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Summary: We explore the use of a posterior predictive loss criterion for model selection for

incomplete longitudinal data. We begin by identifying a property that most model selection criteria

for incomplete data should consider. We then show that a straightforward extension of the Gelfand

and Ghosh (1998) criterion to incomplete data has two problems. First, it introduces an extra term

(in addition to the goodness of fit and penalty terms) that compromises the criterion. Second, it

does not satisfy the aforementioned property. We propose an alternative and explore its properties

via simulations and on a real dataset and compare it to the deviance information criterion (DIC). In

general, the DIC outperforms the posterior predictive criterion, but the latter criterion appears to

work well overall and is very easy to compute unlike the DIC in certain classes of models for missing

data.
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1. Introduction

When several parametric models are under consideration, it is often of interest to determine

which one fits the data the best. More specifically, choosing a probability model for the

observed Y , indexed by m, conditioned on a parameter vector θ(m),

p(y|m, θ(m)),m ∈ M , θ(m) ∈ Θ(m)

where M is the model space and Θ(m) is the parameter space. We choose the model with the

best value for the chosen criterion.

In the context of Bayesian inference, there have been many criteria proposed for model

selection. We will briefly review three popular choices: Bayes Factors (BF), likelihood based

penalized criteria, and posterior predictive distribution based criteria. We will then discuss

issues in using these different criteria for incomplete longitudinal data.

1.1 Bayes Factors

The standard Bayesian approach to compare models is based on the ratio of marginal

likelihoods, or the Bayes Factor (for an excellent review, see Kass and Raftery, 1995). The

marginal likelihood for model m is defined as

p(y|m) =

∫
p(y|θ(m),m)p(θ(m)|m)dθ(m).

The main issues with Bayes Factors are related to computation (i.e., of the marginal

likelihoods of the models under consideration) and the need to use proper priors for the

parameters being ’compared’ across models. However, an attractive feature of Bayes Factors

is their connection to posterior model probabilities; among other things, this provides a good

way to calibrate them.

Chib and colleagues (Chib, 1995; Chib and Jeliazkov, 2001 & 2005) in a series of papers

have proposed computationally efficient ways to compute Bayes Factors using MCMC output.

Recent work by Johnson and colleagues (2005, 2009) have proposed Bayes Factors based on

test statistics. We will connect Johnson’s work to our approach later.
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1.2 Likelihood based penalized criteria

Given the popularity of sampling based approaches to compute posterior distributions,

the most common likelihood based penalized criterion is the ’easy to compute’ Deviance

information criterion (DIC). Spiegelhalter et al (2002) proposed this criterion which is

composed of two terms, a goodness of fit term and a complexity/penalty term. The goodness

of fit term is the deviance evaluated at a summary of the posterior distribution of the

parameters (often the posterior mean). The complexity penalty is defined as the posterior

mean deviance (D) minus the deviance evaluated at the posterior mean of the parameters;

this is related to the idea of residual information. Two of the drawbacks of this criterion

are the lack of invariance to the parameterization of the model and the choice of the

likelihood in hierarchical/multilevel models. The seminal paper by Spiegelhalter et al. has

been followed by numerous papers examining the DIC in more complex settings. Quite

relevant for our setting is the work of Celeux et al (2006) who proposed several versions of

DIC for settings with missing data. However, their recommendations were based on latent

data, not responses that could be observed. We focus on the latter. Daniels and Hogan (2008)

and Wang and Daniels (2011) recommended constructing the DIC based on the observed

data likelihood for comparison of models based on incomplete data with the latter examining

its performance with simulation studies. Treating the missing responses as ’latent’ data and

using the recommendations in Celeux et al. will result in criteria that do match satisfy desired

properties, including the one to be introduced in Section 1.4.

1.3 Posterior Predictive Distribution Based Criteria

Numerous papers have proposed Bayesian criteria based on the posterior predictive distri-

bution (Geisser and Eddy, 1979; Laud and Ibrahim, 1994; Ibrahim and Laud, 1995; Gelman,

Meng and Stern, 1996; Gelfand and Ghosh, 1998; Ibrahim, Chen, and Sinha, 2001; Chen,

Dey, and Ibrahim, 2004). The posterior predictive distribution for the replicated data yrep
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under model m is given by

p(yrep|y,m) =

∫
p(yrep|θ(m),m)π(θ(m)|y,m)dθ(m).

In what follows, for clarity we drop dependence on the model m. Ibrahim and colleagues have

proposed general Bayesian criteria from the posterior predictive distribution of the data. In

general, good models should make predictions, yrep close to what was observed, y. Ibrahim

and Laud (1994) defined their criterion as the expected squared Euclidean distance between

y and yrep,

L = E{(yrep − y)
′
(yrep − y)},

where the expectation was taken with respect to the posterior predictive distribution, p(yrep|y).

L can be re-expressed as

L =
n∑
i=1

[
Var(yrep,i|y) + {E(yrep,i|y)− yi}2

]
.

They call the proposed predictive criterion the L-measure. They examined the L-measure in

detail for a variety of models. They also suggest approaches for calibration of the criterion

and explore a variety of weighting strategies.

Gelfand and Ghosh (1998) proposed a more general loss function

L(yrep, a;y) = L(yrep, a) + kL(y, a), k > 0.

For a model m they minimized E{L(yrep, a;y)|y}, the posterior predictive expectation of

the loss with respect to an action, a. We provide some more details on this approach in

Section 2 and use this as the starting point for our proposal. Chen et al. (2004) later used

this loss function in the context of categorical regression models.

Model comparison is an important part of inferential statistics. We have briefly reviewed

the most relevant literature on Bayesian methods for model comparison. We now discuss

issues specific to incomplete data.
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1.4 Issues with Bayesian model selection with incomplete data

For Bayesian inference with incomplete data, we often want to compare the fit of selection

models (Heckman, 1976; Diggle and Kenward, 1994; Fitzmaurice, Molenberghs, and Lipsitz,

1995), shared parameter models (Wu and Carroll, 1988; Rizopoulos, Verbeke, and Molen-

berghs, 2008), and mixture models (Little, 1994; Daniels and Hogan, 2000; Kenward et al.,

2003). For a good review of models, see texts by Molenberghs and Kenward (2007) and

Daniels and Hogan (2008). Here we will focus on incomplete longitudinal data.

Model selection criteria for incomplete data should have a certain property in most situa-

tions; we identify situations when this is less important in the discussion. Before we introduce

it, we first introduce some notation and review the extrapolation factorization (Daniels and

Hogan, 2008). Let R be the vector of observed data indicators; i.e., Rij = I(Yij is observed)

and Y obs as {Yij : rij = 1}. The full data is given as (y, r); the observed data as (yobs, r).

The extrapolation factorization is

p(y, r;ω) = p(ymis|yobs, r;ωE)p(yobs, r;ωO),

where p(yobs, r;ωO) is the observed data model and p(ymis|yobs, r;ωE) is the (extrapola-

tion) distribution of the missing data given the observed data. There is no information in

the observed data about the extrapolation distribution.

Property I (Invariance to Extrapolation Distribution): Two models for the full data

with the same model specification for the observed data, p(yobs, r;ωO) and same prior for

p(ωO) should give the same value of the Bayesian model selection criterion.

The deviance information criterion based on the observed data likelihood has this property

(Daniels and Hogan, 2008 ; Wang and Daniels, 2011).

A main complication with criteria for incomplete data is computational. For example,

both the DIC and Bayes Factors require computation of observed data likelihood which is

very difficult for most selection models and shared parameter models. Approaches based on
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the posterior predictive distribution based criteria in general do not need to use a closed

form for the observed data likelihood. Our proposal will be simple and computationally

attractive and will satisfy Property I. Our ultimate objective will be to choose the model

under consideration that provides the best fit, and then to proceed with a sensitivity analysis

(Daniels and Hogan, 2008).

In section 2, we review the Posterior Predictive Loss (PPL) model selection criterion

proposed by Gelfand and Ghosh (and Ibrahim and Laud and colleagues) and propose a

simple modification for complete longitudinal data. In section 3, we propose extensions for

incomplete longitudinal data pointing out problems using the criterion based on a straight-

forward generalization. In section 4, we apply our criterion to incomplete longitudinal data

from a recent clinical trial. Finally in section 5 we conduct some simulations to examine the

operating characteristics of this criterion and compare its performance to the DIC. We offer

conclusions and extensions in Section 6.

2. Posterior Predictive Loss: A quick review

Posterior Predictive Loss (PPL), is the model selection criterion proposed by Gelfand and

Ghosh (1998). PPL quantifies the fit of the model by comparing features of the posterior pre-

dictive distribution, p(yrep|y) to equivalent features of the observed data. The comparison

is based on a loss function L(yrep, a;y|y), where a is chosen to minimize the expectation

of the loss with respect to the posterior predictive distribution E{L(yrep, a;y|y)}. Gelfand

and Ghosh [GG] (among others) proposed the following loss function

L(yrep, a;y) = L(yrep, a) + kL(y, a) k > 0.

When L(·) is chosen as squared error loss they showed that,

min[E{L(yrep, a;y)|y}] =
n∑
i=1

Var(yrep,i|y) +
k

k + 1

n∑
i=1

{E(yrep,i|y)− yi}2

= Penalty Term + Goodness Of Fit Term
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The expectation is with respect to the posterior predictive distribution associated with yrep.

As the models become increasingly complex the Goodness of Fit term will decrease but the

penalty term will begin to increase. Overfitting of model results in large predictive variances

σ2
i and large values of the penalty function. The choice of k determines how much weight

is placed on the goodness of fit term relative to the penalty term. As k goes to infinity,

equal weight is placed on these two terms; and corresponds to the original L criterion in

Ibrahim and Laud (1994) . The criterion is easy to calculate using samples from the posterior

predictive distribution.

2.1 A simple modification for (complete) longitudinal data

Now let yi be a T × 1 vector of longitudinal responses observed at times t1, . . . , tT . One

issue in applying a PPL criterion to multivariate observations is the lack of independence of

components of yi. Weighting each of the components of the yi vector equally may not be

a good choice. To address this, options include a multivariate loss function (e.g., deviance

based loss or multivariate weighted squared error loss) or using a univariate summary. The

multivariate loss alternative has complications including the intractability of the observed

data likelihood and weighted multivariate normal loss type measures (Ibrahim and Laud,

1994 ; Chen et al., 2004 ) require knowing the weight matrix (i.e., the inverse of the covariance

matrix). Here we propose replacing y in the criterion by a univariate summary of y, h(y),

possibly of (inferential) interest. The resulting criterion can be shown to be,

Ck(h) =
n∑
i

Var{h(yrep,i)|y}+
k

1 + k

n∑
i

[E{h(yrep,i)|y} − h(yi)]
2 (1)

A derivation can be found in Web Appendix A.

Choosing a summary measure as we do above, is similar, to some extent to the approach

of Johnson who computes Bayes Factors based on a test statistic (Johnson, 2005; Hu and

Johnson, 2009). However, using the statistic as he does creates several complications in our



7

setting. First, we will typically not be able to obtain closed forms for the Bayes factors based

on the test statistics in the setting of models for incomplete data and the distributions of the

test statistics will likely be complex. Second, most of the models we compare are not nested

models and the likelihood is not available in closed form so the approach to model selection

in Hu and Johnson (2009) can not be readily adapted to our setting.

3. PPL for incomplete longitudinal data

The obvious extension from the complete longitudinal data case is to just take expectations

with respect to p(yrep|yobs, r) (instead of p(yrep|y)). The criterion can then be shown to

have the following form (see Web Appendix A for the derivation),

Ck(h) =
n∑
i

Var{h(yrep,i)|yobs, r}+ k
n∑
i

Var{h(yi)|yobs, r}

+
k

1 + k

n∑
i

[E{h(yi)|yobs, r} − E{h(yrep,i)|yobs, r}]
2. (2)

The resulting criterion has an extra term, k
∑n

i=1 Var{h(yi)|yobs, r}. This is the conditional

variance of h(y) with respect to p(y|yobs, r); note that Var(y|yobs, r) ≡ Var(ymis|yobs, r).

This term is problematic for model selection criteria which we show in the following theorem.

However, note that when there is no missingness, this term is zero and (2) simplifies to (1).

Theorem I: For two models with

(1) the same observed data model, p(yobs, r;ωO),

(2) the same prior, p(ω), and

(3) the same conditional expectation, E(ymis|yobs, r;ωE) for the extrapolation distribution,

the criterion in (2) (for k > 0) is minimized when the extrapolation distribution,

p(ymis|yobs, r;ωE) is degenerate.

See Web Appendix A for a proof.

The theorem implies that this criterion will always pick a ’single imputation type’ procedure
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that gives the same values for E{h(yrep)|yobs, r} as a corresponding multiple imputation

type procedure. Obviously this is bad practice and the criterion is flawed as it favors not

allowing uncertainty about the ’filled-in’ missing data (and penalizes extra uncertainty about

it). In addition, the criterion does not satisfy Property I. So the form of the extrapolation dis-

tribution impacts the model selection criterion even though the data provide no information

about it.

A way to avoid this problem would be to allow k to be unit-specific, i.e., ki and set k = 0

if h(yi) is not observed; GG suggest this as an option (top of p. 4). However, this alternative

does not use all the data as part of yi will be observed and this option ’throws’ away the

entire vector yi if it is incomplete; in addition, it will likely introduce bias in model selection

as it would be done on ’completers only’.

In the next section, we provide an alternative formulation that avoids the problems of (2).

3.1 A re-formulation

The complication with a direct extension of the PPL to incomplete longitudinal data arising

from the fact that h(y) is not always observed and this results in an extra term in the

criterion. A straightforward and natural way to overcome this complication is to use a new

univariate function of the data that is only a function of observables, i.e., (r, r ◦ y), where

(r◦ y) = (r1y1, r2y2, . . . , rTyT ). To derive the criterion here, we just replace h(.) by T (r, r◦ y)

from the previous derivation and obtain

Ck(T ) =
n∑
i

Var{T (rrep,i, rrep,i ◦ yrep,i)|yobs, r}

+
k

1 + k

n∑
i

[T (ri, ri ◦ yi)− E{T (rrep,i, rrep,i ◦ yrep,i)|yobs, r}]
2.

This no longer has the problematic extra term. We discuss the choice of T (·) and some

computational issues in the next two sections and then evaluate the criterion via simulations.

Note that the criterion assesses replicated observed data here (as opposed to replicated full
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(or complete) data). This version of the criterion satisfies Property I, i.e., it is invariant to

the extrapolation distribution and will only give information about the fit of p(yobs, r).

3.2 Choices for T (r, r ◦ y)

We discuss some choices of the summary function T (·) in the following. Functions of r relate

to how well we model the missingness. Functions of r ◦ y relate to how well we model the

observed y’s including how likely that y was observed under the model. Some possible choices

for T (r, r ◦ y) follow.

• T1(r, r ◦ y) = rTyT − r1y1; difference in mean of observed at end of study and observed at

beginning of study

• T2(r, r ◦ y) = rT (rTyT − r1y1); observed change from baseline

• T3(r, r ◦ y) =
∑T

j=1 rj; number of observed components of y

• T4(r, r ◦ y) =
∑T

j=1 rjyj∑T
j=1 rj

; the mean of the observed responses.

• T5(r, r ◦ y) =
∑T

j=1 tjrjyj∑
j rjtj

; the observed least square slopes

• T6(r, r ◦ y) =
∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1; change from baseline to last

observed response under monotone missingness.

• T7(r, r ◦y) = {rT (rTyT − r1y1)}2; second moment of difference in mean of observed at end

of study and observed at beginning of study.

• T8(r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

]2
; second moment of change

from baseline to last observed response under monotone missingness.

In the data analysis and simulations, we focus on T1(·), T2(·), T6(·) and T8(·).

3.3 Computations

Assume the model is parameterized via a vector of parameters, ω. Computation of the PPL

criterion here can be done more efficiently using output from an MCMC algorithm when the

following expectations can be expressed in closed form, E{T p(rrep, rrep◦yrep)|ω} : p = 1, 2.
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This expectation corresponds to the following integral,∫ ∫
T p(rrep, rrep ◦ yrep)p(rrep,yrep|ω)drrepdyrep. (3)

The availability of the expectation in closed form depends on both the model and the choice

of T (·).

4. Data Example

We use the PPL criterion in Section 3.1 to select among models for data from a randomized

clinical trial conducted to examine the effects of recombinant human growth hormone therapy

for building and maintaining muscle strength in the elderly. The study, which we will refer to

as GH, enrolled 161 participants and randomized them to one of four treatments arms. The

response of interest here was mean quadriceps strength, measured as the maximum foot-

pounds of torque that can be exerted against resistance provided by a mechanical device,

which was recorded at baseline, 6 months, and 12 months. We restrict our analyses to only

two of the treatment groups, Exercise + Growth Hormone (EG) and Exercise + Placebo

(EP). Of the 78 randomized to these two arms, only 53 had complete follow-up (and the

missingness was monotone); see Table S.1 in Web Appendix B.

Define Y = (Y1, Y2, Y3)
T to be quad strength measured at months 0, 6, and 12 with

corresponding observed data indicators, R = (R1, R2, R3)
T . In this data, the baseline quad

strength is always observed, so P (R1 = 1) = 1. Given that the dropout is monotone, without

any loss of information, in specifying our models we replaceR with S =
∑3

j=1Rj (the number

of quad strength measures observed).

4.1 Models Considered

We considered both pattern mixture models and selection models to jointly model the

distribution of the full data, (y, r). The mixture model we consider for each treatment
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is specified as

Y1|S = k ∼ N(µ
(k)
1 , σ

(k)
1 ) : k = 1, 2, 3

Y2|Y1, S = k ∼ N(α2 + φ21Y1, τ2) : k = 1, 2, 3

Y3|Y1, Y2, S = k ∼ N(α3 + φ31Y1 + φ32Y2, τ3) : k = 1, , 2, 3

S ∼ Mult(η). (4)

The multinomial parameter is η = (η1, η2, η3), where ηs = P(S=s) and
∑

s ηs = 1. Recall that

the PPL is invariant to the extrapolation distribution, i.e., the distributions p(y2|y1, S = 1)

and p(y3|y1, y2, S = 1) and p(y3|y1, y2, S = 2). In the above, without loss of generality, we

have set the parameters of the extrapolation distribution to their values under MAR.

We also consider a more parsimonious versions of the mixture model, MM2 which allows

some equality of parameters between treatments. MM2 assumes the conditional distributions

[Y3|Y1, Y2, S = j] and [Y2|Y1, S = j] are same over the both treatments (i.e., the parameters

(α3, φ31, φ32, τ3, α2, φ21, τ2)).

For the selection model, for each treatment, the full data response model is specified as

Y ∼ N(µ,Σ)

R2|y ∼ Ber(π2)

R3|R2 = 1,y ∼ Ber(π3), (5)

where logit(π2) = ψ02 + ψ1Y1 + ψ2Y2 and logit(π3) = ψ03 + ψ1Y2 + ψ2Y3. In the missing data

mechanism in the selection model above, we have implicitly assumed non-future dependence

(Kenward et al, 2003) and first order Markov dependence (constant over time). The former

corresponds to the missingness at month j depending on the past and the potential response

at month j, but not responses after month j. The latter corresponds to the dependence only

depending on the immediate past (the previous visit time).

For both the mixture and selection models, we use diffuse priors for most of the parameters.
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In particular, for the mean/regression parameters (µ, α, φ) in the mixture models we use

normal priors with variances, (106/104). For the variances (σ, τ), we use uniform priors with

upper bound of 100. For the selection model, the marginal mean µ has a normal prior with

variance 106, Σ−1 has a Wishart prior, and the parameters in the logistic model (ψ) for

missingness have diffuse normal priors specified as the prior for µ except for ψ2 which was

given a normal prior with mean 0 and variance 5 (note that inferences were not sensitive to

choices of the variance between 1 and 10). We chose a somewhat informative prior for ψ2 for

stability.

4.2 Results

We ran the Gibbs sampling algorithm in WinBUGS for 100K iterations. Trace plots suggested

good mixing (not shown). We computed the PPL criterion for the four choices of T (·):

T1(r, r◦y) = r3y3−r1y1, T2(r, r◦y) = rT (rTyT −r1y1), T6(r, r◦y) =
∑T

j=1{I(rj = 1, rj+1 =

0)rjyj}− I(r2 = 1)r1y1, and T8(r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

]2
.

Note that in Web Appendix C, we derive explicit forms for (3) for the some of the choices

of T (·) considered here in the context of the model given in (4). There are not closed forms

available for the selection model in (5).

Table 1 gives the PPL criterion values for the three models fit to the GH data for each

of the four choices of T (·). All favor the selection model over the two mixture models. The

selection model also had the smallest complexity (penalty) and a similar fit to the most

complex mixture model (MM1).

We also computed DIC based on the observed data likelihood (see (6) in Section 5) for the

three models. The results are presented in Table S.2 in web appendix B. DIC based on the

observed data likelihood also favors the selection model.
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5. Simulations

To assess the ability of the PPL to select the best model, we conducted several simulations.

We simulated 200 datasets based on the parameter values given in Table 2 (these values are

partially based on the GH data). We fit three models to data simulated under these same

three models with sample sizes per treatment of 50, 100, and 2000. The three true models

were MM1 and MM2 from Section 4 and the selection model from (5) with ψ2 = 0. We

denote this final model as SM0. To compare the models we used the proposed PPL criteria

with the four different choices for T (r, r ◦ y) considered in Section 4.

We also computed the DIC based on the observed data likelihood, L(θ|yobs, r) to com-

pare to the proposed criterion. We expect the DIC to be more powerful since it uses the

entire likelihood, but for many models, such as selection models, its computation is quite

burdensome, which discourages its use. The observed data likelihood DIC is defined as

DICO = −4Eθ|y,r {logL(θ|yobs, r)}+ 2 logL{Eθ|y,r(θ)|yobs, r}. (6)

We put the restriction that ψ2 = 0 from the selection model so that the DIC would be

available in closed form.

The percentages of times the PPL and DICo criterion choose the true model are presented

in Table 3. The average PPL values of several scenarios are presented in Tables 4-6. The

detailed PPL and DICo results are reported in Web Appendix D, Tables S.3-S.12.

When MM1 was the true model, all the choices of T (·) did well and as the sample size

increased, the probability of choosing the correct model approached one, with the least power

for T1(·) and much higher powers for the other choices.

When MM2 was the true model, it was chosen with probability of around 50% for the

small and medium samples for all choices of T (·) expect for T6(·) for which it was chosen with

probability around 60%. For the largest sample size (n = 2000), it was picked approximately

50/50 with MM1. For all the sample sizes, the criterion gave very similar values under both
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mixture models (see Table 6 and Tables S.10-S.12 in Web Appendix D). Note that when

MM2 is the true model, both are correct since MM2 is nested in MM1. We discuss this

further in the next section.

When the selection model was true, it was selected with high probability in non-large

samples (n = 50, 100 per treatment arm), with probabilities > 80% (Table 3) for all choices

of T (·). T2(·) appeared to be the best discriminator among models for this setting, picking

SM0 with probability > 80% for all sample sizes.

The DIC based on the observed data likelihood does very well in all situations though for

comparing MM2 to MM1 under true MM2, the probability of choosing MM2 does not appear

to be approaching one. The overall behavior is not surprising as it uses the data in the most

efficient way in terms of comparing full probability models. However, as stated earlier, it is

often a computational burden to implement it given the need to evaluate the observed data

likelihood.

5.1 Simulation conclusions

In non-large samples (n = 50, 100), the criterion does a very good job selecting the best

model with the specific performance depending on the choice of T (·) (Table 3).

For larger sample sizes (n = 2000), in most cases, the probability of selecting the correct

model approaches one with an appropriately chosen T (·). However, for nested models, the

criterion takes the same value for larger samples. As such, in this case, one might choose the

more parsimonious model for final inference. Under SM0, when the wrong model was chosen

with high probability, the PPL values were very similar (see Table S.6).

We also note that certain choices of T (·) do considerably better here, e.g., T2(·) for true

SM0 or true MM1. In general, we recommend similar choices for comparing SM’s and MM’s.

We also point out that for certain choices of T (·), the wrong model is selected in the larger

sample sizes. However, this is arguably of less importance if T (·) is chosen as a function of
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interest and the ’wrong’ model provides a better (or equivalent) ’fit’ to this function, which

is the case when this happens. In such cases in the simulations, the actual PPL values were

(essentially) the same.

For small to medium size samples, the PPL does a good job in choosing the correct model.

In larger sample sizes (e.g., n=2000 per treatment arm), the computationally intensive DIC

might sometimes be a better choice. In all the simulations, as the sample size increased, the

probability of the DIC choosing the correct model was approaching one (noting that when

MM2 is the true model, both MM1 and MM2 are the correct model). Once the ’best’ model

is chosen, the user would then conduct a sensitivity analysis (Daniels and Hogan, 2008) using

the chosen model.

6. Discussion

We have proposed a computationally convenient way to compare models for incomplete

longitudinal data that satisfies the property of being invariant to the specification of the ex-

trapolation distribution (Property I). Via simulations, the proposed criterion appears to work

well, especially for typical sample sizes of 50 to 100 subjects per treatment arm. Nevertheless,

the DIC based on the observed data likelihood performs best, and may be preferred whenever

it can be calculated. In other situations, for example when comparing selection models and/or

shared parameter models, the PPL offers a computationally attractive alternative. Clearly,

the choice of the summary T (·) affects the power and discriminative ability of the criterion.

Care should be taken in choosing an appropriate summary T (·) (ideally based on a feature of

the data of interest); however, the ability to choose a feature of interest allows more focused

and targeted model selection based on a specific quantity of interest for inference. In future

work, we will be exploring in more detail the best choices for T (·) for comparing different

types of model for incomplete data.

It is also possible to use a Deviance based loss (Chen et al., 2004); however, the problem in
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our case is the intractability of the observed data likelihood for many models for incomplete

data and the same computational problems would arise as with DIC. The criteria proposed

here is in the spirit of Ibrahim and Laud in that it measures discrepacy from the observed

data (which here is (r, r ◦ y)).

One issue with our approach is aliasing, i.e., small values of y being similar to ry when

r = 0. However, we typically do not expect this to be a major issue, especially for contin-

uous responses. For binary responses, coding the response as −1 and 1 (and similarly for

categorical data in general) will alleviate problems; in addition, weighted versions of these

criteria could also help (Chen et al., 2004). Moreover, it would be of interest to explore

summary statistics such T (r, r ◦ y) = a1t1(r) + a2t2(r, r ◦ y). However, these would need to

be appropriately calibrated to ensure one of the two terms does not inadvertently dominate

the criterion.

A general issue with posterior predictive based criteria is calibration. Calibration requires

additional straightforward computations (see, e.g., Chen et al., 2004) and requires proper

(informative) priors. However, the strategy from Chen et al. could be implemented in our

setting with an appropriate choice of priors. For the simulation scenario of comparing the

two mixture models where the more parsimonious model is true, calibration could be used

to choose the simpler one. However, as pointed out earlier, in this setting, for larger sample

sizes, we obtain (essentially) the same value of the criterion. And we also recall that in these

incomplete settings, the ultimate goal is to choose a model and then do sensitivity analysis

on this model. So to some extent, picking a good model (in terms of providing a good ’fit’

to the quantity of interest, T (·)), but not necessarily the correct model, can be sufficient.

Proving consistency of posterior predictive based criteria is difficult and specific to the

model setting; Ibrahim et al. (2001) prove some results for linear models. For an appropriate

choice of T (·) the PPL criterion appears to pick the correct model with probability going
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to one in certain cases. We are currently working on analytical results to verify and better

understand the behavior seen here; however, such derivations are very complex except for

the simplest model settings. In particular, exploring the large sample behavior of the penalty

term in these situations would be of major interest. It would also be of interest to examine

more formally the large sample behavior of the DIC, in particular for nested model settings.

A general issue in model selection for incomplete longitudinal data is comparing ignorable

and non-ignorable models; for the former p(r|y) = p(r|yobs) is not explicitly modeled. It

is not clear that such model comparisons can be made based on a criterion that satisfies

Property I. This is also related to posterior predictive checks based on replicated observed

data versus replicated complete data the latter which was explored in Gelman et al. (2005).

Dobson and Henderson (2003) proposed exploratory residuals for the response conditional

on not dropping out. However, both of these approaches focus on graphical and exploratory

model checking, not formal model comparison.

In Section 1, we describe how model selection criterion for incomplete data should satisfy

Property I. However, there may be situations where external information is available about

the distribution of the full data response such that this property might become less important.

Ibrahim et al. (2008) recently considered frequentist methods for the computation of

model selection criteria in missing-data problems based on output of the EM algorithm in a

frequentist setting. They developed a class of information criteria for missing-data problems.

The general form satisfies the property of being invariant to the distribution of the missing

data conditional on the observed data (more detail in Section 3). However, they need an

analytic approximation to compute this (similar problem to not having closed form for

the observed data likelihood). The simpler form they propose that does not require the

approximation does not satisfy the frequentist version (no priors) of Property I.
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Table 1

PPL criterion for the three models fit to the growth hormone data: Selection model (SM), Mixture model 1 (MM1),

and Mixture Model 2 (MM2) for four choices of T (r, r ◦ y). C∞ is the criterion with k =∞ and GOF is the

goodness of fit component of the criterion.

Model GOF Complexity C∞

T (r, r◦y) = rTyT − r1y1
SM 2960.2 2907.6 5867.8

MM1 2961.7 3958.6 6920.3

MM2 3058.3 3498.5 6556.8

T (r, r◦y) = rT (rTyT − r1y1)

SM 390.7 425.2 815.9

MM1 390.2 517.8 907.9

MM2 484.7 605.7 1090.3

T (r, r ◦ y) =
∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

SM 1670.5 1759.7 3430.2

MM1 1670.0 2211.4 3881.4

MM2 1768.1 2606.3 4374.4

T (r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

]2
SM 15563039 11655064 27218103

MM1 15712294 23472467 39184760

MM2 15760469 22043555 37804025
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Table 2

Parameter settings of MAR Selection model (SM0), Mixture model 1 (MM1), and Mixture Model 2 (MM2) for

Simulation Study in Section 5.

Arm Parameter Values

SM0

1 µ1, µ2, µ3 11,12,9

1 σ2
1, σ

2
2, σ

2
3, σ12, σ13, σ23 7,7,5,4,3,4

1 φ02, φ03, φ1 0.9, 1.5, -0.25

2 µ1, µ2, µ3 8,11,10

2 σ2
1, σ

2
2, σ

2
3, σ12, σ13, σ23 7,13,13,7,8,12

2 φ02, φ03, φ1 0.3, 0.9, -0.25

MM1

1 P (S = 1), P (S = 2), P (S = 3) 0.15, 0.25, 0.6

1 µ
(1)
1 ,µ

(2)
1 , µ

(3)
1 20, 30, 27

1 σ
(1)
1 ,σ

(2)
1 , σ

(3)
1 2, 1.5, 2

1 α2, φ21, α3, φ31, φ32 2, 0.9, 3, 1, 1.1

1 τ2, τ3 2, 3

2 P (S = 1), P (S = 2), P (S = 3) 0.15, 0.2, 0.6

2 µ
(1)
1 ,µ

(2)
1 , µ

(3)
1 22, 32, 28

2 σ
(1)
1 ,σ

(2)
1 , σ

(3)
1 2, 1.5, 2

2 α2, φ21, α3, φ31, φ32 4, 0.2, -5, 0.9, 1.3

2 τ2, τ3 2, 3

MM2

1,2 parameters in treatment arm 1 of MM1
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Table 3

Number of times (out of 200) the PPL and DICo (observed data likelihood DIC) criterion choose the true model

when fitting one of the following three models: MAR Selection model (SM0), Mixture model 1 (MM1), and Mixture

Model 2 (MM2) for four choices of T (r, r ◦ y): T1(r, r ◦ y) = rT yT − r1y1, T2(r, r ◦ y) = rT (rT yT − r1y1),

T6(r, r ◦ y) =
∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1, and

T8(r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1
]2

.

True Model Size Model T1 T2 T6 T8 DICo

SM0 50 SM0 193 198 192 194 200

MM1 7 0 2 3 0

MM2 0 2 6 3 0

SM0 100 SM0 161 197 158 168 199

MM1 39 3 2 20 1

MM2 0 0 40 12 0

SM0 2000 SM0 16 165 47 113 200

MM1 184 35 1 74 0

MM2 0 0 152 13 0

MM1 50 SM0 117 4 21 21 0

MM1 83 196 179 179 200

MM2 0 0 0 0 0

MM1 100 SM0 111 0 2 0 0

MM1 89 200 198 200 200

MM2 0 0 0 0 0

MM1 2000 SM0 79 0 0 0 0

MM1 121 200 200 200 200

MM2 0 0 0 0 0

MM2 50 SM0 29 0 5 7 0

MM1 91 98 98 78 40

MM2 80 102 97 115 160

MM2 100 SM0 5 0 0 0 0

MM1 87 90 100 72 46

MM2 108 110 100 128 154

MM2 2000 SM0 0 0 0 0 0

MM1 101 110 106 103 57

MM2 99 90 94 97 143
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Table 4

Simulating (true) model Mixture model 1 (MM1) and sample size 2000: average PPL criteria over 200 replications

for four choices of T (r, r ◦ y) for models MAR Selection model (SM0), Mixture model 1 (MM1), and Mixture Model

2 (MM2). C∞ is the PPL criterion with k =∞ and GOF is the goodness of fit component of the criterion.

Model GOF Complexity C∞

T (r, r◦y) = rTyT − r1y1
SM0 1114.3 1114.1 2228.4

MM1 1113.2 1113.7 2226.8

MM2 1601.5 1644.6 3246.1

T (r, r◦y) = rT (rTyT − r1y1)

SM0 270.3 291.6 561.9

MM1 270.0 270.2 540.2

MM2 758.6 873.7 1632.3

T (r, r ◦ y) =
∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

SM0 418.9 445.6 864.5

MM1 417.5 417.7 835.2

MM2 1074.9 1354.4 2429.3

T (r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

]2
SM0 299940 350146 650086

MM1 298273 298677 596950

MM2 1019002 2908665 3927667
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Table 5

Simulating (true) model MAR Selection model (SM0) and sample size 100: average PPL criteria over 200

replications for four choices of T (r, r ◦ y) for models MAR Selection model (SM0), Mixture model 1 (MM1), and

Mixture Model 2 (MM2). C∞ is the PPL criterion with k =∞ and GOF is the goodness of fit component of the

criterion.

Model GOF Complexity C∞

T (r, r◦y) = rTyT − r1y1
SM0 41.4 41.7 83.2

MM1 41.5 43.2 84.7

MM2 41.9 47.6 89.5

T (r, r◦y) = rT (rTyT − r1y1)

SM0 8.7 8.9 17.6

MM1 8.7 9.4 18.1

MM2 9.2 10.0 19.2

T (r, r ◦ y) =
∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

SM0 30.5 30.8 61.4

MM1 30.5 33.1 63.6

MM2 31.1 31.7 62.8

T (r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

]2
SM0 2122 2140 4263

MM1 2124 2566 4690

MM2 2127 2611 4739
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Table 6

Simulating (true) model Mixture model 2 (MM2) and sample size 2000: average PPL criteria over 200 replications

for four choices of T (r, r ◦ y) for models MAR Selection model (SM0), Mixture model 1 (MM1), and Mixture Model

2 (MM2). C∞ is the PPL criterion with k =∞ and GOF is the goodness of fit component of the criterion.

Model GOF Complexity C∞

T (r, r◦y) = rTyT − r1y1
SM0 1669.6 1699.4 3369.0

MM1 1668.4 1668.3 3336.7

MM2 1668.4 1668.5 3337.0

T (r, r◦y) = rT (rTyT − r1y1)

SM0 511.4 552.0 1063.3

MM1 511.0 511.2 1022.3

MM2 511.1 511.2 1022.3

T (r, r ◦ y) =
∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

SM0 409.3 462.0 871.3

MM1 409.1 409.1 818.3

MM2 409.1 409.3 818.4

T (r, r ◦ y) =
[∑T

j=1{I(rj = 1, rj+1 = 0)rjyj} − I(r2 = 1)r1y1

]2
SM0 497319 580996 1078315

MM1 494065 494774 988839

MM2 494143 494568 988711


