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Abstract In order to make a missing at random (MAR) or ignorability assumption realistic,

auxiliary covariates are often required. However, the auxiliary covariates are not desired in

the model for inference. Typical multiple imputation approaches do not assume that the

imputation model marginalizes to the inference model. This has been termed ’uncongenial’

(Meng, 1994). In order to make the two models congenial (or compatible), we would rather

not assume a parametric model for the marginal distribution of the auxiliary covariates,

but we typically do not have enough data to estimate the joint distribution well non-

parametrically. In addition, when the imputation model uses a non-linear link function (e.g.,

the logistic link for a binary response), the marginalization over the auxiliary covariates

to derive the inference model typically results in a difficult to interpret form for effect of

covariates. In this article, we propose a fully Bayesian approach to ensure that the models

are compatible for incomplete longitudinal data by embedding an interpretable inference

model within an imputation model and that also addresses the two complications described

above. We evaluate the approach via simulations and implement it on a recent clinical trial.

Key Words: Congenial imputation; Multiple imputation; Marginalized models; Auxiliary

variable MAR.
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1. Introduction

In clinical studies, investigators often have a primary research question (with an associated

model). To make inference in the presence of incomplete data, a common approach is to

use multiple imputation (Lavori et al., 1995; Burns et al., 2011). To do multiple imputation

and make an assumption of missing at random more realistic, it is not uncommon to use

additional information (e.g., auxiliary covariates, v) that are not desired in the model for

the primary research question (particularly, for randomized studies). We denote as x the

covariates desired in the model for the primary research questions; we will call the model

p(y|x) the inference model. In recent years, it has become common practice for an investigator

to build both the imputation model (to do multiple imputation), p(y|v,x), which contains

both auxiliary covariates, v, and model covariates, x and the inference model, p(y|x), which

only contains model covariates, x.

There is a long literature on multiple imputation starting with Rubin (Rubin, 1978;

Little and Rubin, 1987) in the context of surveys. The two most common approaches

for the imputation model include a joint multivariate distribution for all missing variables

(Rubin and Schafer, 1990; Liu, 1995; Schafer, 1997) or specification of a series of conditional

models for each variable one at a time (Van Buuren et al., 1999; Raghunathan et al., 2001;

Gelman and Raghunathan, 2001). The latter, typically does not correspond to a valid joint

distribution for the variables to be imputed (Gelman and Raghunathan, 2001). For a recent

review of multiple imputation, see Kenward and Carpenter (2007).

To understand the relevant issues more clearly, we will introduce some additional notation.

Define the full data longitudinal response as y and the full data as (y, r), where r are

indicators informing which components of y are observed. The observed data is (yobs, r)

and the missing data is ymis. We define the missing data mechanism (mdm) as p(r|y)

(suppressing dependence on any covariates for now). The full data model, with parameters

ω, is defined as p(y, r|ω). The full data response model is p(y|ω); this is obtained from the

full data model after marginalizing over r.

We define missingness to be ignorable (Rubin, 1976) if the following three conditions hold:
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(1) The missing data mechanism is MAR (i.e., p(r|y) = p(r|yobs))

(2) The full data parameter ω can be decomposed as ω = (β,ψ), where

• β indexes the full-data response model p(y | β), and

• ψ indexes the missing data mechanism p(r | y,ψ).

(3) The parameters β and ψ are a-priori independent; i.e.,

p(β,ψ) = p(β)p(ψ).

A major advantage of ignorability is that there is no need to specify (explicitly) the form of

the mdm.

However, MAR may not hold when conditioning on observed data response and covariates

of interest for inference, x, but may hold if we also condition on auxiliary covariates. That

is,

p(r|yobs,ymis,x) 6= p(r|yobs,x) but

p(r|yobs,ymis,x,v) = p(r|yobs,x,v).

The latter condition has been called auxiliary variable MAR (A-MAR) (Daniels and Hogan,

2008).

As stated above, the advantage of incorporating v to yield A-MAR is that the mdm

p(r | y,v) can be ignored, under slightly modified conditions (given in Section 2). However,

even though auxiliary covariates are frequently used in the imputation model, it is typically

the case that

p(y|x) 6=
∫
p?(y|x,v)p(v|x)dv.

When the imputation model, p?(y|x,v) is not chosen to match the inference model (i.e., the

above equality does not hold), the imputation model has been termed ’uncongenial’ (Meng,

1994). Such an approach is not principled and has no mathematical justification in terms of

compatible probability models and Bayesian inference, particularly, in situations where the

same research group specifies both models.

Here, we propose a simple fully Bayesian modeling framework such that
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p(y|x) =

∫
p?(y|x,v)p(v|x)dv. (1)

i.e., the imputation model, p?(y|x,v) does marginalize to the inference model. In what

follows, we specify the imputation model for which (1) holds as p(y|x,v). Our approach

does not require two separate model fits and explicit multiple imputation. We will formulate

a full Bayesian imputation model that has the desired inference model embedded within it.

Unfortunately, two practical complications arise in implementing such an approach:

(1) Specification of p(v|x): This distribution is (basically) a nuisance parameter. As such, we

would prefer to not have incorrect inferences from the inference model due to a potentially

mis-specified parametric model for p(v|x), but we do not typically have enough data to

construct an efficient nonparametric estimate of p(v|x).

(2) Analytical form of E[Y |x]: Deriving the full data response model, p(y|x) (inference

model) from the imputation model, p(y|x,v) often results in a messy, hard to interpret

form for inference on the covariates in E[Y |x], especially for generalized linear models

with a non-identity link function.

For the first complication, since the goal of including auxiliary covariates is to make MAR

hold, it is advisable to include a rich set of auxiliary covariates. Similar ideas are also applied

for multiple imputation in general (Kenward and Carpenter, 2007). To specify a fully non-

parametric p(v|x) is thus even more challenging when the dimension of v is not small. Of

course, there is a trade-off between ensuring that MAR holds and avoiding multicollinearity

and computational issues in the imputation model.

The second complication can be seen in the simple setting of a cross-sectional binary

response, Y . Consider the following glm for the imputation model

g(E[Y |x,v]) = xβ + vα.

The (induced) mean regression for the inference model is

E[Y |x] =

∫
g−1(xβ + vα)p(v|x)dv.
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If g(·) is not the identify function, E[Y |x] will typically not be available in closed form

and will result in an inconvenient and complex interpretation of the regression effects of

inferential covariates x. For example, it may not be possible to interpret the effect of an

individual covariate conditional on a fixed value for the other covariates in the model.

In this paper, we propose an approach to ensure that (1) holds but that also addresses

these two complications. We will rely on shrinkage (Wang et al., 2010) for complication

1 and marginalized models (Heagerty, 2002; Roy and Daniels, 2008) for complication 2.

In Section 2, we describe our general approach under A-MAR (for which the missingness

need not be monotone), discuss model characteristics and properties, and discuss posterior

sampling strategies. In Section 3, we explore the model performance through a simulation

study. Section 4 implements the proposed approach for the analysis of a recent smoking

cessation clinical trial. Section 5 concludes with a wrap-up and discussion.

2. Approach

2.1 Auxiliary variable ignorability

We define missingness to be ignorable in the presence of auxiliary covariates if the following

three conditions hold:

(1) The missing data mechanism is A-MAR (i.e., p(r|y,x,v;ψ) = p(r|yobs,x,v;ψ))

(2) The full data parameter ω can be decomposed as ω = (α,ψ,θ), where

• α indexes the full-data response model conditional on auxiliary covariates p(y |

x,v;α),

• ψ indexes the missing data mechanism p(r | y,x,v;ψ), and

• θ indexes the marginal distribution of the auxiliary covariates p(v | x;θ),

(3) The two sets of parameters (α,θ) and ψ are a-priori independent; i.e.,

p(α,θ,ψ) = p(α,θ)p(ψ).
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2.2 Specification of compatible imputation and inference models

For our framework, we extend and modify recent models (Heagerty, 2002; Roy and Daniels,

2008) to the context of longitudinal data with ignorable (under A-MAR) missingness.

Denote Yit as a binary observation of subject i at time t. DenoteX∗it as covariates of interest

for subject i observed at time t; these include baseline covariates, X i (e.g., treatment) and

functions of time along with their potential interactions with X i. The marginal mean is

specified as

logit{E (Yit|x?
it;β)} = x?T

itβ. (2)

This is the inference model . The parameters β are of primary interest and are a function of

(α,θ) from the definition of A-MAR ignorability.

The imputation model conditions on previous Y ’s, on baseline inference covariates, X i and

baseline auxiliary covariates, V i,

logit {E (Yit|V i,X i, Yi,t−1;α,γ)} = ∆it + g(V i,X i;α) + γ?
ityi,t−1, (3)

where γ?
it = Zitγ, where Zit ∈ X?

it; if we set Zit = 1, there is a first order dependence

that does not depend on covariates or time. ∆it is a subject specific intercept at each time

that ensures the imputation and inference models match; more detail can be found below.

An example of the function g(V i,X i;α) would be V T
i α1 + (V i ∗X i)

Tα2. Note this model

also accounts for longitudinal dependence via the Markov term, γityi,t−1. The parameters

α = (α1,α2) represent the dependence of Yit on V i and are generally not of primary interest.

The subject specific intercept at time t, ∆it is determined by the following equality,

E (Yit|xi;β) =

∫
E (Yit|v,xi;α,γ) p(v|xi)dv, (4)

where

E (Yit|v,xi;α,γ) =
1∑

y=0

E (Yit|v,xi, Yi,t−1 = y;α,γ) p (Yi,t−1 = y|v,xi;α,γ) . (5)

(5) is the same as the marginalization relation from Heagerty (2002). So given (β,α,γ), we

can solve for ∆it; in the MCMC algorithm in Section 2.4, we update ∆it each time we update

any of these parameters. The condition in (4) is such that (1) holds and the marginal mean,
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E(Y |x) has a directly specified and interpretable form. To specify priors when there is a

lack of prior information, we use diffuse normal priors, N(0,A) for (α,β,γ); here A = 103I.

In the development here, we assume the inference and auxiliary covariates are fully ob-

served. Auxiliary covariates that are MAR could easily be addressed by adding an augmen-

tation step to the posterior computations described in Section 2.4.

In terms of the modelling, the remaining component is specification of the joint distribution

of the auxiliary covariates, p(v|x). We detail this in the next section.

2.3 Specification of, and priors for, the distribution of the auxiliary covariates

In the following, we focus on the case where all components of v are categorical. In situations

where there are continuous covariates, we assume there is a natural discretization (e.g., see

the example in Section 4). In a setting of a randomized trial, x is often just a treatment

indicator. As such, modeling can be done separately for each treatment (i.e., each value of

x) or be done by assuming p(v|x) ≡ p(v) (e.g. for randomized trials). As such, for ease

of notation, we will not condition on x in what follows. We assume v has p components

and the jth component has Lj levels/categories. Given that we do not want to impose

strong parametric assumptions on the joint distribution of v, we start out with a saturated

model, which here corresponds to a multinomial with
∏p

j=1 Lj categories and (
∏p

j=1 Lj)− 1

parameters, θ. In most cases, the data will be too sparse to estimate the probability of each

category well. To overcome this obstacle, we will shrink the saturated model to a simpler

model in a computationally efficient way (see, e.g., Wang et al., 2010). In particular, we

assume a Dirichlet distribution on θ with precision parameter η and prior expectation of

a simple form. For example, here we specify the prior expectation of the joint distribution

of v as the product of the marginals, p(v) = p(v1)p(v2) · · · p(vp), resulting in
∑

j(Lj − 1)

parameters in the Dirichlet prior. We denote the set of expectation parameters as π and the

full set of parameters as θ? = (θ,π, η). We provide more modelling details next.

Let l = {l1, l2, . . . , lp} denote a realization of V with each of the p categorical covariates

being lj ∈ {1, . . . , Lj} for all j. Let N = {Nl;∀l} be a realization of the entire vector of
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auxiliary covariates, V , with Nl the number of subjects with V = l. Let θl be P (V = l) and

θ = {θl;∀l} is thus the collection of θl. [N |θ] follows a (saturated) multinomial distribution.

We assign a shrinkage prior on θ as follows. First, we assume that θ ∼ Dir(a), with

a = {al : ∀l} a function of (π, η) as follows

f(θ) ∝
∏
l

θ
al−1

l .

where

al =
1

η

p∏
j=1

πj,lj

with
∑Lj

k=1 πj,k = 1 for all j; thus, η and π are the hyperparameters of this Dirichlet prior.

This prior has as expectation the product of the marginal probabilities of the p components

of V .

The full model specification is then given as

N |θ ∼ Multinomial(number of subjects;θ)

θl|π1, . . . , πp, η ∼ Dir({1

η

p∏
j=1

πj,lj})

For each realization of V , l, the prior expectation and variance of θl = P (V = l) are given

by

E(θl|π1, . . . , πp, η) =

p∏
j=1

πj,lj

and

Var(θl|π1, . . . , πp, η) =
η

η + 1

p∏
j=1

πj,lj(1−
p∏

j=1

πj,lj).

As η → 0, the variance goes to zero. Hence, η is a shrinkage parameter and controls the

amount of shrinkage (toward marginal independence of the categorical covariates); when

η = 0, there is complete shrinkage toward the mean of the Dirichlet prior (which corresponds

to marginal independence).

For the hyperparameters of the Dirichlet prior, we assign a Dir(1) as a hyperprior on
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πj = {πj,1, . . . , πj,Lj
} for all j and a uniform shrinkage prior on η (Daniels, 1999). That is,

πj ∼ Dir(11×Lj
) ∀j

η ∼ p(η) =

∑
lNl

(η
∑

lNl + 1)2
.

The derivation of the prior for η is given in Web Appendix A. The uniform shrinkage prior

for η has several desirable properties. It is a proper prior and it is flat on the shrinkage factor

(see Web Appendix A) and thus can be viewed as noninformative. The prior median is 1∑
Nl

.

Thus there is less shrinkage as the sample size increases.

2.4 Posterior Computations

We now provide some details on posterior computations.

Likelihood: Define the entire parameter vector as ω = (ω?,θ?), where ω? = (β,α,γ) and

θ? = (θ,π, η). The likelihood is given by

L (ω|y1, · · · ,yn,x,v) =
∏
i

p (y1, · · · ,yn|v,x) p(v|x)

=
∏
i

ni∏
t=2

{p (yit|vi,x?
it, yi,t−1)}p (yi1|vi,x?

i1)p (vi|xi) ,

where ni is the number observations for subject i (assuming monotone missingness); note for

intermittent missingness, the observed data likelihood would appropriately average over the

missing responses. The posterior distribution of interest is p(ω|yobs,v,x) can be factored

as

p(ω|yobs,v,x) = p(ω?|yobs,v,x)p(θ?|v,x)

since p(θ?|v,x,yobs) = p(θ?|v,x).

We follow the steps below at each iteration for posterior sampling:

(1) Use slice sampling to sample each πj,lj (j = 1, . . . , p, lj = 1, . . . , Lj) of π from p(π|η,θ,v,x)

and sample η from p(η|π,θ,v,x).

(2) Sample θ from a Dirichlet distribution p(θ|π, η,v,x).

(3) Use Gibbs sampling with the Metropolis-Hastings steps for sampling β, α and γ from

p(β|α,γ,yobs), p(α|β,γ,yobs), and p(γ|β,α,yobs), respectively. To do this, for each
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parameter update, we use the Newton method to solve for ∆it in (3) for all i and all t

in order to compute the observed data likelihood p(yobs|β,α,γ,v,x).

See further details in Web Appendix B.

Note that our approach does not explicitly require multiple imputation but only requires

one posterior based on the proposed model. In our data example, we only have dropout

(monotone missingness) thus we do not need data augmentation. If we had intermittent

missingness, we would fill in those responses at each iteration using data augmentation. See

Web Appendix B for specifics.

2.5 Properties

The specification of the inference (marginal mean) model is usually determined by the

research objectives. Misspecification of the inference model is generally not a major issue.

However, there is a less clear understanding about the impact of covariates on the missing

data mechanism, especially when the number of the covariates is large. As a principle, we

may at times include extra covariates in the imputation model to make it more likely that

A-MAR holds.

The proposed modeling approach has the following properties if extra un-needed auxiliary

covariates are included in the imputation model. For each, we assume all necessary auxiliary

covariates are included in the model.

• Property 1: The interpretation of β is invariant to unnecessary auxiliary covariates.

• Property 2: The posterior distribution of β is consistent in the presence of unnecessary

auxiliary covariates.

In the following, we denote as v the necessary auxiliary covariates and v? as the unnecessary

auxiliary covariates. We provide a heuristic argument below for why these two properties

hold.
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Property 1 can be understood via the following expression:

E(Y |x) =

∫ ∫
yp(y|v,x)p(v|x)dvdy

=

∫ ∫
yp(y|v,v?,x)p(v?|v,x)p(v|x)dv?dvdy.

That is, the marginal mean of Y (and its interpretation) is invariant to the inclusion of v?.

Property 2 can be understood by noting that the observed data (i.e., yobs, r) distribution

conditional on needed auxiliary covariates, v is the same as that when including un-needed

covariates, v?

p(yobs, r|x,v) =

∫
p(y, r|x,v)dymis

= p(r|yobs,x,v)

∫
p(y|x,v)dymis

= p(r|yobs,x,v)

∫
p(y|x,v,v?)p(v?|v,x)dv?dymis

= p(r|yobs,x,v,v
?)

∫
p(yobs|x,v,v?)p(v?|x,v)dv?

=

∫
p(yobs, r|x,v,v?)p(v?|x,v)dv?.

The second to last equality holds since v? are unnecessary auxiliary covariates and as such

they are not present in the missing data mechanism once we condition on yobs, x, and

v. Thus if the estimators of the mean parameters, β are consistent without unnecessary

auxiliary covariates, they will also be consistent with unnecessary auxiliary covariates based

on the expressions above and Property 1.

3. Simulations

We conduct simulations to better understand the finite sample properties of our approach.

In particular, we design the simulations to examine three scenarios.

• Situation where the MNAR coefficient in the mdm is much smaller (or zero) when the

appropriate auxiliary covariates, v are included.

• Comparison of shrinkage prior for the distribution of p(v|x) to a non-informative prior.
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• Robustness of marginal mean parameters, β to inclusion of V ’s that are not necessary for

A-MAR (as discussed in Section 2.5).

We provide details on the setup next.

3.1 Simulation Setup

Auxiliary Covariates

To simulate the auxiliary covariates, we draw samples from

V ∗p×1 ∼ N(0p×1,Σp×p),

where p = 8, Var(V ∗j ) = 1 for j = 1, . . . , p and Cov(V ∗j , V
∗
j′) = 0.4 for j 6= j′. We then

dichotomize V ∗ and define Vj = I(V ∗j > κj), where

κ = (−0.6,−0.8,−0.7,−0.8,−0.5,−0.9,−0.9,−0.7).

Inference (Marginal mean) and Imputation (Conditional) Models

The inference and imputation models for the simulation study are specified as

logitP (Yit = 1) = β0 + β1(t− t̄). (6)

logitP (Yit|V i, Yi,t−1) = ∆i,t +

p∑
j=1

αjVij + γYi,t−1 (7)

for t = 0, . . . , T . Here, we set T = 3. For ease of notation, we let Y−1 ≡ 0.

We simulate the complete response data Y using the parameter values given in Table 1.

Specification of Missing Data Mechanism

We specify the missing data mechanism with the following form,

logitP (Rit = 0|Ri,t−1 = 1,Y i,V i) = ψ0 +

p∑
j=1

ψjVij + φ0Yi,t−1 + φ1Yit, (8)

where Rit = I(Yit is observed) and φ1 = 0. The values of ψ and φ are given in Table 1. With

these values, the missing data rate at T = 3 is about 49%. To evaluate the impact of the

auxiliary covariates on the MDM, we fit the following model

logitP (Rit = 0|Ri,t−1 = 1,Y i,V i) = ψ∗0 + φ∗0Yi,t−1 + φ∗1Yit

to 20, 000 complete responses Y , generated by (6) and (7) and missing data indicators R
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generated by (8). With the auxiliary covariates (incorrectly) ignored, we obtain φ̂∗1 = 0.36

which indicates a strong dependence of Rit on Yit and missing not at random.

Inclusion of V ’s unnecessary for A-MAR

To evaluate the robustness to inclusion of v’s that are unnecessary for A-MAR, but

predictive of y, we set the coefficients of V5, . . . , V8 (ψ5, . . . , ψ8) to zero in the MDM in

(8). We examine the efficiency in terms of estimation of β in this context.

Models considered

We consider five different models: 1) model without auxiliary covariates; 2) model with

the necessary auxiliary covariates plus unnecessary ones and the shrinkage prior for their

distribution; 3) model with the necessary auxiliary covariates plus unnecessary ones and the

noninformative prior for their distribution; 4) model with the necessary auxiliary covariates

and the shrinkage prior for their distribution; 5) model with the necessary auxiliary covariates

and a noninformative prior for their distribution. For the noninformative prior for the

distribution of the auxiliary covariates, we use a Dir(1) prior on θ = {θl}.

3.2 Simulation Results

We simulated 400 datasets each for sample sizes of 100, 200, and 20000. For posterior

sampling, we used 10000 iterations after a burn-in of 2500 iterations. To evaluate the

estimation of the distribution of the auxiliary covariates, p(v), we report a Pearson’s Chi-

square of p(v), ∑
v

(P (V = v)− EP (V = v|N ))2

P (V = v)
,

where v are categories of V . For the other parameters, we report bias and mean square error

(MSE).

Table 2 shows point estimates for the five models considered and for the three sample

sizes. The results show that when the missing data mechanism is A-MAR, ignoring V can

result in significant bias (as expected); this is seen (in particular) in the slope, β1 which then

propagates to large bias in the response probabilities, P (Yt = 1|X), especially for t = 2, 3. On

the other hand, when the ”correct” auxiliary covariates are conditioned upon and A-MAR
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holds, adding unnecessary auxiliary covariates to the imputation model will not introduce

bias for β, which is important given that the inference model is obtained by integrating all of

the auxiliary covariates out of the imputation model. Such a feature is desirable in practice

as it implies that when there are no issues with collinearity, researchers may choose to be

conservative and include extra auxiliary covariates as opposed to focusing on model selection

for the auxiliary covariates. However, when the sample size is small, we see that there is some

loss of efficiency from including extra, unnecessary auxiliary covariates (in terms of MSE of

β), but this goes away as the sample size increases. Also, for small sample sizes, we see some

loss of efficiency and small biases for fully observed responses (e.g., Y0), but not for responses

with missingness (e.g., Y3).

The results also show that the shrinkage approach for the joint distribution of the auxiliary

covariates performs better for the estimation of P (Yj) and p(v) than the non-informative

prior approach especially when sample size is not large (and the dimension of v is not small);

for the latter this often results in sparsity in the joint distribution of the auxiliary covariates.

We note that here that even though the marginal independence assumption on the categorical

auxiliary covariates is not correct, gains were still seen from shrinking toward this simple

structure.

Table 3 shows the 90% credible interval coverage rates. Note that precision of the coverage

estimates in the table are ±.04 (i.e., ±2 SE’s). The coverage for the shrinkage approach using

only the necessary auxiliary covariates is very good (though a bit conservative); a slight

benefit (in terms of coverage) is seen over the noninformative approach for small sample

sizes. The model without auxiliary covariates has coverage that gets worse as the sample

size increases. The model with the extra auxiliary covariates has coverage a bit below the

nominal level; the importance of shrinkage for estimating the distribution of the auxiliary

covariates is very clear in this case as the coverage under the noninformative prior is not

very good.
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4. Smoking Cessation Trial

The Commit to Quit (CTQ) study was a randomized, controlled, prospective trial designed

to evaluate the effect of exercise on smoking cessation (Marcus et al., 1999). The inclusion

criteria required the participants to be healthy women aged 18 to 65, who smoked ten or

more cigarettes per day for more than three years and exercised less than 90 minutes per

week for at least 6 months.

All participants joined a 12-week, group-based, cognitive-behavioral smoking cessation

program. In addition, the treatment arm participants were required to exercise three sessions

per week with exercise specialist supervision. To eliminate the potential bias of treatment

effect due to added staff time, the control arm participants were given three supervised

health education lectures per week. Smoking cessation status was measured weekly by self-

report of the number of cigarettes smoked daily and confirmed by analyzing cotinine in

saliva and carbon monoxide in end-expiratory air. The target quit day was week 4 following

randomization.

A total of 134 female smokers were randomized to the treatment exercise arm (X = 1)

and 147 were randomized to control (X = 0). The dropout was substantial: at the end of the

12-week follow up, the dropout rates were 30.6% and 34.7% for the treatment and control

arm respectively. However, these rates were less than in many cessation trials.

The baseline covariates collected on the CTQ trial included demographic and psychosocial

predictors and smoking histories. As auxiliary covariates that significantly predict smoking

cessation and drop out, we consider in the following analysis: education, length of previous

quit attempts, and age (Borrelli et al., 2002). The discretization of the covariates was based

on their clinical interpretation (Table 4).

By randomization, V is independent of treatment assignment X (i.e. p(v|X = x) = p(v)

for x = 0 and 1) for CTQ data analysis. We focus on the CTQ data after the target quit

time point, and define the ‘baseline’ response Y0 as the last observed smoking status between

week 1 to week 4. That is, Y0 = Yt′ where t′ = maxt∈1,...,4{Yt observed}. The inference model



16 Biometrics, 000 0000

is specified as:

logit{E (Yi,0|X = xi;β)} = β0,xi

logit{E (Yit|X = xi;β)} = β1,xi
, 5 ≤ t ≤ 12

and the imputation model is specified as

logit {E(Yi,5|V i, Yi,0, Xi;α,γ)} = ∆i,5 + g(V i, Xi;α) + γ0yi,0

logit {E(Yit|V i, Yi,t−1, Xi;α,γ)} = ∆i,t + g(V i, Xi;α) + γ1yi,t−1, 6 ≤ t ≤ 12

with

g(V i, Xi;α) = α1∗ YrsEduci + α2∗ RectQuiti + α3∗ LongQuiti + α4∗ Agei,

and not depending on Xi.

In our analysis here, we assume A-MAR (conditional on observed responses, treatment, and

auxiliary covariates); we expect this assumption to be more reasonable than MAR (which

does not condition on any auxiliary covariates). The posterior sampling is based on 20000

iterations with a thinning factor of 2 and a burn-in of 4000. Multiple chains and trace plots

were used to verify the convergence (not shown).

Figure 1 presents various estimates of p(v), including the observed frequencies of V as

the empirical results, the posterior mean of p(v) using the shrinkage method, the posterior

mean of p(v) using non-informative priors, and the empirical estimation of p(v) assuming

auxiliary covariates are independent. From the results, we see that the estimates under the

shrinkage prior are shrunk toward the estimated p(v) assuming the auxiliary covariates are

independent. Thus, the shrinkage method allows information sharing by collapsing over V

categories, which may be preferable especially when the data are extremely sparse.

The posterior means and 95% credible intervals for parameters β and α are reported

in Table 5. We define significance as the 95% credible intervals excluding the null value

(here, zero). We note the differences in β1,Exercise and in β1,Control between the model without

auxiliary covariates and the models with auxiliary covariates. We also point out the slightly

narrower confidence intervals for these two parameters for the shrinkage approach versus
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the noninformative prior approach. Also, in terms of the auxiliary covariates, the covariate

LongQuit (days of longest quit before the program) was significant with those with longer

previous quit attempts less likely to be smoking.

Figure 2 shows the posterior density of the difference of smoking cessation rates between

the exercise and control group and displays the (slight) shift in the posterior from excluding

the auxiliary covariates. Posterior summaries for the difference of smoking cessation rates

between the exercise and control group corresponding to the different approaches is reported

in Web Appendix C. The biggest difference is between the no auxiliary covariate approach

vs. the three auxiliary covariate approaches.

5. Discussion

We have proposed a fully Bayes approach to allow the imputation and inference models to

be compatible that provides for a simple interpretation of the coefficients of covariates in the

inference model (which is embedded within the imputation model). Simulations show that the

approach is robust to inclusion of unnecessary auxiliary covariates and shrinkage estimation

of the (marginal) distribution of auxiliary covariates leads to more efficient inferences. In the

CTQ data analysis, we incorporated clinically relevant covariates such as length of previous

quit attempts in the imputation model of the proposed approach. As the result, the difference

of the smoking cessation rate between the control and the exercise arm was smaller when the

auxiliary covariates were taken into account, indicating the evidence for the positive effect

of the intervention may be weaker than shown under an (incorrect) MAR assumption. The

objective here was to move closer to an MAR assumption being correct by including auxiliary

covariates. However, the missingness may still be MNAR. We are working on extending these

models to MNAR and allowing for sensitivity parameters.

Numerous other extensions to this approach are apparent. In terms of covariates, extending

our approach to continuous (i.e., not discretizing) and time-varying covariates (possibly with

missingness) would be very useful. For the shrinkage priors for the distribution of auxiliary

covariates, alternative shrinkage targets based on parsimonious log linear models would allow
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more flexibility; computations might be facilitated by estimating the hyperparameters using

maximum likelihood and then using an empirical Bayes type approach.

In addition, further work is needed on the best approaches to decide which auxiliary

covariates to include, which depends on being needed for MAR but also, being predictive of

the response. Approaches like those in (Wang et al., 2012) could be useful here. To allow

for the possibility of many auxiliary covariates, we might put priors on the coefficients in

the imputation model that are shrunk towards zero with an unknown variance and/or use a

spike and slab prior (Ishwaran and Rao, 2005).

We are currently working on comparing the proposed approach to approximate Bayesian

and frequentist approaches that are not congenial. We will explore the extent of bias as a

function of how ’uncongenial’ particular inference and imputation models are to obtain a

better understanding of the practical implications of not having congenial models.

6. Supplementary Materials

Web Appendices, Tables referenced in Sections 2 and 4 and the R code implementing our

algorithm are available with this paper at the Biometrics website on Wiley Online Library.

The R code is also available at www.sbs.utexas.edu/mjdaniels.
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Auxiliary Covariates: p(V)
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Figure 1. Estimates of p(v) based on the empirical distribution (empirical) and the
empirical distribution under independence (independent) and posterior means using the
shrinkage and noninformative priors.
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Table 1
Simulation Parameter Values.

Marginal Transition MDM

β0 0.5 α1 0.4 α6 0.6 ψ0 -3.5 ψ5 0 φ1 0
β1 0.25 α2 0.3 α7 0.3 ψ1 0.6 ψ6 0

α3 0.5 α8 0.7 ψ2 0.7 ψ7 0
α4 0.9 γ 0.3 ψ3 0.5 ψ8 0
α5 0.8 ψ4 0.4 φ0 0.5
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Table 2
Simulation results: posterior mean (MCSE) for ignoring all auxiliary covariates (No V), shrinkage (Shrinkage∗) and

non-informative (Noninform∗) methods considering extra V, and shrinkage (Shrinkage) and non-informative

(Noninform) methods ignoring extra V. E(MSE of β) = E(
∑

(β̂ − β)2),

E(MSE of P (Yt)) = E(P̂ (Yt = 1)− P (Yt = 1))2.

No V Shrinkage∗ Noninform∗ Shrinkage Noninform

Sample Size 100
103 ∗ χ2 of P (V ) NA 20.34(0.54) 55.12(0.30) NA NA

Bias β0 0.17(0.01) 0.19(0.01) 0.75(0.01) 0.14(0.01) 0.16(0.01)
Bias β1 0.11(0.00) 0.09(0.00) 0.09(0.00) 0.09(0.00) 0.09(0.00)

103∗MSE β0 41.33(2.57) 50.51(3.05) 592.59(11.6) 30.44(2.39) 38.10(2.32)
103∗MSE β1 19.95(1.26) 13.72(0.96) 12.14(0.83) 12.96(0.89) 11.84(0.80)

Bias P (Y0) 0.03(0.00) 0.05(0.00) 0.18(0.00) 0.04(0.00) 0.04(0.00)
Bias P (Y1) 0.03(0.00) 0.04(0.00) 0.18(0.00) 0.03(0.00) 0.03(0.00)
Bias P (Y2) 0.04(0.00) 0.04(0.00) 0.17(0.00) 0.03(0.00) 0.04(0.00)
Bias P (Y3) 0.06(0.00) 0.05(0.00) 0.16(0.00) 0.04(0.00) 0.04(0.00)

103∗MSE P (Y0) 1.9(0.13) 3.61(0.23) 35.46(0.85) 2.04(0.14) 2.43(0.16)
103∗MSE P (Y1) 1.48(0.10) 2.46(0.15) 33.58(0.66) 1.24(0.09) 1.73(0.11)
103∗MSE P (Y2) 2.8(0.18) 2.61(0.17) 31.29(0.75) 1.54(0.11) 2.11(0.14)
103∗MSE P (Y3) 5.37(0.35) 3.47(0.25) 29.44(1.01) 2.40(0.18) 3.13(0.23)

Sample Size 200
103 ∗ χ2 of P (V ) NA 12.90(0.35) 33.96(0.25) NA NA

Bias β0 0.13(0.00) 0.15(0.01) 0.59(0.01) 0.10(0.00) 0.10(0.00)
Bias β1 0.09(0.00) 0.06(0.00) 0.06(0.00) 0.06(0.00) 0.06(0.00)

103∗MSE β0 26.51(1.66) 32.5(2.01) 359.52(5.96) 14.47(1.03) 16.93(1.16)
103∗MSE β1 11.9(0.69) 5.54(0.40) 4.87(0.34) 5.29(0.38) 5.04(0.36)

Bias P (Y0) 0.03(0.00) 0.04(0.00) 0.14(0.00) 0.03(0.00) 0.03(0.00)
Bias P (Y1) 0.02(0.00) 0.03(0.00) 0.14(0.00) 0.02(0.00) 0.02(0.00)
Bias P (Y2) 0.04(0.00) 0.03(0.00) 0.13(0.00) 0.02(0.00) 0.02(0.00)
Bias P (Y3) 0.05(0.00) 0.03(0.00) 0.12(0.00) 0.03(0.00) 0.03(0.00)

103∗MSE P (Y0) 1.01(0.07) 2.45(0.15) 21.37(0.46) 1.08(0.07) 1.18(0.08)
103∗MSE P (Y1) 0.91(0.06) 1.71(0.11) 19.91(0.34) 0.65(0.05) 0.79(0.06)
103∗MSE P (Y2) 1.82(0.11) 1.54(0.10) 18.05(0.36) 0.71(0.05) 0.88(0.06)
103∗MSE P (Y3) 3.37(0.19) 1.72(0.12) 16.21(0.46) 1.02(0.07) 1.23(0.09)

Sample Size 20000
103χ2 of P (V ) NA 0.06( 0.00) 0.06( 0.00) NA NA

Bias β0 0.11( 0.00) 0.01( 0.00) 0.02( 0.00) 0.01( 0.00) 0.01( 0.00)
Bias β1 0.08( 0.00) 0.01( 0.00) 0.01( 0.00) 0.01( 0.00) 0.01( 0.00)

103∗MSE β0 12.99( 0.13) 0.20( 0.01) 0.33( 0.02) 0.14( 0.01) 0.14( 0.01)
103∗MSE β1 6.73( 0.06) 0.05( 0.00) 0.05( 0.00) 0.06( 0.00) 0.06( 0.00)

Bias P (Y0) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00)
Bias P (Y1) 0.02( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00)
Bias P (Y2) 0.03( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00)
Bias P (Y3) 0.04( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.00( 0.00)

103∗MSE P (Y0) 0.01( 0.00) 0.01( 0.00) 0.02( 0.00) 0.01( 0.00) 0.01( 0.00)
103∗MSE P (Y1) 0.26( 0.00) 0.01( 0.00) 0.02( 0.00) 0.01( 0.00) 0.01( 0.00)
103∗MSE P (Y2) 0.99( 0.01) 0.01( 0.00) 0.02( 0.00) 0.01( 0.00) 0.01( 0.00)
103∗MSE P (Y3) 1.91( 0.02) 0.01( 0.00) 0.02( 0.00) 0.01( 0.00) 0.01( 0.00)
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Table 3
Simulation results: posterior 90% CI coverage rate for ignoring all auxiliary covariates (No V), shrinkage

(Shrinkage∗) and non-informative (Noninform∗) methods considering extra V, and shrinkage (Shrinkage) and
non-informative (Noninform) methods ignoring extra V.

No V Shrinkage∗ Noninform∗ Shrinkage Noninform

Sample Size 100
β0 0.86 0.81 0.01 0.94 0.87
β1 0.89 0.92 0.92 0.94 0.94

P (Y0) 0.95 0.86 0.04 0.95 0.92
P (Y1) 0.91 0.82 0.01 0.94 0.90
P (Y2) 0.82 0.84 0.02 0.93 0.88
P (Y3) 0.84 0.87 0.17 0.93 0.90

Sample Size 200
β0 0.80 0.74 0.00 0.93 0.89
β1 0.85 0.94 0.95 0.96 0.95

P (Y0) 0.94 0.80 0.01 0.92 0.92
P (Y1) 0.88 0.73 0.00 0.93 0.91
P (Y2) 0.77 0.81 0.00 0.94 0.92
P (Y3) 0.77 0.89 0.05 0.95 0.94

Sample Size 20000
β0 0.00 0.86 0.71 0.92 0.91
β1 0.00 0.92 0.89 0.92 0.90

P (Y0) 0.88 0.89 0.78 0.91 0.92
P (Y1) 0.00 0.84 0.71 0.93 0.92
P (Y2) 0.00 0.87 0.73 0.92 0.92
P (Y3) 0.00 0.89 0.79 0.91 0.91
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Table 4
CTQ Auxiliary Covariates

Auxiliary Definition
Covariate 0 1 Description

YrsEduc ≤ 15 > 15 years of education. 0:no advanced degree, 1:advanced
degree

RectQuit ≤ 21 > 21 days of most recent quit before program. 0:shorter than
3 weeks, 1:longer than 3 weeks

LongQuit ≤ 180 > 180 days of longest quit before program. 0:shorter than 6
month, 1:longer than 6 month

Age ≤ 30 > 30 age. 0:younger than 30, 1:older than 30
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Table 5
Posterior mean (95% CI) of the model parameters

Par No Auxiliary V Noninformative Shrinkage LongQuit Only

β0,Control -2.68(-3.42,-2.06) -2.67(-3.39,-2.03) -2.66(-3.39,-2.02) -2.67(-3.39,-2.03)
β1,Control -0.85(-1.19,-0.54) -0.82(-1.14,-0.50) -0.81(-1.14,-0.49) -0.83(-1.16,-0.52)
β0,Exercise -2.37(-3.04,-1.78) -2.40(-3.07,-1.82) -2.38(-3.03,-1.80) -2.40(-3.06,-1.82)
β1,Exercise -0.49(-0.80,-0.19) -0.53(-0.83,-0.22) -0.52(-0.82,-0.22) -0.53(-0.83,-0.24)

γ0 2.40( 1.30, 3.67) 2.30( 1.18, 3.59) 2.31( 1.19, 3.57) 2.30( 1.18, 3.58)
γ1 4.97( 4.58, 5.37) 4.93( 4.54, 5.34) 4.93( 4.54, 5.34) 4.92( 4.53, 5.33)

α1 (YrsEduc) NA 0.12(-0.23, 0.47) 0.12(-0.24, 0.47) NA
α2 (RectQuit) NA -0.02(-0.36, 0.33) -0.02(-0.36, 0.32) NA
α3 (LongQuit) NA 0.58( 0.25, 0.92) 0.58( 0.24, 0.92) 0.57( 0.24, 0.91)

α4 (Age) NA 0.06(-0.44, 0.57) 0.06(-0.43, 0.57) NA


