BIO 226N Study Guide INTRODUCTION

LINNEAUS - Genus and species

KINGDOMS

EUCARYOTES - true nucleus

- **ANIMALS**
- **PLANTS**
- FUNGI primitive plants
- PROTISTA primitive animals (one cell)

EUBACTERIA - true bacteria

- TYPICAL BACTERIA
- **PROCARYOTES**

No nucleus

Single cells

Contain both RNA and DNA

ARCHEOBACTERIA - unusual bacteria

PROCARYOTES

extreme environments, hot springs

high salt concentration

do not have typical Eubacterial cell walls

Ribosomes similar to those in higher organisms

BACTERIAL CLASSIFICATION

DIVISION - SECTION - FAMILY - GENUS - SPECIES DIVISIONS ARE DIVIDED ON BASIS OF CELL WALL STRUCTURE

DIVISION:

- ١. - STAIN RED - GRAM NEGATIVE
- II. - STAIN BLUE - GRAM POSITIVE
- WALL-LESS BACTERIA 111.
- IV. - BACTERIA WITH UNUSUAL CELL WALLS

INCLUDING ARCHEOBACTERIA

ADDITIONAL CHARACTERISTICS WHICH FURTHER DIVIDE INCLUDE:

CELL MORPHOLOGY - SIZE, SHAPE

MOTILITY

COLONY COLOR

PATHOGENICITY

BIOCHEMICAL PROPERTIES

EXAMPLES:

DIVISION I - GRAM NEGATIVE

SECTION 1 - SPIROCHETES - SPIRAL SHAPE, FLEXIBLE

Treponema pallidum - syphilis

DIVISION II - GRAM POSITIVE

SECTION 16 - MYCOBACTERIAL - RODS, THICK WAXY WALLS

Mycobacterium tuberculosis

SECTION 12 - COCCI - GRAM POSITIVE SPHERES

FAMILY 1 - MICROCOCCACEAE - SPHERES

IRREGULAR CLUMPS OR

PACKETS OF 4

OR PACKETS OF 8

GENUS - Staphylococcus -

SPECIES

aureus - YELLOW COLONY; CAUSES BOILS epidermidis - WHITE COLONY; NOT CAUSING DISEASE USUALLY

IMPORTANT GENUS (not in any family): Streptococcus pyogenes - STREP THROAT

BIO 226N Study Guide LAB METHODS

CULTURE MEDIUM - MIXTURE OF NUTRIENTS

A. Composition of Media

1. Enriched:

extract of beef muscle, heart, brain yeast cell extract

2. Defined - exactly known, pure chemicals

Carbon + Energy Source (glucose), H₂0

N - NH₄CI

S - MgSO₄

P - Na₂HPO₄

Common Minerals

Mg⁺⁺, K⁺, Na⁺, Cl⁻

Trace Elements

Fe⁺⁺⁺, Ca⁺⁺

B. Liquid or Solid (semisolid) media

- 1. Liquid solutions
- 2. Semisolid gelling agent agar melts at 100°C; solidifies again at 41°C, Petri dishes

STERILIZATION

- A. Dry Heat 160-170°C 2 hr glassware
- B. Autoclave 121°C 15 lbs pressure/sq. inch, 15 min.
- C. Filtration sterile 0.45 µm diameter
- D. Flame incineration of loop
- E. Poison Gas Ethylene oxide/plasticware
- F. Radiation Xrays, Gamma Rays

III. PURE CULTURE STREAK PLATE

IV. METRIC SYSTEM:

Distance

A. <u>Distance Units</u> -1 meter = 39.37 inch = 3.28 Feet = 1.09 yards

1 decimeter = 1/10 m or 1 X 10^{-1} m

1 centimeter = 1/100 m or 1X 10⁻²m

1 milimeter = 1/1000 or 1 X 10^{-3} m

1 micrometer (μ m) = micron or 1 X 10⁻⁶m

1 nanometer (nm) = 1 X 10⁻⁹ m

1 Angstrom (A) = $0.1 \text{ nm} = 1 \text{ X } 10^{-10} \text{m}$

BACTERIA 1 X 3µm

Volume

B. Volume Units - 1 liter = 1.06 quart 1 quart = 0.946 liter

1deciliter = 1/10 liter or 1X 10⁻¹ liter

1 centiliter = 1/100 liter 1X 10⁻² liter

1 milliliter = 1/1000 liter 1X 10^{-3} liter

1X 10⁻⁶ liter 1 microliter (µL)

<u>Mass</u>

C. Mass Units -

1 gram = 0.036 ounce 1 ounce = 28.4 grams

1 milligram = 1/1000 gram or 1X 10^{-3} gram

1 microgram =1X 10⁻⁶ gram 1 nanogram =1X 10⁻⁹ gram

VOLUME IS DISTANCE IN THREE DIMENSIONS

1 cubic centimeter = 1 cc = 1 milliliter (volume)

V. STAINS

- A. Simple stain fix, dye, crystal violet, methylene blue
- B. Negative stain background is colored
- C. Gram stain crystal violet & l₂, alcohol, counter stain with safranin
- D. Acid fast stain Mycobacterium fix, dye & heat, decolorize with acid & alcohol

```
I.
```

ATOMIC STRUCTURE

ATOMS; ELEMENTS

NUCLEUS - PROTONS (POSITIVE)

- NEUTRONS (NEUTRAL)

ELECTRONS (NEGATIVE)

ATOMIC NUMBER - # OF PROTONS

ATOMIC WEIGHT - # OF PROTONS PLUS NEUTRONS

ELECTRON SHELLS - ELECTRONIC CONFIGURATION

SHELLS GOING FROM NUCLEUS OUTWARD 2,8,8

NUMBER DONATED, ACCEPTED or shared ELECTRONS is called VALENCE

MOLECULE - at least 2 atoms, H₂, O₂, H₂O

COMPOUND - at least 2 different kinds of atoms, H₂O, CH₄

MOLECULAR WEIGHT - SUM OF ATOMIC WEIGHTS

 H_2O H 2 X 1 = 2

O 1 X 16 = 16

Molecular Weight 18

MOLE - 6.023 X 10²³ molecules; MOLECULAR WEIGHT in grams

01:51:10:11

11.

CHEMICAL BONDS

IONIC BONDS

- donate electrons, receive electrons

B. COVALENT BONDS - sharing electrons

C. HYDROGEN BONDS - attraction of partial positive and partial negative charges

- unequal distribution of charges in the molecule

- polarity of water

III.

WATER, SOLVENT, SOLUTE, DISSOCIATION

A. ACIDS H^+ and ANION (OTHER THAN OH) (PROTON DONOR) $HCI \stackrel{\longrightarrow}{\longrightarrow} H^+ + CI$

B. BASE CATION (OTHER THAN H⁺) + OH (PROTON ACCEPTOR)
NaOH

Na⁺ + OH

C. SALT CATIONS + ANIONS OTHER THAN H⁺ or OH NaCl ⇒ Na⁺ + Cl

IV.

CLASSES of ORGANIC CHEMICALS - CARBON SKELETONS - FUNCTIONAL GROUPS

A. ACIDS

Ex. ACETIC ACID H — C — OH - CARBOXYLIC ACID H

2C at 12 = 24
2O at 16 = 32

OH

PHOSPHORIC ACID

O

HO — P — OH

B. AMINES- NH₂; ETHYLAMINE

4H at 1 = 4

C. ALCOHOLS- OH; HYDROXYL GROUP

D. ESTERS ALCOHOL + ACID ESTER + H₂O

BIO 226N STUDY GUIDE V.

LOW MOLECULAR WEIGHT BUILDING BLOCKS - PRECURSORS

AMINO ACIDS ıĺ H- N - C - C-OH

Н

SUGARS (CH2O)n - MONOSACCHARIDES - GLUCOSE

PAGE 3

PEPTIDES, PROTEINS

LIPIDS (GLYCEROL PHOSPHATE, PHOSPHOLIPIDS)

D. NUCLEOTIDES - BASE: PURINES: ADENINE, GUANINE PYRIMIDINES: THYMINE, URACIL, CYTOSINE SUGARS: DEOXYRIBOSE, RIBOSE

B.

VI.

PHOSPHATE; NUCLEOSIDE, NUCLEOTIDE

- MACROMOLECULES PROTEINS, POLYSACCHARIDES, LIPIDS, POLYNUCLEOTIDES, DNA, RNA.
- PROTEINS: AMINO ACIDS, PEPTIDE BONDS
- B. POLYSACCHARIDES: CHAINS OF MONO- OR DISACCHARIDES C. LIPIDS/PHOSPHOLIPIDS
- FATTY ACIDS PLUS GLYCEROL/ FATTY ACIDS PLUS GLYCEROL PHOSPHATE
- D. NUCLEIC ACIDS (POLYNUCLEOTIDES) RNA/DNA

BIO 226N - STUDY GUIDE CELL STRUCTURE

1. **CELL SHAPE**

A. Coccus - (cocci) - spheres

Single coccus: Micrococcus luteus Diplococcus (two cocci):

Neisseria gonorrhea Neisseria meningitidis

Staphylococcus aureus

Clusters of cocci: Streptococcus (chains): Streptococcus pyogenes

B. Bacillus (bacilli) - cylinders, rods

Bacillus anthracis - anthrax

Corynebacterium diphtheriae - diphtheria - pleomorphic rods

C. Spiral shape

1. Rigid -

a. curved - (comma), Vibrio cholerae - cholera

b. spirilla - Rhodospirillum rubrum

2. Flexible - Spirochaetes: Treponema pallidum - syphilis

Borrelia burgdorferi - Lyme Disease

11. **COMPARISON OF PROCARYOTES & EUCAROYOTES**

PROCARYOTES EUCAROYOTES

NUCLEOID TRUE NUCLEUS CHROMOSOMES IN MEMBRANE

FISSION MITOSIS

SEX - PRIMITIVE SEXUAL REPRODUCTION

MEIOSIS EGGS/SPERM

NONE (MESOSOMES) MITOCHONDRIA **ENERGY**

CHROMATOPHORES CHLOROPLASTS **PHOTOSYNTHESIS** CELLS WALLS - PEPTIDOGLYCAN

ANIMAL- NONE CELL WALL **PLANT - CELLULOSE**

FUNGI - CHITIN

RIBOSOMES SMALLER, 70S RIBOSOMES LARGER, 80S

III. **CELL COMPONENTS**

A. GLYCOCALYX/CAPSULE

Ex. Streptococcus pneumoniae

B. FLAGELLUM (Flagella): 10μm X 14nm

MONOTRICHOUS - Pseudomonas aeruginosa

AMPHITRICHOUS -PERITRICHOUS -LOPHOTRICHOUS -

TAXIS: CHEMOTAXIS: ATTRACTANT & REPELLANTS:

C. PILUS (pili): 1µm X 7nm

D. FIMBRIAE: Neisseria gonorrhoeae

E. CELL WALL - (CELL ENVELOPE); SHAPE, OSMOTIC PROTECTION

NAG: N-acetylglucosamine

NAM: N-acetyl muramic acid (sugar with hydroxyls and acid group)

NAG - NAM - disaccharide; TETRAPEPTIDE SIDE-CHAIN; CROSSLINKING

AMINO ACIDS - PENTAGLYCINE

COMPARISON OF CELL WALLS OF GRAM POSITIVE AND GRAM NEGATIVE

GRAM POSITVE GRAM NEGATIVE

TEICHOIC ACID

LIPOPOLYSACCHARIDE OUTER

LIPOPROTEIN

MEMBRANE

PHOSPHOLIPID

PEPTIDOGLYCAN (MANY LAYERS) PEPTIDOGLYCAN (1-2 LAYERS)

PERIPLASMIC SPACE

F. CYTOPLASMIC MEMBRANE

PHOSPHOLIPD BILAYER & PROTEINS

FLUID MOSAIC MODEL

SELECTIVELY PERMEABLE BARRIER

G. CYTOPLASM - 80% H₂O, PRECURSORS, ENZYMES, RIBOSOMES

H. NUCLEOID - CHROMOSOME - DNA - GENES, GENETIC INFORMATION

5 X 10⁶ MONONUCLEOTIDE PAIRS

3 X 109 MOL. WEIGHT

2000 - 4000 GENES, GENETIC INFORMATION

I. ENDOSPORES (SPORES)

SPORULATION - DORMANT, RESISTANT, SPORE COAT

GERMINATION - OUT GROWTH OF CELLS (VEGETATIVE GROWTH AND

CELL DIVISION)

Ex. Clostridium botulinum, - TOXIN - BOTULISM
Cl. perfringens - GAS GANGRENE

Cl. tetani - TETANUS

Cl. novyi - NON-PATHOGEN

Bacillus anthracis - ANTHRAX

Bacillus subtilis - NON-PATHOGEN

BIO 226N - STUDY GUIDE

NUTRITION and METABOLISM

- I. INTRODUCTION
 - A. SYNTHESIS REACTIONS ANABOLIC ENERGY INPUT
 - B. BREAKDOWN REACTIONS CATABOLIC ENERGY USES
 - 1. CHEMICAL WORK
 - 2. MOTILITY
 - 3. LIGHT PRODUCTION
- II. NUTRIENTS HOLOPHYTIC CARBON AND ENERGY SOURCE; NITROGEN, PHOSPHORUS, INORGANIC IONS, WATER; OTHER ESSENTIAL COMPOUNDS
- III. ENZYMES BIOLOGICAL CATALYSTS; PROTEINS; ACTIVATION ENERGY; TURN OVER NUMBER; SPECIFICITY;
 - A. INCREASE FREQUENCY OF COLLISIONS
 - **B. HOLD REACTANTS IN PROPER ORIENTATION**
 - C. LOWER ACTIVATION ENERGY

COENZYME (IONS, VITAMINS) APOENZYME + COENZYME = HOLOENZYME

IV. ENERGY PRODUCTION AND STORAGE OXIDATION OF FOOD; GLUCOSE OXIDATION

 $C_6H_{12}O_6 + 6CO_2 \rightarrow 6CO_2 + 6H_2O + ENERGY (ATP)$

- A. ATP PRODUCTION (GENERATION) FROM FOOD OXIDATION
 - 1. SUBSTRATE LEVEL PHOSPHORYLATION
 - 2. OXIDATIVE PHOSPHORYLATION

OXIDATION / REDUCTION REACTIONS Loss of e electrons / Gain of e electrons

Ex. $NAD^+ + 2e^- + 2H^+ \rightarrow NADH + H^+$

NICOTINAMIDE ADENINE DINUCLEOTIDE ELECTRON TRANSPORT CHAIN

- B. ATP PRODUCTION IN PHOTOSYNTHESIS / PHOTOPHOSPHORYLATION
- C. CHEMIOSMOSIS THEORY FOR ATP PRODUCTION
 - 1. ETC (ELECTRON TRANSPORT CHAIN) OXIDATION / REDUCTION

NADH + $H^{+} \rightarrow NAD^{+} + 2e^{-} + 2H^{+}$ (OR CHLOROPHYLL EXCITED)

- 2. $1/2 O_2 + 2e^{-} + 2H^{+} \rightarrow H_2O$ 3. ETC SPLITS H₂O; PUMPS H⁺ OUTSIDE
- 4. GRADIENT: HTOUTSIDE; OH INSIDE
- 5. ENERGIZED MEMBRANÉ PROTON MOTIVE FORCE
- 6. H⁺ ATP-ase PUMPS H⁺ INSIDE
- 7. H⁺ MOVEMENT ACROSS ENERGIZED MEMBRANE PROVIDES ENERGY TO CONVERT ADP TO ATP
- V. GLYCOLYSIS - CATABOLIC BREAKDOWN OF COMPOUNDS GLUCOSE → 2 PYRUVATES + ENFRGY INPUT: 2 ATP YIELD: 4 ATP + 2NADH + 2H⁺ NET: 2 ATP + 2 NADH + 2H⁺ (EACH NADH GIVES 3 MOLECULES OF ATP IN

ETC) VI. **RESPIRATION - CATABOLIC** PYRUVATE \rightarrow CO₂ + H₂O + ENERGY ACETYL CoA; KREBS CYCLE SUMMARY OF GLYCOLYSIS & RESPIRATION GLUCOSE + $6O_2 \rightarrow 6CO_2 + 6H_2O + ENERGY$

VII. FERMENTATION YEAST: PYRUVATE → ETHANOL LACTIC ACID BACTERIA: LACTIC ACID

INPUT 2 ATP: YIELD 40 ATP

VIII. **ANABOLISM - SYNTHESIS** LOW MOLECULAR WEIGHT COMPOUNDS POLYMERIZED INTO HIGH MOLECULAR WEIGHT COMPOUNDS

BIO 226N STUDY GUIDE

BACTERIAL GROWTH

I. Physical Factors

A. Temperature

Psychrophiles 0-20°C

Mesophiles 25-40°C

Thermophiles 45-near 100°C

B. pH

Water $\rightleftharpoons H^+ + OH^-$

 $pH = -Log_{10}[H^{+}]$ (Molar Conc.)

Molecular Weight

Molar Conc. = Moles/Liter

Water pH = $-\text{Log} [10^{-7}] = -(-7) = 7$

pH scale, water pH = 7 = neutral

Buffer:

 $NaH_2PO_4 \rightleftharpoons Na^+ + H_2PO_4^- \rightleftharpoons Na^+ + H^+ + HPO_4^- \rightleftharpoons Na^+ + 2H^+ + PO_4^-$

C. Osmotic Pressure

	Water Concentration			Net
<u>Solution</u>	Outside the Cells	Inside the Cells	Movement of	<u>Water</u>
Isotonic	Normal	Normal	Out	In
Hypotonic	Higher	Normal	Out	In
Hypertonic	Lower	Normal	Out	In

Osmosis, Isotonic, (iso=equal), Hypotonic (hypo-under or less) Hypertonic (hyper=above), Halophils, Solvent (H₂O) & Solute BIO 226N STUDY GUIDE continued

II. Chemical Requirements

C; N; P; S

Nitrogen Fixation
Oxygen - aerobes, anaerobes, facultative anaerobes

III. Growth Cycle - Binary Fission

Generation Time (25-30 min); Doubling of Cells

IV. Dealing with Bacterial Numbers

```
1 liter = 1000 \text{ ml} = 10^3 \text{ ml} metric system

1 milliliter = 1000 \text{ µl} = 10^3 \text{ µl} For measuring volume

1 liter = 10^3 \text{ ml} = 10^6 \text{ µl}
```

V. Growth Curve - Lag; Exponential (Logarythmic); Maximum Stationary; Death

VI. Measuring Cell Numbers

- A. Plate counts or colony counts
- B. Filtration of Water: Coliforms, Escherichia coli, Shigella, Salmonella, Campylobacter, Hepatitis virus
 - C. Absorbance

BIO 226N - STUDY GUIDE BACTERIAL GENETICS

- I. GENETIC INFORMATION STORAGE & USE
 - A. GENES: DNA Chromosome, nucleotide, sequence in AGCT: gene products, enzymes, function
 - B. REPLICATION synthesis of DNA (chromosome) origin, replication form, terminus; semiconservative replication complementary daughter strand synthesized from each parent template so DNA contains one parental strand an one new strand
 - C. TRANSCRIPTION copying information from DNA (one coding strand) into mRNA (messenger RNA), mRNA synthesis. PROMOTER, TERMINATOR, mRNA single stranded RNA
 - D. TRANSLATION use of mRNA to synthesize proteins.
 codons (Triplets). Reading frame. Start, stop
 ribosomes; Amino Acids + tRNA + ATP.c Activated amino acids
 INITIATION CODON = METHIONINE AUG
 STOP CODON, NONSENSE CODON UAA, UAG, UGA
 - E. MUTATION change in nucleotide sequence of DNA results in change in mRNA, results in change in amino acid sequence of protein, subsequent loss of enzyme function, altered 3D structure usually has no enzyme acitivity. wild type mutant genotype gene sequence in nucleotides phenotype property one can see, observe, mutagen mutagenic
 - F. INFORMATION FLOW:

DNA C RNA C PROTEIN
REPLICATION C DNA C DNA
TRANSCRIPTION C DNA C RNA
TRANSLATION C RNA C PROTEIN

II. DNA EXCHANGES

A. TRANSFORMATION:

Streptococcus pneumoniae, smooth colonies; forms capsule, wild type, causes disease: rough colonies, no capsule, nonpathogenic; recombination

- B. CONJUGATION: PLASMID, MALE, F-FACTOR, R-FACTOR, TRANSPOSONS.

 Contact between male and female bacteria, conjugation bridge, TRANSFER DNA from donor to recipient.
- C. RECOMBINATION: BREAKING AND REJOINING STRANDS OF DNA Transformation and Conjugation
- D. PLASMID DNA TRANSFER BY TRANSFORMATION IN VITRO
- E. RECOMBINANT DNA: Restriction enzymes, Target DNA, vector DNA; hybrid plasmid use

BIO 226N STUDY GUIDE VIROLOGY

I. Discovery – Ivanowski, 1892, Tobacco Mosaic Virus Löffler & Frosch, 1898, Foot & Mouth Disease Virus D'Herelle & Twort, 1915-17, Bacterial viruses, Bacteriophage, Phage.

II. Differences between bacterial viruses and Bacteria.

Filages	Dacteria
A. Size-smaller	larger
B. RNA or DNA chromosome	DNA – chromosome
	RNA – [mRNA, tRNA, rRNA]
C. Capsid	Cell wall and cytoplasmic membrane
D. Grow only in living cells	Grow in growth medium
E. Direct synthesis of components	Binary Fission
which then assemble	

Pantaria

III. Virulent Bacterial Viruses (e.g. T4)

A. Structure

Phanes

- B. Lytic growth cycle -
- 1. adsorption attachment (receptors)
- 2. injection of genetic material, penetration (0-1 min)
- 3. Synthesis of components (1-20 min)

Transcription

Translation - host enzymes

Replication Host energy

- 4. Maturation (20-30 min)/Assembly
- 5. Lysis Lysozyme; release of ~200 phages
- C. Growth in plaques Enumeration

Host, Lawn, Confluent growth, plaques

IV. Temperate phages (lambda) λ

- A. Lytic growth or Lysogeny;
- B. Lysogeny attachment, injection, integration, repressor

Prophage, passive replication with bacterial chromosome.

Lysogenic, Lysogen.

C. Induction of the prophage, inducing agents, excision of the prophage and lytic growth

V. Animal viruses

A. Differences between bacteriophage and animal viruses

- 1. Presence of envelope
- 2. Host Entry: a. Endocytosis, vesicle
 - b. Fusion with host membrane & uncoating
- 3. Virus exit budding of envelope viruses
- 4. Cytopathic effect
- 5. Long latent period
- 6. Tissue tropism
- 7. Some RNA viruses replicate through DNA intermediate and integrate DNA into host chromosome

B. Virus growth in the lab

- 1. Living Animals
- 2. Embryonated eggs
- 3. Tissue culture/cell culture; contact inhibition; plaques

C. Tumors & Viruses (Neoplasm)

Benign

Malignant (Metastasis)

Carcinoma – epithelial cells

Adenocarcinoma - epithelium of glands

Sarcoma – connective tissue

Leukemia – white blood cells

1. Causes – mutations/viruses

Carcinogens, oncovirus, oncogene, proto-oncogene; growth hormones, hormone receptor proteins, cell cycle control proteins.

Mouse mammary tumor virus (MMTV), Bittner 1936.

2. Transformation of cultures animal cells

Rous sarcoma virus, cells growing in monolayers, contact inhibition;

Retroviruses RNA \rightarrow RNA/DNA hybrid \rightarrow DNA \rightarrow Provirus

- 3. Human Tumors & Viruses
 - a. Epstein Barr virus (EBV) Infectious Mononucleosis Burkitt's Lymphoma, Nasopharyngeal carcinoma.
 - b. Herpes Simplex I & II –HHVI and HHVII Fever blister; stress; genital herpes (cervical carcinoma?)
 - c. Human T-cell leukemia (Retrovirus) HTLV-I, HTLV-II

BIO 226N

Study Guide

Organisms Intermediate Between Viruses and Bacteria "Intermediate" Bacteria

A. MYCOPLASMA – pleuropneumonia group - PPLO

BACTERIA without cell walls, pleomorphic

Need osmotic protection, size 0.1 to 0.25 mm diameter grow in serum containing media: have sterols in membranes

Resistant to antibiotics which act on cell walls.

Diseases: Mycoplasma pneumoniae; Pleuropneumonia; Primary atypical pneumonia.

NGU/non-gonococcal urethritis/ - Mycoplasma hominis, NGU also caused by Ureaplasma urealyticum — causes infertility
Patients with STD sometimes also carry U. urealyticum.

B. RICKETTSIA – 0.3 to 0.7 mm diam/ 1-2 mm length, Pleomorphic rods, obligate intracellular parasites of animal (human) cells; *Rickettsia rickettsii* – Ricketts, Rocky mountain spotted fever.

Rickettsia Prowazekii – Epidemic typhus
PERSON/LOUSE/PERSON/LOUSE/PERSON
person is the reservoir
louse is the vector

Rickettsia typhi – Endemic typhus RAT/FLEA/RAT/FLEA/HUMANS

C. CHLAMYDIA – cocci 0.2 – 1.5 mm diameter

Obligate intracellular parasites of animal and humans grow in vertebrate hosts.

Transmission host to host

No ATP generating system, ATP dependence on the host

Chlamydia psittasci – psittacosis or Parrot Fever

Chlamydia trachomatis

- 1. trachoma blindness
- 2. non gonococcal urethritis
- 3. lymphogranuloma venereum (genital and anal regions) Chlamydia pneumoniae – mild pneumonia

BIO 226N Study Guide Mycology

1. General characteristics

Fungus, fungi (molds and yeasts); eukaryotes; primitive plants; chitin in cell wall; non motile; 5-10 mm diam., nucleus; mitosis.

Tolerate dryness, high osmotic pressure; acidity and alkaline pH in the environment.

2. Colony types

Mycelium – hypha, hyphae Yeast cells – spheres, buds Aerobic respiration; CO₂ + H₂O

3. Organisms - Examples

- A. rhizopus nigricans coenocytic hyphae, sporangium, sporangiophore, sporangiospores
- B. Aspergillus niger septate hyphae, conidiospores, conidiophores
- C. Penicillium notatum penicillin
- D. Mushrooms Basidiomycetes
- E. Yeasts Saccharomyces cerevisiae
- F. Actinomycetes Filamentous prokaryotes; antibiotic production-ex. Streptomyces

4. Diseases – mycosis, mycoses

- A. Infection of skin, hair, nails dermatophytes secrete enzyme called keratinase which degrades keratin. Examples ringworm and athlete's foot
- B. Systemic mycoses deep organs
 - 1. Histoplasma capsulatum Histoplasmosis endemic in Ohio River Valley, Mississippi River Valley, dimorphic fungus
 - 2. Coccidioides immitis Coccidioidomycosis; desert fever; 95% mild respiratory disease; 5% chronic respiratory, TB-like generalized infection; Central, South America, Sacramento Valley, CA.
 - 3. Cryptococcus neoformans Cryptococcosis; infects lungs, respiratory tract of humans; can be disseminated into the central nervous system; can cause meningitis inflammation of the meninges.

C. Opportunistic pathogens (infections) Candida albicans – thrush or moniliasis

Pneumocystis carinii – causes Pneumocystis pneumonia in immunosuppressed patients.

5. Toxins – Mycotoxins

Aspergillus flavus – produces toxic compounds called aflatoxins – contaminates peanuts, grain, cereal, corn, etc.; carcinogenic.

BIO 226N

STUDY GUIDE

CONTROL OF MICROBES

- I. Physical Methods
 - A. High temperature
 - 1. Dry heat Sterilization 160 170° C 2 hours
 - 2. Moist heat:
 - a. Autoclave 121º C, 15 psi, 15-20 minutes
 - b. Pasteurization mild heating 63° C, 30 minutes
 milk, dairy food and cheese; kills most pathogens
 without damaging taste. Cannot kill endospores.
 72° C, 15 sec HTST high temperature, short time pasteurization
 140° C, 1 sec UHT ultra high temperature pasteurization
 - B. Low temperature 4º C food preservation
 - C. Freeze-drying lyophilization
 - D. Desiccation drying
 - E. Osmotic pressure high concentrates of salts & sugars can preserve food
 - F. Radiation: UV, x-ray, gamma rays used for sterilization of pharmaceutical and disposable dental & medical supplies; plastic syringes, surgical gloves replacing gases.
 - G. Filtration can be used to sterilize liquid media
- II. Chemical Methods

Sterilization, disinfection, antisepsis, bacteriocidal, bacteriostatic

- A. Acids: Propionic acid, Glutamic acid, Benzoic acid: Calcium propionate and sodium glutamate
- B. Alcohols: Ethanol, Isopropanol
- C. Phenol (Carbolic acid): Phenolics (Cresol)
- D. Halogens
 - 1. Cl₂ Chlorine

$$Cl_2 + H_2O \rightarrow H^+ + Cl^- + HOCl$$
 Hypochlorous acid
HOCl $\rightarrow H^+ + OCl^-$ Hypochlorite ion

- 2. lodine 2% in alcohol is tincture of iodine
- E. Heavy metals, AgNO₃ Silver Nitrate
- F. H₂O₂ Hydrogen Peroxide
- G. Ethylene oxide C
 CH₂ CH₂
- H. Formaldehyde HC = O Formalin

Н

CHEMOTHERAPY

Synthetic drugs, drugs produced by bacteria and fungi called antibiotics

Selective toxicity

- I. Ehrlich 1906 Chemotherapy idea
- II. Sulfonamides 1930 Sulfanilamide PABA analog PABA → FOLIC ACID (VITAMIN) Streptococcus pyogenes and urinary tract infections
- III. Antibiotics
 - A. Penicillin Fleming Penicillium notatum Inhibitor of cell wall peptidoglycan synthesis
 - B. Streptomycin Waksman Streptomyces griseus Mycobacterium tuberculosis protein synthesis inhibitor on 70S ribosomes others: Tetracycline, Erythromycin, Chloramphenicol
- IV. Drug Mechanisms
 - A. Čell wall synthesis inhibition B. Effects on membranes
 - C. Protein synthesis inhibition
 - D. Nucleic acid synthesis inhibition
- V. Anti-viral Drugs
- VI. Complications of Drug Use
 - A. Hypersensitivity Penicillin B. Toxicity - Streptomycin - Otic nerve damage
 - Chloramphenicol pernicious anemia C. Normal flora destruction -
 - Microbial antagonism Prolonged use of antibiotic Opportunistic pathogen
 - Candida albicans Thrush, Vaginitis D. Spread of multiple drug resistance
 - Pencillinase S. aureus Resistance plasmids - resistance factors

RTF (plasmid replication, plasmid transfer, drug resistance)

Multiple drug resistance - Japan - resistance to Sulfonamide, Streptomycin,

Chloramphenicol, and Tetracycline

Japan	<u>1954</u> 0%	<u>1964</u> 50%	
London	<u>1962</u> 3%	<u>1965</u> 61%	

% Shigella with multiple drug resistance

VII. Transposons

Mobile genetic elements - jumping genes Carry antibiotic resistance genes

BIO 226N STUDY GUIDE NORMAL FLORA, INFECTIONS

I. NORMAL FLORA

Symbiosis;

A. Skin - barrier - normal flora - diphtheroids - Corynebacterium opportunistic pathogens S. aureus; S. epidermidis; Candida albicans

B. EYE - Lysozyme

C. RESPIRATORY TRACT

Nose + Nasopharynx - Neisseria species (non pathogenic)

Strep. pneumoniae

Strep. pyogenes; Hemophilus influenzae; Neisseria meningitidis

(carriers-adenoids, tonsils) Pneumoncystis carinii - Fungus; opportunistic

pathogen

D. DIGESTIVE TRACT: Mouth + Oropharynx; normal flora: Spirochetes, Lactobacilli, Diphtheroids; opportunistic pathogens Candida albicans; Streptococcus mutants - pathogen

Stomach - pH < 2.0 - acidic

Helicobacter pyloris - pathogen, ulcers

Intestine -

anaerobes & facultative anaerobes, coliforms, Streptococcus fecalis, Klebsiella, Proteus, Enterobacter, E. coli (pathogenic and

non-pathogenic strains)
E. REPRODUCTIVE TRACT

Lactobacillus, Candida, Trichomonas vaginalis

F. UROGENITAL TRACT - opportunistic pathogens

Candida albicans - vaginalis

Trichomonas vaginalis - protozoar

Trichomonas vaginalis - protozoan

II. INFECTION

A. DISEASE CLASSIFICATION - infectious, inherited, degenerative, neoplastic, nutritional deficiency, idiopathic Pathology, Etiology, Virulence, Pathogenicity

B. RESERVOIR - source - animal body, food, water, soil, blood, human body

C. TRANSMISSION

1. Contact

a. Direct - person to person (example, sexual contact)

b. Indirect - contaminated object - Fomite (example, shared needle)

c. Droplets - sneezing, coughing

<1 meter travel (example, common cold)

2. Vehicles - food, water, airborne dust or droplet, nuclei, blood

Food - water

Shigella - Shigellosis

Salmonella - Salmonellosis

Vibrio - cholera

Hepatitis Virus A - infectious hepatitis

3. Airborne - dust, droplet nuclei - travel more than 1 meter in the air

Mycobacterium tuberculosis Histoplasma capsulatum

Measles, Chicken pox, Polio

Blood - Hepatitis B - serum hepatitis

3. Vectors - mechanical vector - flies biological vector - example, Lyme disease Deer tick, deer, mice, dogs, cats, people Borrelia burgdorferi

- D. NOSOCOMIAL INFECTIONS (Hospital Acquired)
 Surgical wound infections
 Catheters (urinary tract infections)
 Immunosuppressed patients
- Immunosuppressed patients
 E. SPREAD IN POPULATIONS

Endemic - always present - *Histoplasma capsulatum*Epidemic - large number of cases in short time - cholera, typhus, influenza

Dendersie werdt wide enidersie AIDO

Pandemic - world-wide epidemic AIDS Sporadic - small number of isolated cases - Hanta virus

F. SPREAD IN INDIVIDUAL

Primary - influenza Secondary - *Staph. aureus* pneumoniae

III. INVASIVE MECHANISMS

Pathogenicity, Virulence, Candida vs Pasteurella tularensis

A. CAPSULES - Strep pneumniae

B. EXOTOXINS - diptheria, botulism, gas gangrene cholera, tetanus, scarlet fever

Corynebacterium diphtheria Clostridium botulinum Cl. perfringens Vibrio cholerae Cl. tetani

Strep pyogenes

- C. ENDOTOXIN cell walls of gram negative cells phospholipic, lipoprotein, lipopolysaccharides (lipid A)
- D. HEMOLYSINS lyse RBC Strep. pyogenes B hemolytic
- E. LEUCOCIDINS kills WBC (leucocytes)

 Mycobacterium tuberculosis, Strep., Staph.
- F. HYALURONIDASE dissolve cementing substance Clostridium - gass gangrene; *Streptococcus fasciatis*
- G. STREPTOKINASE dissolve blood clots STAPHYLOKINASE
- H. COAGULASE clots blood, protects microbes inside the clot Staph. aureus

IV. KOCH'S POSTULATES

- A. Same organism present in every case of disease
- B. Organism must be isolated from diseased host and grown in pure culture
- C. Introducing pure culture into susceptible host causes same disease
- D. Organism must be isolated from the deliberately infected host and grown again in pure culture

BIO 226N Study Guide Non Specific Resistance

A. SKIN, MUCOUS MEMBRANES, MUCUS, MECHANICAL 7 CHEMICAL **BARRIERS**

Epidermis - Keratin

Dermis – connective tissue

Epithelium layer – mucous membranes – mucus

Neisseria gonorrhoeae, Mycobacterium tuberculosis

Streptococcus pyogenes, Treponema pallidum

Tears - lacrimal apparatus - lysozyme

Sweat - flusing - lysozyme

Saliva; gastric juice (pH 1-3)

Urinary tract – flushing

B. PHAGOCYTOSIS (eat, cell)

White blood cells – leukocytes

Granulocytes (granules)

Neutrophils (red & blue) - phagocytic Basophils (blue)

Eosinophils (red)

Agranulocytes (no granules)

Lymphocytes – lymphoid tissue

(specific defense)

Monocytes - mature into macrophages

Phagocytic

Phagocytic cells are called phagocytes

Blood = fluid (plasma) + cells: circulation

Blood flow: Heart - arteries - capillaries -

Tissue spaces – vein capillaries –

Vein - heart

Plasma in tissue space – interstitial fluid

Name given to plasma which has become Lymph =

interstitial fluid and then entered lymph capillaries

Lymph flow: Lymph capillaries – lymph vessels

lymph nodes – vein (now part of blood)

Macrophages - Wandering - move to invasion

Fixed – lungs, Liver, Lymph System

Phagocytosis Steps (Neutrophils & Macrophages)

- 1. Chemotaxis -
- 2. Adherence
- 3. Ingestion phagosome phagocytic vacuole
- 4. Digestion lysosome, phagolysosome, digestive vacuole

C. INFLAMMATION –

- Redness, Pain, Heat, Swelling
 - 1. Vasodilation & Increased Permeability
 - 2. Phagocyte Migration

Margination, Diapedesis

Abscess (pimple, boil, carbuncle)
3. Repair – heal

nour

D. FEVER – Chapter 16 p. 417

hypothalamus –

E. INTERFERONS – antiviral proteins – Chapter 16 p. 421

Non-specific for viruses Specific for animal

BIO 226N STUDY GUIDE IMMUNOLOGY LECTURES

SPECIFIC RESISTANCE

A. HUMORAL IMMUNITY

Antigens - provoke AB synthesis

Properties - foreign

- high molecular weight ≥ 10,000
- degradable by host

Examples - proteins on bacteria, viruses

- pollens, dust, dander, egg white
- transplanted tissue/organs

Antigenic Determinants

Antibodies = gamma-globulins = immunoglobulins = a certain class of serum proteins

[synthesized & secreted by some lymphocyte derivatives]

- plasma (circulate)
- bind to AG, help destroy
- specific; binding sites
- 2 heavy, 2 light chains
- constant and variable regions

Antibody Synthesis

gene → mRNA → translation lymphocytes (T & B) stem cells in bone marrow or liver T & B B lymphocytes synthesize AB

STEPS OF ANTIBODY SYNTHESIS AFTER INJECTION OF T-DEPENDENT ANTIGEN

- 1. Macrophages ingest, digest, display antigenic determinants on macrophage surface
- 2. Now called antigen presenting cells (APC)
- 3. APC have self markers also on surface
- 4. APC + T helper cell binds
- 5. APC + T helper & B cell (pre-existing which can synthesize AB to that the AG)
- 6. Those B cells stimulated to grow & divide and mature into plasma cells which produce and secrete AB
- 7. A few of these B cells become memory cells

Immunity to:Bacteria - Bordetella pertussis
Sal. typhi
Exotoxins - Clostridium tetani toxin
C. diphtheriae toxin
Viruses - Polio, Common cold,
Hepatitis B, Influenza

B. CELL-MEDIATED IMMUNITY (CMI)

- I. CMI involves T-lymphocytes
 - a. Receptors
 - React with foreign antigens on the surface of our own cells such as viruses budding through cytoplasmic membrane
- II. Stem cells in the bone marow become many different kinds of cells
 - a. Neutrophils, basophils, eosinophils, monocytes, etc.
 - b. Some develop into Pre-B-lymphocytes
 - c. Some migrate to thymus and become immature T-lymphocytes (T-cells)
- III. T cells can react with a huge variety of antigens
 - a. Šurface proteins (receptors) that resemble immunoglobulins
 - b. Antigen recognized on APC
 - c. Self markers also on APC
- IV. Antigen-stimulated T cells mature and divide (proliferate) and become:
 - a. Cytotoxic T cells (Tc)
 - b. Helper T-cells (T_H)
 - c. Suppressor T-cells (T_S)
 - d. Delayed type hypersensitivity (T_D)

Natural Killer Cells not really either T or B Killer Cells

- V. Cellular immunity combats:
 - a. Intracellular viruses
 - b. Multicellular parasites
 - c. Cancer
 - d. Some bacteria (Mycobacterium, Rikettsia)
 - e. Transplanted tissues

C. DUALITY OF THE IMMUNE SYSTEM

- I. Immune deficiencies
 - a. Aggammaglobulinemia reduced (or no) circulating antibodies
 - b. DiGeorge syndrome--no thymus & no CMI No T_C Lymphocytes
- II. Both types of immunity of essential for health

D. VACCINES

- I. Stimulate production of specific Antibodies or specific cytotoxic T-cells (T_C).
- II. Bacterial vaccines
 - a. Bordetella pertussis, a killed vaccine
 - b. Mycobacterium tuberculosis strain BCG, an attenuated vaccine

III. Viral vaccines

- a. Polio
 - 1. First killed (Salk), then attenuated
 - 2. Grown in tissue cultures monkey kidney cells
- b. Rabies -- killed or attenuated
- c. Smallpox
- d. Live, attenuated virus vaccines usually give better immunity than inactivated viruses

IV. Toxins/Toxoids

- a. Toxins often cause disease symptoms
- Antibodies against a toxin can neutralize it and prevent disease
 - 1. Toxoid = altered toxin
 - 2. DPT vaccine
- V. Subunit Vaccines (Hepatitis B)
- VI. Antiserum
 - a. Pooled normal human serum
 - b. Human with known antibody
 - c. Purified human gamma globulin
 - d. Serum from immunized animal

- I. The study or use of antigen-antibody reactions in the laboratory
- II. There are many types of antigen-antibody reactions and many ways to detect them
 - a. Agglutination
 - b. Hemagglutination
 - c. Precipitation
 - d. Toxin or virus neutralization

F. ACQUISITION OF IMMUNITY

- I. Active immunity: body makes antibodies and/or specific T_C
 - a. Natural -- infection and recovery with Ab production
 - b. Artificial -- vaccination
- II. Passive Immunity
 - a. Natural -- fetus receives maternal antibodies while *in utero*
 - b. Artificial -- injection of antiserum
- G. IMMUNE DISORDERS OR HYPER-SENSITIVITIES (allergy) humoral or CMI: immediate or delayed
 - Anaphylaxis humoral IgE immune IgE binds basophils and mast cells surfaces and coats them; AG (e.g. pollen) bridges to adjacent IgE The cells release granules, includes mediators (histamine) Mediators cause inflammation, mucous secretion, smooth muscle contraction,
 - breathing difficulty a. localized -

digestive tract (food) vomit, diarrhea respiratory tract (pollen, house dust, fungal spores, dander) upper - itchy, watery eyes, cough,

sneeze = hay fever lower - smooth muscle contraction, asthma

Adrenalin = Epinephrine

b. Systemic - Generalized
Bee sting, penicillin 2%
itch rach faint dilation

itch, rash, faint, dilation of blood vessels, blood pressure, drop, shock, death

Adrenalin

Desensitization

E. SEROLOGY

II.	CYTOTOXIC REACTIONS IgG or IgM react - AG on host blood or
	other tissue cell - lysis
	a. transfusion reactions
	ABO blood groups
	AG, AB, genes

shock, death

determining blood type, donor cells & known serum anti A or anti B agglutination with

fever, prostration, kidney failure,

<u>known</u> <u>serum</u>	group of dor
anti A anti B anti A & anti B no agglutination w anti A nor anti B	A B AB vith B O

major
donor RBC & recipient serum
minor
donor serum & recipient RBC
universal donor = O blood group
universal recipient = AB group, have
no anti A or anti B

cross match (donor and recipient)

to make sure there is no agglutination

NEWBORN- RHESUS FACTOR
People 85% Rh+ and 15 % RhRh+ Father+Rh- Mother → Rh+ Child
Rh+ RBC from Fetus enter Mother,
cause antibody ynthesis
subsequent pregnancy with Rh+Fetus
anti Rh antibody cross placenta; enter

b. HEMOLYTIC DISEASE OF

Fetus

anti Rh antibody & Rh+ RBC of Fetus

→ RBC Destruction

RESULT: Decrease in O₂ transport & increase in bilirubin level

AT BIRTH: Bilirubin cannot be metabolized by newborn baby's liver

TREATMENT

- i. monitor expectant mother anti Rh
- ii. fluorescent light on child
- iii. monitor newborn bilirubin leveliv. blood exchange with Rh- blood after birth
- v. passive immunize expectant mother vi. infusion in utero in extreme cases

III. IMMUNE COMPLEX REACTIONS
Small Antigen-antibody complexes
escape phagocytosis
Complexes deposited in tissues, cause
inflammation
Phagocytes release digestive enzymes
which damage host

a. Acute Post-Streptococcal
Glomerulonephritis-inflammation of glomeruli in kidneys
b. Rheumatoid Arthritis - complexes in

- joints c. Systemic lupus erythematosis -
- Antibodies to own nucleic acid

 IV. DELAYED HYPERSENSITIVITY -CMI-T
- 24-48 hrs
 contact dermatitis (poison ivy, cosmetics, metal)
 tuberculin hypersensitivity
 granulomatous hypersensitivity

lymphocytes

- H. TOLERANCE/AUTOIMMUNITY body does not (normally) make AB to itself sometimes we do rheumatic fever antistreptococcal AB react with heart valve
- I. TRANSPLANTATION
 major antigens on tissues differ in different individuals
 tissue rejection
- cyclosporin suppresses CMI heart or kidney transplant patients K. IMMUNE DEFICIENCIES - SUMMARY

J. IMMUNÓSUPPRESSION -

- I. INHERITED
 a. Hypogammaglobulinemia
 - a. Hypogammaglobulinemia
 b. Agammaglobulinemia
 c. DiGeorge Syndrome
 - 2. ACQUIRED HIV/AIDS

metabolized by newborn baby's liver

BIO 226N STUDY GUIDE **HIV/AIDS**

- A. History; Retroviruses
- Transmission Infected cells, secretion
- C. Virus Growth
 - 1. Receptors 2. Fusion of virus and cell 3. Reverse transcription 4. Provirus integration into host chromosome 5. Latent 6. Sporadic activation 7. Kills T helper cells; depletes CMI + reduces humoral response 8. Fusion of infected and uninfected cells, syncytium, multiply killing effect 9. Humoral antibody is not protective - Antigen variation 10. Pathogen antigens activate HIV replication and wipe out T-helper cells when needed for defense.
- D. Clinical Symptoms
 - 1. Acute 1, 2 weeks; malaise; viremia
 - 2. Seroconversion

 - Asymptomatic period 2-10 yrs (lymphadenopathy)
 Progression to AIDS T helpers depleted, weight loss, fever, oral thrush, diarrhea [ARC]
 - 5. Aids terminal HIV infection no CMI, reduced humoral response death due
 - opportunistic pathogen
- E. Lab Diagnosis test for antibodies to HIV

Elisa, Western blot, False Positive, False Negative

- F. Treatment AZT 3' azido 2', 3' dideoxythymidine
- G. Vaccine
- H. Origin HIV II, SIV, HIVI
- Patterns of Transmission 1

KOCH'S POSTULATES

- I. Same pathogen must be present in every case of that disease
- II. The pathogen must be isolated from the diseased host and grown in pure culture
- III. The pathogen from the pure culture must cause the disease when inoculated into healthy, susceptible animal
- IV. The pathogen must then be isolated again from the diseased animal and shown to be the original organism