A Shrinkage Estimator for Spectral Densities: Web Appendix

Carsten H. Botts Michael J. Daniels

Department of Mathematics and Statistics Department of Statistics
Williams College University of Florida
Williamstown, Massachusetts 01267, USA Gainesville, Florida 32611, USA
cbotts@williams.edu mdaniels@stat.ufl.edu

Result 1. If Y ~ TNy (,uy, 032/) with py > 0, then E (Y3) < 6uyo? +2u3 + 803 + 14uioy.

Proof of Result 1: Let Y ~ TNy (uy,(f%). E (Y?’) = (%)‘ . where
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Simple Calculus and basic algebra show that
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Result 2. LetY be a K x 1 random vector such thatY ~ MV N (u,A) and let p ~ TMVN (5,T'). Then Y|A,3,T ~

py (y) where
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Proof of Result 2: First observe that since p ~ TMVN (8,T'), v ~ p,, (1) where
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From this, it is clear that
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Letting y = A (A +T) !

K
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y, the above expression can be set equal to
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Conclusion of Theorem 2: At the conclusion of Theorem 2, we claim that /

1
———p(@p)dp < oo when an
@
ARMA(p,0) model is specified. Following is the proof.
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The last integral written above is finite given that p(¢) is proper and [y, [¢i1¢r|p(¢)d¢p < oo for all pairs of autore-
gressive parameters.



Result 6. 72——0 in probability when the correct parametric model is specified.

Proof of Result 6: From Result 2, it is clear that p { fs (w)%

P(u‘})i 52177-2} =

=
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where U ~ N{ZI (Sr 4 720) 7" £ () + 72 (S0 4+ 720) 7 (w)%,(2;1+7_312[)’1}. Define 2 (w) = fs(w)} —
fp (W)

assumption is true. However, we assume that 72——0 is not true. If z (w) —0x«1 in probability, it is impled that

[

. We will begin by assuming that z (w) —0x«1 in probability; from Results 3 and 4, it is clear that this

z (w;) — 0 in probability for all | = pr {z (w;) > €} — 0 for all € > 0 and for all I. Without loss of generality, let
l=1. Then
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which contradicts pr {z (w;) > €} — 0 for all [. Note that the first inequality results since ¢ {fp (w) ,72} > 1 and

pr(U >0) > 0.5%.

Result 7.72 is bounded away from 0 when the model is incorrectly specified.

Proof of Result 7. This will be another proof by contradiction. Using the notation given in Result 6, assume that
fs (w)% —fp (w)% = 2z (w) —0 in probability is not true, yet assume that 72 — 0. If z (w) —0 in probability is
not true, then there exists some number j € {1,2,..., K} such that pr{z (w;) > €} > ¢ > 0 for some € and ¢ and for

infinitely many n. Without loss of generality, assume that 7 = 1. Then
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since c{fp (w)% ,72} < 0.5 % and pr (U > 0) < 1. Since it is known that X; — [0], , and it is assumed that

72 — 0, it is clear that the quantity in curly brackets goes to 0. This contradicts the assumption that z (w) —0 in

probability is not true, however. As a result, we can conclude that 72 — 0 is not true.



