
′, tk′|y)

The two likelihood approximations induce the following approximations to the posterior p(k, tk, k
′, tk′ |y).

Let

p̂Plugged In(k, tk, k
′, tk′ |y) ∝ p̂Plugged In(y|k, tk, k

′, tk′)p(k, tk, k
′, tk′)

and

p̂Laplace(k, tk, k
′, tk′ |y) ∝ p̂Laplace(y|k, tk, k

′, tk′)p(k, tk, k
′, tk′ ).

To sample from these posterior approximations to p(k, tk, k
′, tk′ |y) (which we denote as p̂(k, tk, k

′, tk′ |y)),

we use reversible jump MCMC methods. Reversible jump MCMC methods (Green, 1995; DiMatteo et al.,

2001) can be used when sampling from a distribution of a random variable θ and dim (θ). In this particular

case, the dimensions of the vectors tk and tk′ vary with the values of k and k′.

Rather than sampling the fixed and random effect knots together in one MCMC iteration (which re-

sults in very low acceptance rates), we sample from the posterior p̂ (k, tk, k
′, tk′ |y) using a Gibbs Sampling

type algorithm. In the algorithm, one value of the pair (k, tk) is sampled from p̂(k, tk|k
′, tk′ , y) using the

Metropolis-Hastings algorithm. Conditioned on this sampled pair of (k, tk), a pair (k′, tk′) is sampled from

p̂(k′, tk′ |k, tk, y) using identical Metropolis-Hastings methods. This algorithm is given below, and will be

referred to as Algorithm I.
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Algorithm I.

Repeat the Following Steps:

1. Call the current set of knots
(
kold, tkold , k

′
old, tk′old

)

2. Sample from p̂
(
k, tk|k

′
old, tk′old , y

)

(a) Propose a move for the fixed effect knots. Accept with probability

pFixed =

min


1,

PJump

(
knew, tknew

−→ kold, tkold | k
′
old, tk′old

)

PJump

(
kold, tkold −→ knew, tknew

| k′old, tk′old

)
p̂
(
knew, tknew

| k′old, tk′old , y
)

p̂
(
kold, tkold | k

′
old, tk′old , y

)


 ,

where PJump

(
kold, tkold −→ knew, tknew

| k′old, tk′old

)
is the probability of jumping

from (kold, tkold) to (knew, tknew
) conditioned on the current value of (k′, tk′).

(b) If not accepted, change (knew, tknew
) to the older values (kold, tkold).

3. Sample from p̂ (k′, tk′ |knew, tknew
, y)

(a) Propose a move for the random effect knots. Accept with probability

pRandom =

min


1,

PJump

(
k′new, tk′new

−→ k′old, tk′old

∣∣∣ knew, tknew

)

PJump

(
k′old, tk′old −→ k′new, tk′new

∣∣∣ knew, tknew

) p̂
(
k′new, tk′new

∣∣ knew, tknew
, y
)

p̂
(
k′old, tk′old

∣∣∣ knew, tknew
, y
)


 ,

where PJump

(
k′old, tk′old −→ k′new, tk′new

∣∣∣ knew, tknew

)
is the probability of jumping

from
(
k′old, tk′old

)
to
(
k′new, tk′new

)
conditioned on the current value of (k, tk).

(b) If not accepted, change the value of
(
k′new, tk′new

)
to the older pair

(
k′old, tk′old

)
.

4. Identify the new set of knots
(
knew, tknew

, k′new, tk′new

)
as
(
kold, tkold , k

′
old, tk′old

)
.

The jump probabilities and details of this algorithm (including derivation of the acceptance weights) are

given in the Appendix.
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5 Sampling from p(k, tk, k
′, tk′, ψ, σ

2|y)

An alternative way of sampling from the posterior distribution of (k, tk, k
′, tk′) is to sample from the joint

posterior distribution which contains both the covariance parameters, (ψ and σ2), and (k, tk, k
′, tk′). This

posterior is written as p(k, tk, k
′, tk′ , ψ, σ

2|y). Although sampling from this posterior is expected to be less

efficient than sampling from the approximations to p(k, tk, k
′, tk′ |y) (ψ and σ2 have to be sampled in addition

to (k, tk, k
′, tk′)), the posterior sample will be exact since p(y|k, tk, k

′, tk′ , ψ, σ
2) can be calculated (see (8)).

The resulting posterior sample of knots will also allow us to evaluate the accuracy of the two approximations

proposed in Section 4. The accuracy of the approximations will be judged by comparing the distribution

of (k, tk, k
′, tk′ ) when sampling from p̂Laplace(k, tk, k

′, tk′ |y) and p̂Plugged−In(k, tk, k
′, tk′ |y) to the marginal

distribution of (k, tk, k
′, tk′ ) when sampling from the “true” posterior p(k, tk, k

′, tk′ , ψ, σ
2|y). The algorithm

used to sample from p(k, tk, k
′, tk′ , ψ, σ

2|y) is given below, and will be referred to as Algorithm II.

Algorithm II.

Repeat the Following Steps:

1. Call the current set of knots and the current value of ψ and σ2
(
kold, tkold , k

′
old, tk′old , ψold, σ

2
old,
)

2. Sample from p
(
k, tk, |k

′
old, tk′old , ψold, σ

2
old, y

)

(a) Propose a move for the fixed effect knots. Accept with probability

pFixed =

min


1,

PJump

(
knew, tknew −→ kold, tkold

| k′old, tk′

old
, ψold, σ

2
old

)

PJump

(
kold, tkold

−→ knew, tknew | k
′

old, tk′

old
, ψold, σ

2
old

)
p
(
knew, tknew | k

′

old, tk′

old
, ψold, σ

2
old, y

)

p
(
kold, tkold

| k′old, tk′

old
, ψold, σ

2
old, y

)


 ,

where PJump

(
kold, tkold −→ knew, tknew

| k′old, tk′old , ψold, σ
2
old

)
is the probability of jumping

from (kold, tkold) to (knew, tknew
) conditioned on the current value of

(
k′, tk′ , ψ, σ

2
)
.

(b) If not accepted, change (knew, tknew
) to the older values (kold, tkold).

3. Sample from p
(
k′, tk′ , ψ, σ

2|knew, tknew
, y
)

(a) Propose a move for the random effect knots, ψ, and σ2. Accept with probability

pRandom, where pRandom =

11



min


1,

PJump

(
k′new, tk′

new
, ψnew, σ

2
new −→ k′old, tk′

old
, ψold, σ

2
old

∣∣∣ knew, tknew

)

PJump

(
k′old, tk′

old
, ψold, σ

2
old −→ k′new, tk′

new
, ψnew, σ2

new

∣∣∣ knew, tknew

) p
(
k′new, tk′

new
, ψnew, σ

2
new

∣∣ knew, tknew , y
)

p
(
k′old, tk′

old
, ψold, σ

2
old

∣∣∣ knew, tknew , y
)


 ,

and PJump

(
k′old, tk′old , ψold, σ

2
old −→ k′new, tk′new

, ψnew, σ
2
new

∣∣∣ knew, tknew

)
is the probability of

jumping from
(
k′old, tk′old , ψold, σ

2
old

)
to
(
k′new, tk′new

, ψnew, σ
2
new

)
conditioned on the current

value of (k, tk).

(b) If not accepted, change the value of
(
k′new, tk′new

, ψnew, σ
2
new

)
to the older pair

(
k′old, tk′old , ψold, σ

2
old

)
.

4. Identify the new set
(
knew, tknew

, k′new, tk′new
, ψnew, σ

2
new

)
as
(
kold, tkold , k

′
old, tk′old , ψold, σ

2
old

)
.

The jump probabilities and details of this algorithm are given in the Appendix.

Note that Algorithm II is nearly identical to Algorithm I with the exception of Step 3. In Step 3

of Algorithm II, new values of ψ and σ2 are proposed in addition to new values of k′ and tk′ . To be

more specific, the candidates of ψ and σ2 (conditioned on the candidates of k′ and tk′) are proposed from

a multivariate normal distribution with covariance equaling Ĉov
(
ψ̂, log(σ̂2)

)
. Calculating this estimated

covariance matrix in Step 3 makes this algorithm’s computation time per iteration comparable to that of

Algorithm I when p̂(k, tk, k
′, tk′ |y) = p̂Laplace(k, tk, k

′, tk′ |y). Although the computational cost of these two

algorithms are similar, we expect Algorithm II to mix slower and have a lower acceptance rate, as it proposes

higher dimensional moves in Step 3.

6 A Theoretical Comparison of the Approximations and Algo-

rithms

To sample from the posterior p(k, tk, k
′, tk′ |y), three options have been proposed: (1) sample from p̂Plg (k, tk, k

′, tk′ |y)

using Algorithm I, (2) sample from p̂Lp (k, tk, k
′, tk′ |y) using Algorithm I, and (3) exactly sample from

p(k, tk, k
′, tk′ , ψ, σ

2|y) using Algorithm II. We refer to options (1), (2), and (3) as PLG, LP, and EX, respec-

tively. In this section, we theoretically justify why LP is preferred to PLG and EX.

While LP will take longer to implement than PLG (as calculating p̂Lp (k, tk, k
′, tk′ |y) will take longer

than calculating p̂Plg(k, tk, k
′, tk′ |y)), it is expected that PLG will result in unnecessarily large values of k′.

We anticipate this positive bias in the number of random effect knots since the plugged-in approximation to

p (y|k, tk, k
′, tk′ ) does not average over the random effect covariance parameters, ψ; it simply plugs in the
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maximum likelihood estimate of ψ. The tendency of PLG to estimate more random effect knots than LP

becomes clear after close examination of the ratio

p̂(k′new, tk′new
|knew, tknew

, y)

p̂(k′old, tk′old |knew, tknew
, y)

, (9)

calculated in step 3(a) of Algorithm I. In PLG, this ratio is calculated as
p̂Plg(k′new,tk′new

|knew,tknew ,y)

p̂Plg(k′
old
,tk′

old
|knew,tknew ,y)

, and in

LP, this ratio is calculated as
p̂Lp(k′new,tk′new

|knew,tknew ,y)

p̂Lp(k′
old
,tk′

old
|knew ,tknew ,y)

. In general, we expect

p̂Lp(k′new, tk′new
|knew, tknew

, y)

p̂Lp(k′old, tk′old |knew, tknew
, y)

≤
p̂Plg(k

′
new, tk′new

|knew, tknew
, y)

p̂Plg(k′old, tk′old |knew, tknew
, y)

(10)

when k′new > k′old. If this inequality holds, then it does follow that PLG will over estimate the number of

random effect knots. In Theorem 1, it is proven that when
(
knew, tknew

, k′old, tk′old

)
is the true set of knots,

the inequality given in (10) asymptotically holds.

Theorem 1. Let the true values of k, tk, k
′ and tk′ be knew, tknew

, k′old, and tk′
old

, respectively. If the four

conditions below are met, then as n (the total number of subjects) goes to ∞,

p̂Lp

(
k′new, tk′new

|knew, tknew
, y
)

p̂Lp

(
k′old, tk′old |knew, tknew

, y
) ≤

p̂Plg

(
k′new, tk′new

|knew, tknew
, y
)

p̂Plg

(
k′old, tk′old |knew, tknew

, y
) .

1. tk′
old

⊂ tk′new
with k′new > k′old.

2. mi, the number of observations recorded for individual i, is random and the random variables m1,m2, . . . ,mn

are i.i.d. for all n.

3.
∑n

i=1 (mi − (k′new + 2)) > knew + 2

4. x1,x2, . . . ,xn are i.i.d. vectors, where xj =
(
xj1 ,xj2 , . . . ,xjmj

)
are the mj points in time at which

subject j is observed.

The proof of this theorem is given in the Appendix.

LP is not only preferred to PLG, but also to EX. The Markov chain resulting from LP converges to

the stationary distribution more quickly than that corresponding to EX. This is the case because, in LP,

transitions are only made in the space of the fixed and random effect knots. In EX, transitions are made

in the space of the fixed knots, the random effect knots, and the covariance parameters. The acceptance

probability of the chain corresponding to LP is thus expected to be larger than that corresponding to EX.
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While the arguments given in this section suggest that LP is preferred to PLG and EX, it is still of

interest to see how these options vary in practice. Of particular interest is to see the extent of the inequality

given in (10). If the bias in the number of random effect knots fitted by PLG is only marginal, it might be

the preferred option (since it is the easiest approximation to compute). To compare these three options, we

conducted a simulation study. This is the subject of Section 7

7 Simulation studies

The accuracies of the posterior distributions constructed using the two likelihood approximations were de-

termined using simulated data sets. Five data sets were simulated from two models at two different sample

sizes. Each model had the general form given in (5), but different values of k, tk, k
′, tk′ and α. The specific

values of these parameters are given in Table (1).

Table 1: True Models Simulated From

Model 1 Model 2

tk (.35, 2.3, 2.4, 3) (.2, .58, 1, 1.7, 2.8)
tk′ (2.4) (.8, 2.58)
α (5, -5.5, 1.4, -6.2, 1, 8) (5,10,4,6,14.2, 10, 7)

Σγ 5 × I3×3 5 × I4×4

σ2 .5 .5

The population curve and five randomly sampled subject specific curves corresponding to each model are

given in Figure 1. The simulation experiments were performed at two different values of n (n = 25 and

n = 40, where n is the number of subjects). The subjects in all simulations each had 20 observations, 5

of which were randomly selected (mi = 5 for all i). With such a small sample size per subject, it was not

feasible to smooth observations separately for each individual as has been done in previous work (Behseta

et al., 2005).

For each simulated data set, we sampled from p̂Plugged In(k, tk, k
′, tk′ |y) and p̂Laplace(k, tk, k

′, tk′ |y) us-

ing Algorithm I, and p(k, tk, k
′, tk′ , ψ, σ

2|y) using Algorithm II. We refer to the posterior sample from

p(k, tk, k
′, tk′ , ψ, σ

2|y) as the “truth” or the “true” posterior sample. The number of iterations for each chain

of p̂Plugged In(k, tk, k
′, tk′ |y) and p̂Laplace(k, tk, k

′, tk′ |y) was at least 10,000, and for p(k, tk, k
′, tk′ , ψ, σ

2|y) the

chains were twice as long. All chains were run using R 2.5.0, and the average time it took to complete 1000

iterations at n = 25 was 18 minutes for p̂Plugged In(k, tk, k
′, tk′ |y), and 54 minutes for p̂Laplace(k, tk, k

′, tk′ |y)

and p(k, tk, k
′, tk′ , ψ, σ

2|y). At n = 40 the average time it took to complete 1000 iterations was 30 minutes
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for p̂Plugged In(k, tk, k
′, tk′ |y), and 78 minutes for p̂Laplace(k, tk, k

′, tk′ |y) and p(k, tk, k
′, tk′ , ψ, σ

2|y). Conver-

gence to a stationary distribution did not seem to be an issue with any of the chains run. The distributions

of k and k′ corresponding to each approximation and p(k, tk, k
′, tk′ , ψ, σ

2|y) are shown in Figures (2) - (5).

The captions of each figure also give the average acceptance rates for the plugged-in, Laplace, and “true”

chains. The acceptance rate of the Laplace chains are, in each case, higher than those for the “true” or

plugged-in chains. Figure 6 gives the posterior distributions of tk and tk′ for data simulated from model 1

at n = 25. The accuracy of the Laplace and plugged-in as shown in Figure 6 is similar to the accuracy seen

in data simulated from model 1 at n = 25 and from data simulated from model 2 at n = 25 and n = 40 (not

shown).

The marginal distributions of k′ show that the Laplace method is more accurate than the plugged-in

method. In each case, the marginal distributions of k′ for the Laplace method essentially matches the “true”

marginal distributions of k′. The plugged-in estimator greatly overestimates the true number of random effect

knots (see Figures 2 - 5). This is to be expected since both ψ and σ2 were not averaged over (averaging

over the parameters would penalize vectors of ψ with large dimensions). The marginal distributions of tk′

in Figure 6 also show that the Laplace method is more accurate than the plugged-in method. The posterior

distributions of tk′ corresponding to p̂Laplace(k, tk, k
′, tk′ |y) and p(k, tk, k

′, tk′ , ψ, σ
2|y) are essentially the

same. The posterior distribution of tk′ corresponding to p̂Plugged−In(k, tk, k
′, tk′ |y) is far from the true

posterior distribution of tk′ ; the plugged-in method fits far too many random effect knots and thus can not

correctly identify their true locations. Thus, in terms of accuracy, the Laplace approximation is definitely

preferred to the plugged-in approximation.

The simulation results also suggest that sampling from p̂Laplace(k, tk, k
′, tk′ |y) is preferred to sampling

from the exact posterior p(k, tk, k
′, tk′ , ψ, σ

2|y). The distribution of knots corresponding to both posteriors

are very similar and the time per iteration is essentially the same. However, sampling from the exact

posterior requires that the nuisance parameters ψ and σ2 be sampled jointly with k′ and tk′ in Step 3 of

Algorithm II. The acceptance rate of Algorithm II is thus less than that of Algorithm I when sampling

from p̂Laplace(k, tk, k
′, tk′ |y). The lower acceptance rate of Algorithm II also affected the mixing of the

chain. Figure 7 gives the trace plots of tk′ for the Laplace and true chains (for iterations 2000-3000) on one

(representative) simulated data set. From the plots in Figure 7, it is clear that Algorithm I (applied to the

Laplace approximation) explores the posterior distribution of tk′ more efficiently than Algorithm II does.
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8 Application

To gain further insight into how the Laplace approximation compares to the “true” posterior, we considered

a real data set and sampled from p̂Laplace(k, tk, k
′, tk′ |y) and p(k, tk, k

′, tk′ , ψ, σ
2|y). The data set measures

the protein content of milk collected from cows who were on a barley diet (Diggle, 1990). Twenty-five cows

were in the experiment (n = 25), and milk was collected weekly from each cow for 19 weeks. Five observations

from each cow were randomly selected and the reversible jump MCMC algorithms were run on the resulting

data set. A plot of the data for all cows is given in Figure 8. Just as with the simulated data sets, 10,000

iterations of Algorithm I were used to sample from p̂Laplace(k, tk, k
′, tk′ |y) and 20,000 iterations of Algorithm

II were used to sample from p(k, tk, k
′, tk′ , ψ, σ

2|y). The posterior distributions of k and k′ corresponding

to the p̂Laplace(k, tk, k
′, tk′ |y) and p(k, tk, k

′, tk′ , ψ, σ
2|y) are given in Figure 9. The posterior distributions

of (k, tk, k
′, tk′) corresponding to p̂Laplace(k, tk, k

′, tk′ |y) once again matches the marginal distribution of

(k, tk, k
′, tk′) when exactly sampling from p(k, tk, k

′, tk′ , ψ, σ
2|y).

In addition to examining the two posterior distributions of knots, we also examine the two corresponding

posterior distributions of one randomly selected cow’s curve. Recall that the curve of one cow is the sum of

the fixed curve and that cow’s random effect curve. To sample one cow’s curve from the chain corresponding

to p̂Laplace(k, tk, k
′, tk′ |y), values of ψ and σ2 were sampled using an independence sampler. Conditioned on

these sampled values, a fixed effect curve was sampled, and conditioned on this sampled fixed effect curve,

a random effect curve was sampled. The algorithm used to do this requires a slight addition to Algorithm I.

This addition is noted below:

For each sampled set of knots, (k, tk, k
′, tk′ ), do the following:

1. For t = 1 : L (we set L = 100)

(a) Sample the modified Cholesky parameters ψ and log
(
σ2
)
from

(
ψt

log
(
σ2,t

)
)

∼MVN

((
ψ̂

log
(
σ̂2
)
)
,−I

(
ψ̂, log

(
σ̂2
))−1

)
,

where
(
ψ̂, σ̂2

)
are the maximum likelihood estimates of the Pourhamadi parameters and

σ2 corresponding to the current set of knots, and I
(
ψ̂, log

(
σ̂2
))

is their

information matrix evaluated at these estimates.
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(b) Accept this draw with probability

min


1,

p(y|k,tk,k′,tk,ψt,σ2,t)p(ψt|k′,tk′)p(σ2,t)
ξ(ψt,log(σ2,t))

p(y|k,tk,k′,tk,ψt−1,σ2,t−1)p(ψt−1|k′,tk′ )p(σ
2,t−1)

ξ(ψt−1,log(σ2,t−1))




where p (ψt|k′, tk′) is the prior distribution of ψ evaluated at ψt, p
(
σ2,t

)
is the prior

distribution of σ2 evaluated at σ2,t, and ξ
(
ψt, log

(
σ2,t

))
is the multivariate normal

density given in step (a) evaluated at
(
ψt, log

(
σ2,t

))
.

(c) If the move is not accepted, let ψt = ψt−1, log(σ2,t) = log(σ2,t−1)

2. Draw a fixed effect, α∗, from the conditional posterior distribution α|k, tk, k
′, tk′ ,Σ

t
γ , σ

2,t

where α|k, tk, k
′, tk′ ,Σ

t
γ , σ

2,t ∼MVN
((

F′C−1F
)−1

F′C−1 (Y, α̂)
′
,
(
F′C−1F

)−1
)
,

F =
(
B′
F1
,B′

F2
, . . . ,B′

Fn
, Ik+2

)′
, C is a block-diagonal matrix composed of the n matrices

{(
BRiΣ

t
γB

′
Ri

+ σ2,tImi
)}n
i=1

and the matrix −
(

1
n

∑n

i=1
1
mi
Iα,i (α̂)

)−1

, BFi and BRi are defined

in Section 3, Y is all of the observed data, and α̂ is the maximum likelihood estimate

of α.

3. Draw a random effect, γ∗, from the conditional posterior distribution γ|k, tk, k
′, tk′ , α

∗,Σtγ , σ
2,t

where γ|k, tk, k
′, tk′ , α

∗,Σtγ , σ
2,t ∼MVN(λ,Λ), λ = ΣtγB

′
Ri

(
σ2,tImi

)−1
(Yi − BFiα

∗), and

Λ = ΣtγB
′
Ri




(
σ2,tImi

)−1
−
(
σ2,tImi

)−1
BFi

(
1

σ2,t

n∑

i=1

B′
Fi

BFi

)−1

BFi

(
σ2,tImi

)−1



BRiΣ

t
γ

This addition to Algorithm I slows it down only marginally.

To sample random effects from the chain corresponding to p(k, tk, k
′, tk′ , ψ, σ

2|y), steps (2) and (3) given

above were just added to Algorithm II. In other words, a fixed and random effect curve were drawn for every

random effects covariance matrix drawn. Figure 10 shows the pointwise median curve for the selected cow

drawn for each chain, along with pointwise 95% credible intervals. The estimated cow-specific curves and

credible intervals for both methods are similar.

9 Discussion

We have proposed a flexible approach to model multiple curves using free-knot splines. To identify the num-

ber and location of fixed and random effect knots in this flexible mixed-effects regression spline, sampling

from p̂Laplace(k, tk, k
′, tk′ |y) is highly preferred to sampling from p̂Plugged In(k, tk, k

′, tk′ |y) and marginally
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preferred to sampling from p(k, tk, k
′, tk′ , ψ, σ

2|y). The posterior sample corresponding to the Laplace ap-

proximation is more accurate than that of the plugged-in approximation. The disparity between the Laplace

approximation and the plugged-in approximation is most pronounced in the different number of random

effect knots fit to the simulated data sets. The Laplace method clearly seems to penalize models with un-

necessarily large values of k′ more appropriately than the plugged-in method. In addition, as measured by

our simulations, the posterior based on the Laplace approximation is much more efficient to sample from

(and just as accurate) as the exact posterior sample from p(k, tk, k
′, tk′ , ψ, σ

2|y).

We are currently investigating other approaches to the knot selection problem. Rather than sampling

from the posterior p (k, tk, k
′, tk′ |y), we set tk = tk′ and then try to reduce the number of principal component

curves associated with the random effects by sampling from the posterior p (k, tk, r|y) where r = the number

of random effect principal components retained (Botts, 2005). This is similar in spirit to the methods

employed by Shi et al. (1996), and James et al. (2000).

Behseta et al. (2005) propose an alternative hierarchical approach that, at the first level, fits curves

separately for each subject, allowing each subject to have her own set of knots. However, their methods are

only appropriate for large within-subject sample sizes.
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Appendix

Exact formulas for Iψ, Iα, and Ilog(σ2)

The (j, k)th element in the matrix Iψ can be calculated as
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[Iψ ]
j,k

= −
1

2

n∑

i=1

tr
{
−L−1

i Gj,i

(
L−1
i

)′
Gk,i + L−1

i H(j,k),i

}

+
1

2

n∑

i=1

(yi − GFi α̂)′
(
−L−1

i

(
Gj,iL

−1
i G′

k,i − H(j,k),i + Gk,iL
−1
i G′

j,i

) (
L−1
i

)′)
(yi − GFiα̂) , where

Li = BRiΣγ(ψ̂)B′
Ri

+ σ̂2I,

Gj,i = BRiWj(ψ̂)B′
Ri
,

Wj(ψ̂) =
∂(TDT ′)

∂ψj

∣∣∣∣
ψ=ψ̂

, and

H(j,k),i = BRi

(
∂2(TDT ′)

∂ψj∂ψk

∣∣∣∣
ψ=ψ̂

)
B′
R,i

Ilog(σ2),i = −
1

2
tr
{
−
(
σ̂2
)2

L−1
i

(
L−1
i

)′
+ σ2L−1

i

}

+
1

2
(yi − BFi α̂)′

{
−L−1

i

((
σ̂2
)2

L−1
i − σ̂2I +

(
σ̂2
)2

Li
−1
) (

L−1
i

)′}
(yi − BFiα̂)

Iα,i = −B′
Fi

(
BRiΣγ(ψ̂)B′

Ri
+ σ̂2Imi

)−1

BFi

RJMCMC details for Algorithm I:

This section gives the details on Algorithm I. The details show how a move is made from a set of old knots

to a new set of knots. Note that the constants which appear in this algorithm (.4 and .2) were selected to

optimize its mixing and acceptance probability. The old set of knots will be denoted as
(
kold, tkold , k

′
old, tk′old

)
.

The first step of the algorithm involves a step in the space of the fixed effect knots, Ωk. Note that Ωk is

the sum of spaces Ω1, Ω2, . . . where Ωj = [a, b]
j
. Therefore Ωk can be written as Ωk =

⊕∞
j=1 Ωj . The first

decision to be made is whether to give birth, relocate, or kill a fixed knot. These probabilities are labeled as

bF , rF , and dF , respectively, and are calculated as

bF (kold) = .4 × min

(
1,
pk (kold + 1)

pk (kold)

)
, dF (kold) =

{
0 kold = k′old
.4 × min

(
1, pk(kold−1)

pk(kold)

)
o.w.

,

and rF (kold) = 1 − bF (kold) − dF (kold), where pk (kold) is the prior distribution assigned to k evaluated at

kold.

If birth is chosen, a fixed effect knot, tselectedk , is selected at random and a new knot is given birth to. The

new knot, tnew
k , is sampled from the distribution tnew

k ∼ TN b
a

(
tselectedk , .2

)
where TN b

a is the normal distribu-

tion truncated at a and b with mean at tselectedk and variance .2. If death is selected, then one of the fixed effect
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knots is uniformly selected and killed. When relocation is chosen, a fixed effect knot, trelocated
k , is uniformly

selected and then relocated to a position tnew loc
k where tnew loc

k ∼ TN b
a

(
trelocated
k , .2

)
. The jump probabilities

corresponding to each move is given in Table 2. Note: h (y|x) = φ (y;x, .2) (Φ (b;x, .2) − Φ (a;x, .2))
−1

where

φ
(
·;µ, τ2

)
is the normal density with mean µ and variance τ2, and Φ

(
·;µ, τ2

)
is the cumulative distribution

function of a normal density with mean µ and variance τ2.

Move in Ωk PJump

(
kold, tkold −→ knew, tknew

|k′old, tk′old

)

Birth bF (kold) 1
kold

∑
x∈tkold

h (tnew
k |x)

Relocation rF (kold) 1
kold

h
(
tnew loc
k |trelocated

k

)

Death dF (kold) 1
kold

Table 2: Jump Probabilities in Ωk

A move must then be made with the random effect knots. This is the second step in the algorithm. As

with the fixed effect knots, one of three moves can be made in Ωk
′

, the space of random effect knots: birth,

death, or relocation. The probabilities associated with each are denoted as bR, dR, and rR, respectively.

They are calculated as

bR (k′old) =





0 k′old = kold

.4 × min

(
1,

pk′(k′old+1)
pk′(k′old)

)
o.w.

,

dR (k′old) =





0 k′old = 1

.4 × min

(
1,

pk′(k′old−1)
pk′(k′old)

)
o.w.

,

and rR (k′old) = 1 − bR (k′old) − dR (k′old), where pk′ (k′old) is the prior distribution of k′ evaluated at k′old.

If death is selected, then one of the random effect knots is uniformly selected and then killed. If birth is

selected, then one of the random effect knots is uniformly selected (call this tselectedk′ ), and a knot is added

to the set of random effect knots (call this knot tnew
k′ ). Note that tnew

k′ ∼ TN b
a

(
tselectedk′ , .2

)
. If relocation is

selected, then one of the random effect knots is uniformly selected, trelocated
k′ , and moved to another location

(call this tnew loc
k′ ). Again, tnew loc

k′ ∼ TN b
a

(
trelocated
k′ , .2

)
. The jump probabilities associated with these moves

are given in Table 3.

Derivation of Metropolis-Hastings Acceptance Probabilities to Satisfy Detailed Balance of Algorithm I

We show that the acceptance probabilities given in Section 4 are such that detailed balance is satisfied.

In this case, it needs to be shown that
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Move in Ωk
′

PJump

(
k′old, tk′old −→ k′new, tk′new

∣∣∣ kold, tkold

)

Birth bR (k′old) 1
k′
old

∑
x∈tk′

old

h (tnew
k′ |x)

Relocation rR (k′old) 1
k′
old

h
(
tnew loc
k′ |tselectedk′

)

Death dR (k′old) 1
k′
old

Table 3: Jump Probabilities in Ωk
′

PTrans

(
kold, tkoldk

′
old, tk′old −→ knew, tknew

, k′new, tk′new

)
p
(
kold, tkold , k

′
old, tk′old

∣∣∣ y
)

= PTrans

(
knew, tknew

k′new, tk′new
−→ kold, tkold , k

′
old, tk′old

)
p
(
knew, tknew

, k′new, tk′new

∣∣ y
)

(Note: throughout the rest of this proof, tknew
will be denoted as tkn , kold will be denoted as ko, and so on).

Assume that both a fixed and random knot are being added. In this case,

PTrans

(
ko, tko , k

′
o, tk′o −→ kn, tkn , k

′
n, tk′n

)
p
(
ko, tko , k

′
o, tk′o

∣∣ y
)

= bF (ko)
1

ko

∑

x∈tko

h (tnew
k |x) × min

(
1,
PJump

(
kn, tkn −→ ko, tko | k

′
o, tk′o

)

PJump

(
ko, tko −→ kn, tkn | k

′
o, tk′o

) p
(
kn, tkn | k

′
o, tk′o , y

)

p
(
ko, tko | k

′
o, tk′o , y

)
)

︸ ︷︷ ︸
PTrans

(
ko,tko−→kn,tkn |k

′

o,tk′o

)

× bR (k′o)
1

k′o

∑

x∈t′
ko

h (tnew
k′ |x) × min

(
1,
PJump

(
k′n, tk′n −→ k′o, tk′o

∣∣ kn, tkn
)

PJump

(
k′o, tk′o −→ k′n, tk′n

∣∣ kn, tkn
) p
(
k′n, tk′n

∣∣ kn, tkn , y
)

p
(
k′o, tk′o

∣∣ kn, tkn , y
)
)

︸ ︷︷ ︸
PTrans

(
k′o,tk′o

−→k′n,tk′n

∣∣∣kn,tkn
)

× p
(
ko, tko , k

′
o, tk′o

∣∣ y
)
.

Assume that the ratios within each min argument are < 1 (if this is not the case, the reciprocal of the ratios

will be less than 1, and the proof can be done in the other direction), and recall that

1. bF (ko)
1
ko

∑
x∈tko

h (tnew
k |x) = PJump

(
ko, tko −→ kn, tkn | k

′
o, tk′o

)

2. bR (k′o)
1
k′o

∑
x∈t′

ko

h (tnew
k′ |x) = PJump

(
k′o, tk′o −→ k′n, tk′n

∣∣ kn, tkn
)

3. p
(
kn, tkn | k

′
o, tk′o , y

)/
p
(
ko, tko |k

′
0, tk′o , y

)
=

p
(
y|kn,tkn ,k

′

o,tk′o

)
p(kn)p(tkn |kn)

p
(
y|ko,tko ,k

′

o,tk′o

)
p(ko)p(tko |ko)

4. p
(
k′n, tk′n

∣∣ kn, tkn , y
)/
p
(
k′o, tk′o

∣∣ kn, tkn , y
)

=
p
(
y|kn,tkn ,k

′

n,tk′n

)
p(k′n)p(tk′n

|k′n)

p
(
y|k′o,tk′o

,kn,tkn

)
p(k′o)p(tk′o

|k′o)
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With these four observations it is clear that the above expression reduces to

PJump

(
kn, tkn −→ ko, tko | k

′
o, tk′o

) p
(
y| kn, tkn , k

′
o, tk′o

)
p (kn)

p (y|ko, tko , k
′
o, tko) p (ko)

p(tkn |kn)

p(tko |ko)
PJump

(
k′n, tk′n −→ k′o, tk′o

∣∣ kn, tkn
)

×
p
(
y|kntkn , kn′ , tk′n

)
p (k′n)

p
(
y|kn, tkn , k

′
o, tk′o

)
p (k′o)

p(tk′n |k
′
n)

p(tk′o |k
′
o)

p (y|k0, tko , k
′
o, tko) p (ko) p (k′o) p(tko |ko)p(tk′o |k

′
o)

p (y)

= PJump

(
kn, tkn −→ ko, tko | k

′
o, tk′o

)
PJump

(
k′n, tk′n −→ k′o, tk′o

∣∣ kn, tkn
)

×
p (y|kn, tkn , k

′
n, tkn) p (kn) p (k′n) p(tkn |kn)p(tk′n |k

′
n)

p (y)

= PJump

(
kn, tkn −→ ko, tko | k

′
o, tk′o

)
︸ ︷︷ ︸

= dF (kn) 1
kn+1

×min

(
1,
PJump (ko, tko −→ kn, tkn | k

′
o, tko)

PJump

(
kn, tkn −→ ko, tko | k

′
o, tk′o

) p
(
k0, tko | k

′
o, tk′o , y

)

p
(
kn, tkn | k

′
0, tk′o , y

)
)

︸ ︷︷ ︸
= 1

×PJump

(
k′n, tk′n −→ k′o, tk′o

∣∣ kn, tkn
)

︸ ︷︷ ︸
=dR(k′n) 1

k′n+1

×min

(
1,
PJump

(
k′o, tk′o −→ k′n, tk′n

∣∣ kn, tkn
)

PJump

(
k′n, tk′n −→ k′o, tk′o

∣∣ kn, tkn
) p
(
k′0, tk′o

∣∣ kn, tkn , y
)

p
(
k′n, tk′n

∣∣ kn, tkn , y
)
)

︸ ︷︷ ︸
= 1

×p
(
kn, tkn , k

′
n, tk′n

∣∣ y
)

= PTrans

(
kn, tkn −→ ko, tko | k

′
o, tk′o

)
PTrans

(
k′n, tk′n −→ k′o, tk′o

∣∣ kn, tkn
)
p
(
kn, tkn , k

′
n, tk′n

∣∣ y
)

= PTrans

(
kn, tkn , k

′
n, tk′n −→ ko, tko , k

′
o, tk′o

)
p
(
kn, tkn , k

′
n, tk′n

∣∣ y
)
.

This argument shows detailed balance holds for the given acceptance ratios when a fixed and random effect

knot are added. Similar arguments can be made to prove detailed balance when a fixed and/or random effect

knot is deleted and/or relocated.

RJMCMC details for Algorithm II:

As mentioned in the main text of this paper, Algorithm II is only a slight variation of Algorithm I. In

Algorithm II, candidate values of (k, tk) are sampled just as they are in Algorithm I. Conditioned on each

sampled pair of knots, candidate values of k′, tk′ , ψ and σ2 are sampled. These candidate values are denoted

ψnew and σ2
new, and they are sampled from the multivariate normal distribution

(
ψnew

log(σ2
new)

)
∼MVN

((
ψ̂

log(σ̂2)

)
, Ĉov

(
ψ̂, log(σ̂2)

))
.

Note that ψ̂ and σ̂2 are the maximum likelihood estimates of ψ and σ̂2 corresponding to the model with

fixed effect knots at tkold and random effect knots at tk′new
.
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The jump probabilities corresponding to step 2 of Algorithm II are the same as those in step 2 of Algorithm

I. The jump probabilities corresponding to step 3 of Algorithm II are given in Table 4. Note: MVN3(z, w)

is the multivariate density, with mean
(
ψ̂, log(σ̂2)

)
and covariance Ĉov

(
ψ̂, log(σ̂2)

)
evaluated at the vector

(z, w). In this case, ψ̂ and σ̂2 are the maximum likelihood estimates calculated under the model with fixed

effect knots at tkold and random effect knots at tk′new
.

PJump

(
k′old, tk′old , ψold, σ

2
old −→ k′new, tk′new

, ψnew, σ
2
new

∣∣∣ kold, tkold

)

Birth

(
bF (k′old) 1

k′
old

∑
x∈tk′

old

h (tnew
k′ |x)

)
×MVN3

(
ψnew, log(σ2

new)
)

Relocation
(
rF (kold) 1

k′
old

h
(
tnew loc
k′ |trelocated

k′

))
×MVN3

(
ψnew, log(σ2

new)
)

Death dF (k′old) 1
k′
old

Table 4: Jump Probabilities For Step 3 in Algorithm II

It can be shown, using methods similar to those given before, that these jump probabilities (along with the

acceptance probabilities of Algorithm II given in Section 5 ) guarantee detailed balance.

Proof of Theorem 1

We first prove that the maximum likelihood estimators of α,Σγ , and σ2 are consistent with respect to n,

the number of subjects in the study. To be more specific, we prove that α̂, ψ̂, and σ̂2 converge to their

true values as n goes to infinity. Proving the consistency of these estimators is not straight-forward since

the observed data for all n subjects, y1, y2, . . . , yn, are not i.i.d. (recall that they are independent yet not

identically distributed since yi ∼MVN
(
BFiα,BRiΣγ(ψ)B′

Ri
+ σ2Imi

)
).

Hooper (1993) and Demidenko (2004) show, however, that if one considers the design matrices of the ith

individual (BFi ,BRi) and the number of observations for the ith individual (mi) as random, independent of

ǫi and γi, and part of the observed data, then the i.i.d. assumption of the data is satisfied. For the problem

presented in this paper, such considerations make sense. The design matrices corresponding to individual

i, BFi and BRi , can be thought of as random since the points in time at which the mi observations occur,

xi, vary. If the number of observations recorded for all individuals, m1,m2, . . . ,mn, are i.i.d. (as we assume

in Condition (2)), and the times at which these observations occur, x1,x2, . . . ,xn, are i.i.d. (as we assume

in Condition (4)), then the sets {yi,BFi ,BRi ,mi}
n

i=1 are i.i.d. It follows that the maximum likelihood

estimators of α, ψ, and σ2 converge to their true values as n, the number of subjects, approaches ∞.

We now arrive at the result in Theorem 1 by examining the behavior of log

(
p̂Lp

(
k′old,tk′

old
|knew,tknew ,y

)

p̂Lp

(
k′new ,tk′new

|knew,tknew ,y
)

)
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as n −→ ∞. Recall that k′old < k′new and tk′
old

⊂ tk′new
, making the model with knots at

(
tknew

, tk′
old

)
nested

within the model with knots at
(
tknew

, tk′new

)
.

log



p̂Lp

(
k′old, tk′old |knew, tknew

, y
)

p̂Lp

(
k′new, tk′new

|knew, tknew
, y
)




= log



p̂Lp

(
y|knew, tknew

, k′old, tk′old

)

p̂Lp

(
y|knew, tknew

, k′new, tk′new

)
p
(
knew, tknew

, k′old, tk′old

)

p
(
knew, tknew

, k′new, tk′new

)




= log




p̂
(
y|knew, tknew

, k′old, tk′old , ψ̂(tknew
, tk′

old
), σ̂2

(
tknew

, tk′
old

))

p̂
(
y|knew, tknew

, k′new, tk′new
, ψ̂(tknew

, tk′new
), σ̂2

(
tknew

, tk′new

))




+ log



p
(
ψ̂|tknew

, tk′
old

)

p
(
ψ̂|tknew

, tk′new

)
p
(
σ̂2|tknew

, tk′
old

)

p
(
σ̂2|tknew

, tk′new

)

∣∣∣Ĉov
(
ψ̂
(
tknew

, tk′
old

)
, log

(
σ̂2
(
tknew

, tk′
old

)))∣∣∣
1
2

∣∣∣Ĉov
(
ψ̂
(
tknew

, tk′new

)
, log

(
σ̂2
(
tknew

, tk′new

)))∣∣∣
1
2

(2π)
d1−d2

2




+ log



p
(
knew, tknew

, k′old, tk′old

)

p
(
knew, tknew

, k′new, tk′new

)


 ,

where d1 = dim
(
ψ̂
(
tknew

, tk′
old

))
=

(k′old+2)(k′new+3)
2 , d2 = dim

(
ψ̂
(
tknew

, tk′new

))
=

(k′new+2)(k′new+3)
2 , d2 >

d1, and Ĉov
(
ψ̂, log(σ̂2)

)
= − 1

n
H
(
ψ̂, log(σ̂2)

)−1

, with

H
(
ψ̂, log

(
σ̂2
))

=

(
∂2 log

{
p(y|k, tk, k

′, tk, α, ψ, σ
2)p(α|tk)p(ψ|tk, tk′)p(σ

2|tk, tk′)/n
}

∂ (ψ, log(σ2))′ ∂ (ψ, log(σ2))

)−1
∣∣∣∣∣∣
α=α̂,ψ=ψ̂, σ2=σ̂2

.

From this, we get that
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log



p̂Lp

(
k′old, tk′old |knew, tknew

, y
)

p̂Lp

(
k′new, tk′new

|knew, tknew
, y
)




= log




p̂
(
y|knew, tknew

, k′old, tk′old , ψ̂(tknew
, tk′

old
), σ̂2

(
tknew

, tk′
old

))

p̂
(
y|knew, tknew

, k′new, tk′new
, ψ̂(tknew

, tk′new
), σ̂2

(
tknew

, tk′new

))




+ log



p
(
ψ̂|tknew

, tk′
old

)

p
(
ψ̂|tknew

, tk′new

)
p
(
σ̂2|tknew

, tk′
old

)

p
(
σ̂2|tknew

, tk′new

)

∣∣∣−H
(
ψ̂
(
tknew

, tk′
old

)
, log

(
σ̂2
(
tknew

, tk′
old

)))∣∣∣
1
2

∣∣∣−H
(
ψ̂
(
tknew

, tk′new
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Gelfand and Dey (1994) show that if the models are nested (which is guaranteed by Condition (1)) and if

the maximum likelihood estimators exist, then Kn = O(1). Note that existence of the maximum likelihood

estimators follows from Condition (3). Demidenko (2004) shows that if
∑n
i=1 (mi − (k′new + 2)) > knew + 2,

then the maximum likelihood estimators of α, ψ, and σ2 exist. Since Kn is bounded, for sufficiently large

values of n, Kn becomes negligible compared to d2−d1
2 log(n), and we can say that
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Figure 1: Plots of Models 1-2. (— —): f(x) +Gi(x), (——): f(x). The location of the fixed effect knots
are denoted with a • and the location of the random effect by a △.
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Figure 2: Marginal Distributions of k and k′ for Model 1 at n = 25. Average acceptance rates: Laplace -
72%, Plugged-In - 44%, Truth - 42%.
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Figure 3: Marginal Distributions of k and k′ for Model 2 at n = 25. Average acceptance rates: Laplace -
65%, Plugged-In - 39%, Truth - 44%.
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Figure 4: Marginal Distributions of k and k′ for Model 1 at n = 40. Average acceptance rates: Laplace -
68%, Plugged-In - 46%, Truth - 39%
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Figure 5: Marginal Distributions of k and k′ for Model 2 at n = 40. Average acceptance rates: Laplace -
59%, Plugged-In - 51%, Truth - 38%.
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Figure 6: Marginal Distributions of tk and tk′ for Model 1 at n = 25.
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Figure 7: Trace plots of tk′ for the Laplace and true chains for one simulated data set (for iterations 2000 -
3000). Note: The figures trace the positions of all elements in tk′ , not just the first. Thus, when the trace
splits into two lines, a random effect knot has been added.
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Figure 8: Protein content of milk measured in 25 cows on Barley diet
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Figure 10: Median and 95% pointwise credible intervals for cow-specific curve. (— —): Laplace. (
· · · · · · · · · ): Truth.
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