MIC 226 FALL 97 DR BLINKOVA EXAM 2 MULTIPLE CHOICE

1.	Ferme	entation by microorganisms could produce which	final pro	oduct(s)?		
	a.	pyruvate	с.	carbon dioxide		
	b.	ribose	d.	all the above		
2.	Fermentation involves					
	a.	oxidation/reduction reactions	C.	terminal electron acceptors		
	b.	production of energized membrane	d.	all the above		
3.	All organisms which use respiration to generate energy					
	a.	get more energy per molecule of glucose than o				
	b.	require oxygen to accept electrons from the foc				
	C.	require the enzyme ATP synthase to pump ele				
	d.	acceptors are not necessary		tion reactions internally so that terminal electron		
4.	The last step (or series of reactions) required to generate proton motive force is					
ч.	a.	formation of a pH gradient across the	C.	reaction of ADP plus inorganic phosphate plus		
	a.	cytoplasmic membrane	0.	protons to form ATP		
	b.	the rotation of flagella to energize the	d.	oxidation/reduction reactions involving the		
		cytoplasmic membrane		coenzyme NAD+/NADH + H+		
5.	To distinguish autotrophic from heterotrophic organisms, you would say that					
	a.	autotrophs can live in a more reducing environ				
	b.	autotrophs can live in an inorganic environmen				
	C.	autotrophs do not require terminal electron acc	-	•		
	d.	autotrophs oxidize glucose whereas heterotrop	ns cata	bolize glucose		
6.	The fir	nal number of bacterial cells growing exponentially	in liquio	•		
	a.	the initial number of cells	С.	the generation time		
	b.	the amount of time incubated	d.	all the above		
7.	The concept of selective toxicity was first successful in treating					
	a.	tuberculosis	C.	salvarsan		
	b.	syphilis	d.	Staphylococcus aureus infections		
8.	The sulfonamides are effective chemotherapeutic agents because					
	a. they are structural analogs of an essential bacterial compound					
	b.	they are not present in eukaryotic organisms.				
	C.	they are antibiotics	io prot	coin averthagia		
	d.	they are inhibiting prokaryotic, but not eukaryot	lic, proi	ein synthesis		
9.	The mechanism of penicillin action is					
	a.	inhibition of protein synthesis				
	b.	inhibition of chromosome supercoiling	- b - b - c			
	C.	inhibition of crosslinking of peptidoglycan side	chains			
	d.	it is a structural analog of folic acid				
10	Streptomycin is selectively toxic because it					
	a.	inhibits protein synthesis on eukaryotic riboson	nes			
	b.	is produced by a living organism				

- c. is a synthetic drugd. all the above

11.	The reactions which are inhibited in prokaryotes by pe a. transaminations b. transpeptidations	penicillin are c. transglycosylations d. nucleotidyl transfers			
12. If you know that the sequence of nucleotides within one strand of a fragment of DNA is 5' AATCGC 3', can deduce that the sequence of the second strand will be					
	a. 5' TTAGCG 3' b. 5' AATCGC 3'	c. 5' GCGATT 3' d. 5' CGCTAA 3'			
13.	 What is meant by the statement that the two strands of DNA are anti-parallel? a. The two strands are wound around each other. b. The chromosome is supercoiled. c. The two strands are oriented 5' to 3' in opposite directions. d. The nucleic acid bases stick out from the sugar - phosphate - sugar - phosphate backbone. 				
14.	 The two strands of DNA are said to be complementary because a. The nucleic acid bases are hydrogen bonded in pairs of A : T and G : C only. b. The two strands can be unwound only action of helicases. c. Topoisomerases maintain supercoiling. d. All the above. 				
15.	 Nucleotidyl transfer reactions a. Join adjacent 5' hydroxyl groups to 3' phosphate groups b. yield pyrophosphate as a product 	 c. have the same mechanism as transpeptidation reactions d. transfer double stranded DNA to single strand form 			
16. A characteristic which is unique to leading strand DNA synthesis and not characteristic of lagging strand synthesis is:					
o y na ne	a. It is continuous b. It is catalyzed	c. It occurs in the 5' to 3' direction, overalld. all the above			
17.	The enzyme DNA polymerase III a. unwinds double stranded DNA b. catalyzes joining of adjacent Okazake pieces	c. catalyzes nucleotidyl transfer s d. all the above			
18.	It is characteristic of DNA polymerization that a. ribonucleoside triphosphates are substrates b. the process is conservative	c. 5' phosphates are joined to existing 3' hydroxylsd. all the above	\$		
19.	Transpeptidation reactions a. are involved in forming glycosidic bonds b. crosslink peptidoglycan side chains	c. are inhibited by folic acid analogsd. require nucleoside triphosphates			
20.	Pumping protons outside the cytoplasmic membranea. depends on enzymesb. energizes the membrane for motility	c. generates proton motive force d. all the above			