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1. Introduction TC  "1. Introduction" \l 1 
CAIC is designed to let you analyse comparative data properly and easily.  Statistical methods that treat species values as statistically independent points are not valid, because closely related species will tend to share many characters through common descent rather than through independent evolution (see, e.g., Harvey and Pagel, 1991; Harvey and Purvis, 1991).  Such “phylogenetic inertia” may result in two characteristics being found together among species without there being any interesting reason: among homeothermic vertebrates, for instance, there is a very strong tendency for species with denucleated red blood cells to be covered with fur.  This “strong correlation” is spurious, an artifact of the non-independence of species.  The comparative methods implemented in this package avoid such spurious results by considering independent evolutionary events.  The methods themselves share a common ancestor in Felsenstein (1985).  Figure 1 illustrates Felsenstein’s logic.

The top box of Figure 1 shows the values of two traits, X and Y, for each of four species, A to D.  Higher nodes, in this simplified illustration, are calculated as the average value of lower nodes; this calculation will be dealt with in more detail later (Appendix 1).  Species A and B diverged at the higher node, so any differences between them, d1, must have evolved since then. Similarly, the differences between C and D, d2, must have arisen since those lineages split.  These two sets of differences are independent.  Furthermore, the differences between the higher 


 EMBED Word.Picture.8  


Figure 1. An illustration of how independent comparisons are made and used (from Harvey and Pagel, 1991).  See text for explanation.

nodes, d3, makes up a third independent comparison.  These three independent comparisons are

 shown and tabulated in the second box.  If the Y-variable comparisons are plotted against the X-variable comparisons, as shown at the bottom of the figure, we can see whether evolutionary change in the two traits has been correlated.

The method shown in Figure 1 is basically correlational, and is not ideally suited to characters that do not vary continuously (Grafen, 1992).  Many characters of interest (e.g. average body weight, average number of tail feathers) do vary continuously but other important characteristics will not; for instance, species either can or cannot fly.  There might also be traits for which species are put into categories simply because more precise data are not available: species might, say, be classed as either “carnivore” or “herbivore”, even though there might in reality be a continuum.  We have developed another method first mentioned by Felsenstein (details are given in Appendix 2) to search for correlated evolution between a continuous trait and one occurring only in a few discrete states; it must be possible to rank the states along an axis (e.g. arboreal, semi-terrestrial, terrestrial), and interpretation is easier with only two states.  Figure 2 shows how it works for a dataset of six species mapped onto their phylogeny.  Pairs of species are compared that differ in respect of the categorical trait; these pairs – bracketed as A, B and C – are shown linked through phylogeny by thicker lines.  Comparisons can safely be regarded as independent so long as the lines linking compared species never meet or cross.  We see that, within each comparison, the species whose X trait is in state 1 also has the higher value of Y.  Such a pattern is evidence of correlated evolution between X and Y.

2. About the CAIC package TC  "2. About the CAIC package" \l 1 
When CAIC can be used, and other packages TC  "When CAIC can be used, and other packages" \l 1 
CAIC can be used whenever comparative data including continuous variables are to be analysed.  It is not suitable for investigating correlated evolution among categorical variables: MacClade (Maddison and Maddison, 1992) or Ridley’s (1983) method are obvious choices for 


 EMBED Word.Picture.8  


Figure 2. A schematic illustration of the calculation and use of independent comparisons when one of the characters is found in only two states.  See text for explanation.

such analyses.  Previous versions of CAIC have been used to answer a wide range of evolutionary questions in a wide range of taxa (e.g., Martin, 1993; Emerson, 1994; García-Barros, 1994; Purvis and Harvey, 1995).  As well as testing for correlated evolution among characters, CAIC can be used to compare rates of evolution among clades or among characters (Garland, 1992; Martins, 1994).  CAIC is one of a number of broadly similar methods derived from Felsenstein (1985).  Indeed, if the phylogeny is known in full and all variables are continuous, the package applies his method exactly.  Other packages can also be used in such cases, e.g. CONTRAST in PHYLIP (Felsenstein, 1993), CMAP (Martins and Garland, 1991) and PDSINGLE (Garland et al., 1993).  However, these other implementations assume that the real (probably bifurcating) branching structure of the phylogeny is known.  They are not valid if the user’s estimate of phylogeny contains polytomies (nodes with more than two daughter branbches) that express ignorance of the true branching structure (‘soft’ polytomies: Maddison, 1989), which is often true in comparative studies (see Purvis and Garland, 1993, for a discussion).  CAIC deals with soft polytomies according to Pagel (1992): Appendix 1 gives details of the procedure.  Aside from CAIC, we know of only one other currently available package that is valid when confronted with soft polytomies: Grafen’s (1989) phylogenetic regression.  Grafen (1992) criticises Pagel’s (1992) method.  Pagel and Harvey (1992) defend the method on theoretical grounds, and Purvis, Gittleman and Luh (1994) have shown by simulation that Pagel’s method as implemented by CAIC is indeed valid (see Appendix 3).

Felsenstein’s (1985) method requires that all variables being analysed are continuous.  CAIC, drawing from Felsenstein (1985, 1988), Burt (1989) and our own modifications (Purvis and Rambaut, 1995) allows a categorical – preferably dichotomous – X-variable to be included in the analysis, so long as the states can sensibly be ranked.  Details of the method are given in Appendix 2.  The phylogenetic regression (Grafen, 1989) allows X-variables to take any distribution, if one is prepared to assume that the residuals from the regression model are normally distributed.  A very useful discussion of many aspects of comparative analyses using independent contrasts is to be found in Garland, Harvey and Ives (1992).

If you use CAIC, please cite it.  Our preferred format for citations is:

Purvis, A. and A. Rambaut (1995).  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data.  Computer Appl. Biosciences 11, 247-251.

We would also be very grateful to receive reprints of papers that used the package.  If you find any errors or omissions in the manual or programs, or have any suggestions as to how they might be improved for possible future versions, please let us know.  Any future versions will be available by anonymous ftp from ftp://evolve.zps.ox.ac.uk/FTP/packages/CAIC/CAIC.sea.

System requirements TC  "System requirements" \l 1 
CAIC will run on almost any Apple Macintosh computer (we have tested it on a Mac Plus, SE/30, Quadra and Power Macintosh).  It requires Apple’s System 6 (or later) operating system and needs less than 500 kilobytes of RAM.  For large data sets or phylogenies, a fast computer and a hard disk would be advantageous.  A version of CAIC is in preparation for IBM-compatible PCs.

Compatibility with previous versions TC  "Compatibility with previous versions" \l 1 
Phylogenies and data files for version 1.2 of CAIC will work with this version too.

The programs and manual TC  "The programs and manual" \l 1 
The programs are supplied as compiled applications but the source code is available upon request.  It is written for THINK Pascal version 4.0 (from Symantec) on the Macintosh but it contains little specific to that machine and is commented thoroughly so can be converted for other systems and compilers.  Historically, the package had its origins as 13 separate programs, and the intermediate files that the package produces are evidence of phylogenetic inertia.

This manual assumes only basic knowledge of how to use a Macintosh.  Input files can be prepared using any package capable of producing a text file with items separated by tabs. The package’s output is also a text file with tabs between data items, and can easily be read into statistics packages.

The package comprises three applications, CARDINPUT, PHYLOGENY, and CAIC.  You should also have three text (ASCII) files: MyData1, which is an example of a suitable input file for the package, and two sample output files (MyData1_c1c2c3_ and MyData1_c1c4_).

Throughout this manual, the programs’ screen messages and prompts appear in this font. They are generally indented, as here. Anything typed by the user appears in bold face.

Package overview TC  "Package overview" \l 1 
Two of the applications, CARDINPUT and PHYLOGENY, help you store the phylogeny of your study group on disk.  If you anticipate analysing several datasets for your group over a period of time, you can therefore keep a phylogeny of the entire group on disk and update it relatively painlessly as and when new information becomes available.  Alternatively, your analysis may be a one-off; in this case you would use these applications to build up the phylogeny of only those species in your dataset.  Neither program has a graphical interface.  However, A.R. has written an application, LARCH, that can be used in place of CARDINPUT and PHYLOGENY and which allows graphical tree editing.  It also allows conversion of PHYLIP trees (Felsenstein 1993) into CAIC format.  That application, and details of how to use it, are available via anonymous ftp from ftp://evolve.zps.ox.ac.uk/FTP/packages/larch01.hqx. LARCH is particularly useful when you know the lengths of the branches in the phylogeny, and/or when your phylogeny was produced by PHYLIP (or PAUP, which can export trees in PHYLIP format).

The third application, CAIC, is what you run every time you have a dataset to analyse.  It automatically gets the phylogenetic information it needs from your disk-based phylogeny, and computes the phylogenetically independent contrasts.  These are written to a text file which can easily be loaded into statistics applications.

Your dataset can include as many species and as many columns of data as you like.  The data may be continuous (e.g. body weight), dichotomous (e.g. nocturnal/diurnal) or in more than two categories that can be ranked (e.g. arboreal/semi-terrestrial/terrestrial).  Missing values are allowed in any data column.  For each analysis, you will have to choose which of your data columns you want to investigate (up to a maximum of 20 columns per analysis) and you may be asked which is to be treated as the independent variable.  Each analysis can include at most one categorical trait.  If one trait is included, it will be the independent variable.  If all the columns hold continuous data, you will choose which of them is the independent variable.  Other columns may be treated as dependent or control variables.

3. Coding the phylogeny TC  "3. Coding the phylogeny" \l 1 
This process is best understood by means of an example.  There are over 4000 species of mammal.  Typing in the branching pattern of so many lineages is a major undertaking.  Errors are easily made and, even if you avoid typing mistakes, new phylogenetic studies mean that more information is always making your efforts out-of-date.  CARDINPUT and PHYLOGENY try to minimise the headaches of errors and obsolescence by letting you break the phylogeny down into bite-sized pieces, as this example illustrates.

The Perissodactyla (odd-toed ungulates) are a numerically small order of mammals, with only 18 Recent species; Figure 3 shows a possible phylogeny for them.  What is needed is some way of feeding this branching pattern into the package, so it can know which taxa are more closely related.  The solution used here is to look at each node in turn, and letter its daughter branches.  When this is done for each node in turn, each species has a unique code formed by the sequence of letters on the branches leading to it, starting from the root (last common ancestor of all the species).  So Equus grevyi has a code of BAAA, and Diceros bicornis is represented by AABA, as shown in Figure 4.  All that you need do is tell the package the name and the code of each species, and it will be able to reconstruct the whole topology.  But, even with only 18 species, 
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Figure 3. A phylogeny of the Recent members of the mammalian order Perissodactyla

this can be quite error-prone; with over 4000 it would be a nightmare.  CARDINPUT and PHYLOGENY let you break the phylogeny down into hierarchically nested chunks.  For instance, you could break the Perissodactyla up into 4 chunks – Equidae, Tapiridae, Rhinocerotidae, and a fourth chunk showing how these families are related one to another.  These might be drawn as in Figure 5.

Now all you need do is work out the codes among small groups of taxa, which is much less prone to error.  One possibility is to keep the phylogeny of each such group on a separate card in a card index; from now on we use ‘chunk’ and ‘card’ interchangeably.  PHYLOGENY will put the cards together in the right order, and give each species its own unique code.  This is easy because the chunks are nested hierarchically. For example, Equus zebra has the code ABB within Equidae, and Equidae has the code B within Perissodactyla.  So Equus zebra’s code within Perissodactyla is simply the two codes concatenated, BABB.  Another advantage of this method is that it can easily accommodate changes in the phylogeny.  For instance, suppose that a new study suggested that horses, and not tapirs, were the sister group of the rhinos.  Rather than have to change the codes on each of the species in each of the families, you need only change the codes of the families themselves; PHYLOGENY will do the rest.

Branch lengths TC  "Branch lengths" \l 1 
There is more to phylogeny than just topology.  As explained in Appendix 1, CAIC needs to know the distances – branch lengths – between the nodes.  These should be in expected units of evolutionary change.  Branch lengths in units of time, genetic distance, ∆T50H units or similar measures ought to be good approximations.  If such branch lengths are available, or can be estimated, for every branch of the tree for the species in the dataset, they can and should be used: Section 5 explains how.  If branch lengths are not known, PHYLOGENY can generate 
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Figure 4.  The same phylogeny, complete with unique phylogenetic codes.

default branch lengths in either of two ways.  One is to say that every branch in the phylogeny is the same length; this is an explicitly punctuational view of evolution.  The other option assumes that the ages of taxa are proportional to the number of species they contain; to this end we use an algorithm from Grafen (1989; his Figure 2) to obtain the relative length of each branch.  Neither of these approaches makes any claim to be ideal.  Both are likely to perform better if the phylogeny contains all the species in the group, not just those in the dataset.  Encouragingly, however, recent simulation work (Purvis et al, 1994; see Appendix 3) shows CAIC to still perform reasonably even with very inaccurate branch lengths, and certainly much better than any method that treats species values as independent.  The simulations did find, however, that branch lengths derived from Grafen’s (1989) algorithm did not generally perform as well as equal branch lengths.  Whichever option is preferred, the reasonableness of the branch lengths ought to be tested (see Section 10) rather than merely assumed.
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Figure 5.  The same phylogeny, broken down into bite-sized pieces (‘cards’).

4. Running CARDINPUT TC  "4. Running CARDINPUT" \l 1 
Double-click on the CARDINPUT application to start it running.  A window should open up, with this prompt:


               .................................................

:                                               :

: Comparative Analysis by Independent Contrasts :

:                    Version 2                  :

:                   April  1995                 :

:                                               :

: Copyright 1995 Andy Purvis and Andrew Rambaut :

:  Department of Zoology, University of Oxford  :       :...............................................:


Of what group is this the phylogeny ? 

(The flag-waving message appears at the start of each program.)  Your reply must not be more than 20 characters long and must not contain any spaces.  Obviously, no two chunks in your phylogeny should have the same name.  It’s easiest simply to use suitable taxonomic group 

names. Let’s keep to the example we were using earlier and type in the reply ‘Perissodactyla’.  The program will then ask for the codes and names of each taxon in that group.  Codes must be in alphabetical order – the program will reject codes that are not.  You should also make sure you’re consistent about what case the codes are in – they get sorted later on, and ‘Z’ sorts before ‘a’.  The taxon names must not be longer than 40 characters: if you exceed this, the program will truncate the names at 40 characters.  When you run CARDINPUT, the conversation might go:


Of what group is this the phylogeny ?  Perissodactyla


Taxonomic code of taxon        1 ? AA

Name of taxon 1 ? Rhinocerotidae


Taxonomic code of taxon        2 ? AB

Name of taxon 2 ? Tapiridae


Taxonomic code of taxon        3 ? B

Name of taxon 3 ? Equidae


Taxonomic code of taxon        4 ?

We have to tell the program that there are no more taxa in this chunk; we do so by typing an asterisk (*) and pressing RETURN.  This will cause the program to finish and quit – you should find yourself looking at the desktop.  You might notice that the folder containing the programs now contains a new text file, Perissodactyla.Card.  This is the output from the program.  The suffix ‘.Card’ tells you it has been produced by the program CARDINPUT.  If you open the file, it should look like:


AA


Rhinocerotidae


AB


Tapiridae


B


Equidae

If you notice any mistakes typing in the taxon names, you can correct them either by editing the file with the TurboPascal editor or by re-running the program.  You should run CARDINPUT once for each chunk in your phylogeny.  Here, for instance, you have effectively said that there will be a chunk called Equidae, one called Rhinocerotidae and one called Tapiridae.  The run for Tapiridae might go:


Of what group is this the phylogeny ? Tapiridae


Taxonomic code of taxon        1 ? AA

Name of taxon 1 ? Tapirus terrestris


Taxonomic code of taxon        2 ? AB

Name of taxon 2 ? Tapirus pinchaque


Taxonomic code of taxon        3 ? B

Name of taxon 3 Tapirus bairdii


Taxonomic code of taxon        4 ? C


Name of taxon 4 ? Tapirus indicus


Taxonomic code of taxon        5 ? *
This should result in the creation of a file, Tapiridae.Card, in the folder.  If you have many species within a genus, the program has a feature to make things easier for you.  In each genus, you only need type the full binomial of the first species.  For subsequent congeners, you can type just the specific name but preface it with a space.  N.B.  Do not forget the leading space.  Notice that multiple nodes (nodes with more than two daughter taxa) present no difficulty – you just work through the alphabet.  Beyond a 26-way node, things get rather more difficult, but not too bad.  After Z, use the next character in ASCII order (look up ASCII in your Mac documentation) – the order goes XYZ[\]^_`abcd and so on.  In this way, nodes can have more than 60 branches.  (Unless you’ve more than 52 branches from a node, it’s easier to move on to the lower case alphabet straight after Z).
The phylogeny should ideally be both precise (having many nodes) and accurate (not wrong).  A phylogeny in which all nodes are bifurcations will yield the greatest number of within-taxon contrasts; at the other extreme, a phylogeny where all the species radiate from a single node yields only one contrast.  Simulations show how, although validity is preserved, power declines when less precise phylogenies are used to analyse the data (Purvis et al., 1994; see Appendix 3).  However, groupings shown in your phylogeny must be correct – nodes should demarcate only monophyletic taxa.  If there are errors in the phylogeny, CAIC will obviously come up with the wrong answers.  Don’t be afraid to use multiple nodes to admit uncertainty.  It is important to remember that taxonomies are often not intended to reflect phylogeny, and even when they are they may not do so very accurately.  If estimates of phylogeny are available, you should use them.  Purvis (1995a; see also Purvis 1995b) suggests an algorithm for combining multiple estimates of phylogeny.

5. Running PHYLOGENY TC  "5. Running PHYLOGENY" \l 1 
When you have used CARDINPUT to enter all the chunks of your phylogeny, you should run PHYLOGENY (by double-clicking on it).  This program will fit the pieces of the phylogeny together into one file and assign a length to each branch of the tree.  The .Card files created by CARDINPUT must all be in the same folder as PHYLOGENY.

A run might go thus:


What do you want to call the output files ? Perissodactyla
You can choose any valid file name of 20 or fewer characters.  It can be the same name as one of the chunks if you like, because each program attaches a different suffix to file names to prevent overwriting.  The program will produce two phylogeny files for use by the CAIC program; the names of both files will start with what you choose here.  The package will next ask what default assumption you want to make about branch lengths:


Do you want all the branch lengths set to the same value ?  

If you have branch length data for every branch between the species in your dataset:  It doesn’t matter what you type here, because you will later overwrite the output file anyway (see below). Using branch length information in this way is an explicit choice of a gradualistic model of evolution in which change accumulates over time.

If you want to assume a punctuational model of change: Type “Y” or “y” here, and all the branches will be assigned the same length – equivalent to assuming that change occurs only at speciation events.

If you don’t want to assume punctuational change but do not have branch length data: The best option is to type “N” or “n” here; the program will assign branch lengths on the assumption that the ages of taxa are in direct proportion to the number of species they contain.  The algorithm used is described by Grafen (1989; his Figure 2).

Once the decision about branch lengths has been made (let’s assume we typed ‘n’ here), the program will continue:


What is the name of the topmost card in your phylogeny ?

 

Perissodactyla
PHYLOGENY now opens the file Perissodactyla.Card (it automatically adds the suffix – you shouldn’t type it in) and goes through it line by line.  Taxon names containing a space refer to species, so the program writes the species’ concatenated code and name to the output file.  If the name does not have a space, then it must refer to a higher taxon, so the program opens the file for that taxon (which is why the names of CARDINPUT files were not allowed to include spaces).  The program will print the names of the CARDINPUT files as it opens them so you can check its progress.

If the program can’t find a file, e.g. if you’ve run PHYLOGENY without first typing in the phylogeny of the rhinos, it will up with a screen message like


   ***   File Rhinocerotidae.Card not found.





Press RETURN to quit...

The most likely problems are that you have misspelled the file name or the file is not in the same folder as PHYLOGENY.  If all goes well, the output should instead be something like:


Processing Perissodactyla.Card...


Processing Rhinocerotidae.Card...


Processing Tapiridae.Card...


Processing Equidae.Card...


18 species written to Perissodactyla.Phyl

The number of species written to the file should tally with the number of species in your phylogeny.  The program then works out the codes of all the higher nodes in the phylogeny and generates the branch lengths.  It prints out a brief message to let you know what it is doing and, to show its progress, prints extra full stops after every 20 branches.  This example only features a small group though, so it should only take a second or two:


Working out codes of higher nodes .


Generating branch lengths .


33 branch lenghts written to Perissodactyla.BLen


Keep these files - you will need them in your analyses.


                 Press RETURN to quit...

Now you have the phylogeny of your group on disk.  As the output messages said, you must keep the files with the suffix ‘.Phyl’ and ‘.BLen’ for use in the CAIC program.  An intermediate file, Intermediate.Int, is also produced (for historical reasons) but isn’t needed later – you can throw it away if you wish.

What if branch lengths are available? TC  "What if branch lengths are available?" \l 1 
The file with the name ‘.BLen’ is a text (ASCII) file and contains the branch length estimates produced by PHYLOGENY.  If you have branch length data and want to assume a gradualistic model of evolution, you should edit this file.  The easiest way to do this is to use LARCH, which is described in its own documentation.  Alternatively, you can edit the file in a statistics application or a spreadsheet.  There is a line in the file for each node and species in the phylogeny.  Each line contains three items separated by tabs.  The first column holds the unique phylogenetic code of the species or node.  Next is the length of the branch between this node or species and the node directly ancestral to it.  The last column holds the age of the node, which is sometimes useful in checking that the method’s assumptions have not been violated (see Section 10).  (If you opted for the punctuational model, the branch lengths will all have been set to 2 and the ages of the nodes, not useful with punctuational change, will all have been set to –9.)  Simply replace the contents of the branch length column with your branch length information. N.B. Branch lengths set in this way must not be less than 2 units: you may have to multiply all your branch lengths by a common factor to ensure this.  If you set a branch length to less than two units, the program that uses this file will print out a warning and set the branch length to 2 anyway.  If the branch lengths that you have are ultrametric, i.e. all species are equally far from the root, you might want to edit the last column too: knowing the ages of the nodes will let you test some of the assumptions of the method (see Section 10).

Before we move on to the CAIC program itself, we will deal with how to set up a test dataset.

6. Setting up the test dataset TC  "6. Setting up the test dataset" \l 1 
CAIC data files must be text files; nearly all statistical packages, spreadsheets or word processing packages can save files in a text format.  The precise package used doesn’t matter, provided that the dataset fits all the following criteria:

§  It must be a text file.

§  The file name should be not more than 14 characters long.

§  Columns must be separated by tabs

§  The Latin binomials of the species must be in either the first column or the first two columns (generic names in the first column, specific names in the second).  The spellings should match those in the phylogeny.

§  The dataset must have been sorted into alphabetical order by Latin binomial.

§  After the name must be at least two columns of data (the primary independent variable and a dependent variable).

§  At least one of the columns must hold continuous data.

§  All columns of continuous data must precede all columns of categorical data.

§  Within each column of categorical data, the categories should be coded by integers.  Remember to keep a note of which integer stands for which character state.

§  All missing values in the entire dataset, for continuous or categorical variables, must be coded as –9.

To show the sort of thing, below is a purely illustrative dataset for the perissodactyls, culled in slipshod fashion from Grzimek (1990).  There are three columns of continuous data, followed by one column of categorical data. The continuous data have been logarithmically transformed, for reasons discussed in Section 10.  Note that the species are in alphabetical order, missing values are coded as –9, and the categorical column is at the end.  This file includes column names, which are optional.  Here the generic name is in the first column and the specific name in the next; you can put the full binomial in one column if you prefer.  You should have a copy of this dataset (MyData1).  It will be used in two analyses to illustrate the use of CAIC.  In the first, we shall ask how contrasts in log (gestation) and log (neonate weight) are correlated when log (female weight) contrasts are controlled for.  The second analysis will test for correlated change between the rough indicator of territoriality and log (female weight).

Missing values TC  "Missing values" \l 1 
When you perform an analysis, you will be asked to select which columns of your dataset you wish to analyse.  When you have chosen some, CAIC will look in your dataset and pick out those species for which there are data values for all of the selected columns.  Species with a missing value in any one or more of the columns you choose will be excluded from that analysis.  So the more columns you choose, the smaller your sample size is likely to be.  Note that this shouldn’t stop you making your dataset as big as you like; you can select different columns from the main dataset for each analysis.  Each analysis is quick once the dataset is inside the system.

	Genus name
	Species name
	log (female wt)
	log (gestation)
	log (neonate wt)
	Territoriality

	Ceratotherium
	simum
	6.262
	2.690
	4.903
	1

	Dicerorhinus
	sumatrensis
	5.910
	2.602
	4.544
	-9

	Diceros
	bicornis
	6.183
	2.653
	4.699
	0

	Equus
	africanus
	5.439
	2.562
	4.398
	1

	Equus
	burchelli
	5.477
	2.562
	4.477
	0

	Equus
	grevyi
	5.653
	2.591
	4.602
	1

	Equus
	hemionus
	5.462
	2.562
	4.398
	1

	Equus
	zebra
	5.462
	2.562
	4.398
	0

	Rhinoceros
	sondaicus
	6.153
	2.681
	4.699
	-9

	Rhinoceros
	unicornis
	6.237
	2.681
	4.845
	1

	Tapirus
	indicus
	5.455
	2.599
	3.919
	1

	Tapirus
	pinchaque
	5.377
	-9
	3.699
	-9

	Tapirus
	terrestris
	5.332
	2.601
	3.760
	-9


7. Running the CAIC program TC  "7. Running the CAIC program" \l 1 
This is the heart of the package.  Having asked you details about your data file and phylogeny file, CAIC collates the data against the disk-based phylogeny to find out the phylogeny of the species in your current data set.  This done, CAIC is ready to compute contrasts in any sets of columns you ask for.  There are two algorithms for calculating contrasts.  We recommend that one (which we call ‘Crunch’ for historical reasons: illustrated in Figure 1) be used whenever all the columns are continuous variables, whereas the other (‘Brunch’: Figure 2) is preferred when the predictor variable is categorical.  However, the program gives you the choice: this point is discussed briefly in Section 11.

Telling the program what you want done TC  "Telling the program what you want done" \l 1 
As with the other programs, you run CAIC by double-clicking on it.  The program will then ask:


• The name of your dataset


• Whether the species names take up one column or two


• The number of data columns in the dataset


• How many of them hold categorical data


• Whether it contains column names


• The name of your phylogeny files


• Whether you edited the branch length file, rather than using one of the defaults.

So, with the example dataset given above:


What is the name of your dataset ?  MyData1


Are species names in 1 column or in 2 (Answer 1 or 2) ?  2

How many columns of data are there in MyData1 ?  4


How many of the columns hold categorical data ?  1


Does the file contain column names ? (Y/N)  y

There are three columns of continuous data and one of categorical data.  Columns containing species names don’t count towards the total.  If you get any file details wrong, the program will stop with an error message while it is reading the file, usually when it encounters a species name or column name where it was expecting a number.


What is the phylogeny called ? Perissodactyla
You shouldn’t type the .Phyl suffix: the program will add it to what you type.  If CAIC can’t find your phylogeny – usually because it is in the wrong folder or you have mistyped the name – it will ask you for the name again (or let you quit).  If the file is in the wrong folder, you can go into Finder, move the files into the right folder, go back into CAIC, and give it the file name again: remember to move both the .Phyl and .BLen file.


Did you edit the branch length file (Y/N) ?  n
(Assuming for now that you’re using one of the sets of default branch lengths.)  After a paragraph of explanation, the program starts to read species in from the data file.


Loading your data file...


   Processing Ceratotherium simum...


   Processing Dicerorhinus sumatrensis...


   Processing Diceros bicornis...


   Processing Equus africanus...


   Processing Equus burchelli...


   Processing Equus grevyi...


   Processing Equus hemionus...


   Processing Equus zebra...


   Processing Rhinoceros sondaicus...


   Processing Rhinoceros unicornis...


   Processing Tapirus indicus...


   Processing Tapirus pinchaque...


   Processing Tapirus terrestris...


13 species were written to Intermediate.Int

Our most common mistake when we CAIC is forgetting to sort the data set into alphabetical order, and we have heard the same from many other users; it is now that CAIC will tell you if you have joined the club.  CAIC will also give an error message if any species occurs twice in the dataset (although the repetition will only be noticed if the dataset is in the right order).


Collating your data file against your phylogeny...


   Match found on Dicerorhinus sumatrensis


   Match found on Rhinoceros sondaicus


   Match found on Rhinoceros unicornis


   Match found on Diceros bicornis


   Match found on Ceratotherium simum


   Match found on Tapirus terrestris


   Match found on Tapirus pinchaque


   Match found on Tapirus indicus


   Match found on Equus grevyi


   Match found on Equus burchelli


   Match found on Equus zebra


   Match found on Equus africanus


   Match found on Equus hemionus


13 species have been written to MyData1.Load

  You must now choose columns for analysis.  Your data set has 4 columns of data. You may choose as many columns of continuous data (columns 1 to 3) as you like. You can also choose the dichotomous column.

  If you choose only continuous columns, you will also be asked which of the selected columns is to be used as the predictor variable. Consult the manual for further details.

Number of the first column to be included ?

If this is what you see, the program has successfully loaded the data file and matched all the species in it to the disk-based phylogeny.  However, it is easy to mistype a species name, either when typing in the phylogeny or when preparing your dataset.  If you make a mistake, the names won’t match.  Suppose that the name of one of the zebras was wrong in the data set.  It would not match any name in the phylogeny, with the following result:


12 records have been written to MyData.Load


1 species names in the dataset did not match any names in the


phylogeny...


Do you want to know which these are ? (Y/N)  

If you type ‘Y’ or ‘y’, followed by RETURN, it will now check each species name in the data set in turn, and let you know whenever it comes across a mismatch:


   Mismatch on Equus zerba


The names of these species have been written to Mismatch.File.


Press RETURN to continue, or “Q” (followed by RETURN) to quit...

The mismatch file is a text file.  Species are listed there in the alphabetical order.  It may be that you knew your dataset contained some species which were not in the phylogeny, in which case just press RETURN and carry on.

Choosing columns for contrasts TC  "Choosing columns for contrasts" \l 1 
For the remainder of the session, the program will prompt you for sets of columns you want analysed, and then compute contrasts for them.  After it has produced a text output file containing the contrasts, it will ask for another set of columns to analyse.  You can choose as many sets as you like before quitting.  The output files can then be loaded up to a statistical package and analysed to test the comparative hypothesis using the procedures outlined in Section 9. 

Why not just analyse the whole dataset in one go ?  There are three possible reasons that could apply to the analyses you wish to perform.  Firstly, the package will only use species which have no missing values in any of the columns you choose.  So you may find that sample sizes get smaller as you include more columns.  A good rule of thumb is to include only those columns that are directly relevant to the hypothesis under test.  A second reason is that dichotomous variables should be the independent variable in an analysis.  This means only one dichotomous variable can safely be analysed at a time.  The third reason, which applies in analyses of continuous data, is more complex and is a result of how multiple nodes (nodes with more than two daughter branches) are handled.  As detailed in the Appendices, the package splits daughter taxa of a multiple node into two groups on the basis of their values for the variable you assign as the independent variable.  This variable is being used to generate a phylogenetic hypothesis.  Say you have three variables A, B and C.  The slope of A on B may vary depending on whether B or C was used as the predictor variable – in effect, the phylogenies used in the two cases may be slightly different.  (That said, if the hypothesis being tested is multivariate (e.g. that A and B correlate when C is controlled for), then it is important that all three sets of contrasts are generated from the same analysis.)

If any of these reasons apply, you will want to select more than one set of columns, and generate more than one set of contrasts.  Otherwise, you can simply select all the columns and use the CAIC program to analyse them all in one go.  In our illustrative example, we want to perform two analyses, one using the ‘Crunch’ algorithm (all characters continuous) and one using ‘Brunch’ (including a dichotomous column).

The last screen output reminded you how many columns were in your data set, said how many of these were dichotomous, and asked you which was the first column to be analysed.  N.B.  The numbers of columns refer only to the data columns; do not count the column(s) that hold the species names.  In this analysis, we want to compare log (neonate wt) with log (gestation) while holding constant the effects of log (body size).  In order to do this, we need to know how both neonatal weight and gestation length correlate with body weight, so body weight will be our independent (predictor) variable.  The run would go:


Number of first column to be included ?  2


Number of next column to be included (0 to stop) ?  3

Number of next column to be included (0 to stop) ?  1


Number of next column to be included (0 to stop) ?  0


You have selected the following 3 columns :


    1   log (female wt)  Continuous


    2   log (gestation)  Continuous


    3   log (neonate wt)  Continuous


If this is incorrect, type N and press RETURN. Otherwise, just


press RETURN...

If you chose the wrong columns, typing ‘N’ here lets you choose again.


What is the number of the main predictor (independent) column ?  1

As mentioned above, column 1 is our predictor variable.  Note that the order in which you select columns does not matter; the program sorts the list of selected columns.


What identifier do you want to give this analysis ?  c1c2c3
The identifier should be a string of 4 to 10 characters, and should be unique.  It will be added to the name of the output file, giving each such file a unique name.  You might want to make a note of which analyses have which identifiers.


12 species to be used


Press RETURN to Crunch or B (followed by RETURN) for Brunch

The species count tells us that 12 of our 13 species had data for columns 1, 2 and 3.  Had we only wanted to know the relationship between female weight and neonatal weight, we could have used all 13 species.  As a general rule, then, only select the columns that bear directly on the question: you will often find that including more columns than are necessary reduces the sample size and hence the power.  All of the columns we chose are continuous, so Crunch is (for most purposes) the better algorithm to choose (see also Section 11), so we just press RETURN to ask CAIC to generate the contrasts we asked for.  CAIC lets you know what it’s doing, and adds a full stop after every ten species or every 20 branch lengths to let you know it’s still alive:

Crunching...


Reading in the data.


12 species read in.


Setting the branch lengths.


33 branch lengths read in.

When computing the linear contrasts, the program starts at the tips of the tree and works up to the root:


Finding and calculating contrasts:

         Contrast calculated at AAAB.


   Contrast calculated at AAA.


   Contrast calculated at AAB.


   Contrast calculated at BAA.


   Contrast calculated at AA.


   Contrast calculated at AB.


   Contrast calculated at BA.


   Contrast calculated at A.


   Contrast calculated at B.


   Contrast calculated at node @Root.


10 sets of contrasts written to MyData1_c1c2c3


Please enter S to select some columns for analysis (or Q to quit). s
The file MyData1_c1c2c3 is a text (ASCII) file containing your contrasts.  The data items are separated by tabs.  It ought to be easy enough to load the file into any statistical package able to read ASCII files, though some packages may object to column names (if so, simply don’t use column names in the input file, or delete them from the output file).

The second analysis includes a categorical variable, so the procedure is somewhat different.  When you type S and RETURN, the program again lets you know the numbers of cateogrical and continuous columns, and prompts you as before.


Number of first column to be included ?  1


Number of next column to be included (0 to stop) ?  4

Number of next column to be included (0 to stop) ?  0


You have selected the following 2 columns :


    2   log (female wt)  Continuous

          4   Territoriality  Categorical


If this is incorrect, type N and press RETURN. Otherwise, just


press RETURN...


Territoriality is the predictor variable.


What identifier do you want to give this analysis ?  c1c4

9 species to be used


Press RETURN to Brunch or C (followed by RETURN) for Crunch

The package knows which columns in the dataset hold categorical data, and will not let you select more than one for the same analysis; the one you choose will be used as the independent variable.  When a variable is cateogrical, Brunch is the default algorithm (see Section 11).


Brunching...


Reading in the data



9 species read in


Setting the branch lengths.



33 branch lengths read in all


Finding and calculating contrasts:

         Contrast calculated at AAB.


   Contrast calculated at BAA.


   Contrast calculated at B.


3 sets of contrasts written to MyData_c1c4


Please enter S to select some columns for analysis (or Q to quit). q
We’ve finished, so ‘q’ or ‘Q’ takes us out of the program and back to the desktop.  Note that there are fewer contrasts with this analysis: whereas Crunch computes a contrast at each node on the phylogeny of the dataset species, Brunch produces at most half as many contrasts as there are species.  This follows from the way that species data are used in the two approaches: Brunch uses the value of each species once only.  Crunch, on the other hand, uses species values not only when computing differences between sister taxa but also to estimate values for higher nodes; these are themselves then contrasted.  Crunch thus has greater statistical power, but makes more assumptions.  Categorical data are likely to contradict some of these assumptions and so ought generally to be analysed using Brunch.

8. Looking at the output file TC  "8. Looking at the output file" \l 1 
The output files from both algorithms have the same basic format.  You should have the output files from the example runs, but with the names slightly changed to prevent them from being accidentally overwritten.  They are text files and it ought to be easy to read them into a statistics package.  Some packages may object to the inclusion of column names: if yours does so, either edit the output file to remove the column names or leave column names out from the dataset in the first place.  Once you have successfully read an output file into your statistics package, you can take a look at it.  The first column in the file holds the codes of the nodes where contrasts could be computed.  Contrasts at the tips of the trees should appear first, and the contrast at the tree’s root (which has been given the code ‘@Root’), last.  The following columns will contain independent standardised linear contrasts for the columns you chose.  Appendices 1 and 2 detail how these contrasts were obtained.  Note that these columns are in the same order as in the original dataset, no matter in what order you selected them.  If the file was produced by Brunch, the contrasts in the categorical variable have not been standardised (this column should be full of 1’s, assuming that there were only two character states and that you used successive integers for them).

Whatever the source of your file, after the columns of standardised contrasts come several more columns.  The first of these holds the expected variances of the unstandardised (raw) contrasts.  The next contains the height (or age) of the nodes within the tree; this column will be full of –9’s if you chose a punctuational model of evolution.  Then comes a column of integers, which tells you how many sub-taxa were contrasted at the node in question.  The remainder of the output file is made up of CAIC’s estimate of the values at each node of the characters included in the analysis.  These columns, which can be useful for checking assumptions of the methods, are in the same order as the columns of contrasts.  Nodal values are not estimated for dichotomous traits – the corresponding column will be full of –9’s.

9. Using the output to test the comparative hypothesis TC  "9. Using the output to test the comparative hypothesis" \l 1 
N.B.  Throughout this section, ‘contrasts’ refers to standardised linear contrasts, which is what the output files contain.  Where we mean unstandardised contrasts, we use the term ‘raw contrasts’.  Appendices 1 and 2 show in detail how the linear contrasts are calculated and standardised.

Crunch – all variables continuous TC  "Crunch – all variables continuous" \l 1 
Contrasts in the predictor variable will always be positive or, if the taxa being contrasted do not differ among themselves in that characteristic, zero.  Positive contrasts for any other variables mean that, among the subtaxa being contrasted, those variables also vary, and the variation goes in the same direction as in the predictor variable (i.e., a positive relationship between those variables within the taxon).  Conversely, a negative contrast on any of these other variables indicates that they vary in the opposite direction to the predictor variable (indicating an inverse relationship within that taxon).  If, for example, there is a positive linear relationship between the predictor variable and the dependent variable, then small contrasts on the predictor variable should accompany small contrasts on the dependent variable, and vice versa.  Such a pattern will show up when the contrasts are viewed across taxa.

Bivariate hypotheses – are Y and X correlated? TC  "Bivariate hypotheses – are Y and X correlated?" \l 1 
The typical comparative hypothesis specifies a relationship between differences in the X or predictor variable and differences in the Y or dependent variable (Harvey and Pagel, 1991).  Such relationships can be assessed by regression (or correlation) through the origin.  Simply regress the column containing the Y-variable contrasts onto the column containing the X-variable contrasts.  The expected value of the slope equals the true relation between Y and X in the absence of phylogenetic effects (Pagel, 1993); test to see if this slope differs significantly from zero.  All regressions of contrasts on contrasts must pass through the origin.

Multivariate hypotheses – Y and several X variables TC  "Multivariate hypotheses – Y and several X variables" \l 1 
More complex relations can be tested via multiple regression through the origin.  For example, the Y contrasts can be regressed onto the X contrasts, controlling for the contrasts derived from one or more other variables that had been included in the analysis.  This tests whether variation in X is associated with variation in Y after controlling for their mutual relations with the other variables.  Interactions can be tested by the usual multiple regression techniques of finding the product between two vectors then entering the product vector into the regression after the two main effects.

Comparing rates of evolution TC  "Comparing rates of evolution" \l 1 
The contrasts can also be used to test other kinds of comparative hypotheses.  The standardised contrasts are in fact estimates of the rate of evolutionary change, so you can ask whether different characters have evolved at different rates, or whether a character has been evolving more rapidly in some clades than in others (Garland, 1992); t-tests (two-sample or matched pairs, depending on the question) or one-way ANOVAs are suitable statistics.

Testing for grade effects TC  "Testing for grade effects" \l 1 
You can also use contrasts to test for “grade effects”.  In many allometric relationships, the allometric exponent is the same in different taxa but the intercept differs – a grade effect.  For instance, basal metabolic rate scales as (body mass)0.75 in both endotherms and ectotherms, but endotherms have much higher rates than do ectotherms of the same mass.  However, tests using species as independent points are as invalid when testing for grade effects as when testing for correlated evolution among characters.  Fortunately, the contrasts permit valid tests.  There are two parts to testing whether two clades constitute different ‘grades’.  Firstly, you must show that the allometric exponent (slope of the log-log plot) is the same in the two clades: this can be done by ANCOVA through the origin, or by a t-test on the residuals from a regression through the origin.  Second, you must show that the clades differ from each other in the intercept.  If they do, the contrast comparing the two clades will be an outlier from the regression through the origin of the other contrasts – it will have an unusually large studentized residual.

Brunch – a categorical variable TC  "Brunch – a categorical variable" \l 1 
If, as is preferable, the character has only two states, all the raw contrasts in the predictor (X) variable are +1; otherwise some may be other positive integers.  At any node, a positive contrast in any of the other variables means that they are varying in the same direction as the predictor variable.  The interpretation of such a pattern is that, when related taxa differ with respect to the categorical trait, the character state to which you gave a higher integer occurs in taxa having higher values of the continuous traits.  Conversely, a negative contrast in a continuous variable means that, among the taxa being contrasted, higher values of the continuous variable are found in taxa having the categorical trait in a lower state.

Under the null hypothesis that evolution in the continuous (dependent) variable has not been linked in any way to the evolution of the categorical trait, we should expect half the contrasts in the dependent variable to be positive and half negative, and the mean value of the contrasts to be zero.  We can test the null hypothesis using a two-tailed sign test on the signs of the contrasts in the dependent variable or, more powerfully, a t-test on the mean of the contrasts or with a randomization test (Siegel, 1956:88).  A significant bias towards positive scores, or a mean significantly greater than zero, indicates that the evolution of a higher value of X is correlated with evolution of larger Y, while a significant excess of negative scores, or a mean significantly below zero, would indicate that smaller Y evolves with higher values of X.

Interpretation of contrasts generated by Brunch is much easier if X occurs in only two states, because all between-taxon differences in X will be comparable.  If X can take three states, say, there is no good reason why the difference between states 1 and 2 should be comparable to the difference between states 2 and 3.  Additionally, CAIC finds the best set of contrasts available when there are only two states of X; there is no such single best set when X occurs in more than two states.  It should now also be clear why Brunch must not be used on variables where the states cannot be ranked: interpretation of contrasts would be impossible, because their signs would have no consistent meaning.  If you wish to use a variable whose n states cannot be ranked, you should first recode it into a set of (n-1) columns containing only 0’s and 1’s; a species gets a 1 in the first column if it shows the first character state, a 1 in the second column if it has the second state, and so on (notice that there is no need for a column for the nth state, as its contents are already defined).

Mixing Crunch and Brunch TC  "Mixing Crunch and Brunch" \l 1 
Testing more complex hypotheses is problematic.  If you want to know whether a categorical trait affects the size of a continuous trait independently of some other continuous variable(s) – the control variable(s) – then the best way to proceed is rather complicated.  First, analyse the two continuous variables together (using Crunch with the control variable as the predictor) and regress the dependent variable on the control variable through the origin.  Next, fit this slope to the raw species dataset, and take residuals from the line.  You do not need to worry about juggling the intercept to make the line fit the points – only the differences between the residuals of different species are of interest.  The residuals are the magnitude of the dependent variable, relative to the control variable.  They can now be put into the dataset as another column (you’ll have to re-run the CAIC program after doing this).  Now use Brunch to test for an evolutionary correlation between the categorical character and the residuals.  Such analyses lose a degree of freedom due to estimation of the regression line.  The reason why the residuals have to be generated using this package is that species-rich taxa would bias the slope of a regression through the raw species data.

At present, there is no satisfactory way of controlling for the effects of another dichotomous variable within this framework.  You could try an analysis to see if the other variable (the would-be control variable) shows any correlation with the continuous trait: if your dependent variable correlates much more strongly with your independent variable than with the would-be control, you are probably justified in saying that the pattern cannot be due to a confounding influence of the latter.

10. Testing assumptions TC  "10. Testing assumptions" \l 1 
Whenever we analyse comparative data, we have to make assumptions.  As with any other kind of analysis, it is important to check whenever possible that our assumptions are reasonable.  Here are some ways that CAIC’s output can be used for such ‘reality checks’.  Garland et al. (1992) also provide discussion of model criticism in comparative analyses.

Evolutionary assumptions. TC  "Evolutionary assumptions." \l 1 
The only assumption made about the evolution of categorical traits is that it is vaguely parsimonious; if two sister taxa show the same character state, it is assumed that their ancestor had the same character state.  Other assumptions of strict parsimony are not used here.

Felsenstein’s model assumes that the evolution of continuous characters can be modelled as a random walk process.  This provides a strong reason for logarithmic transformation of many data in comparative analyses.  An increase in size of one kilogram is much more likely in a whale lineage than in a lineage of shrews.  Log transformation of size data make the more reasonable assumption that different lineages are equally likely to make the same proportional change in size.  Such an assumption can easily be tested using the package’s output.  The model predicts that the absolute value of the standardised contrast should be independent of the estimated value of the character at the node at which the contrast was taken.  Regressions (not through the origin) of the absolute values of contrasts on the estimated nodal values should not have slopes significantly different from zero.  If the slope is significant you may need to apply a transformation to your data or branch lengths.

Statistical assumptions TC  "Statistical assumptions" \l 1 
Regression models make the assumption that the residual variation or scatter around the regression line has the same mean and variance at all points along the line.  The aim of estimating branch lengths and calculating standardised, rather than raw, contrasts is to produce contrasts for continuous characters which fit this criterion and are therefore suitable for regression analysis.  CAIC applies Felsenstein’s (1985) approach to the branch lengths used; i.e. it assumes equal rates of evolutionary change per unit branch length in all branches of the phylogeny.  With this assumption, we can calculate the variance of a raw contrast. If these raw contrasts are then scaled by dividing them by the square root of their expected variances, the results should be suitable for use in regression analysis.  However, if evolution has not proceeded in a way that conforms to Felsenstein’s model, or if the approximate branch lengths are systematically biased, then these scalings will not be correct; there will be heterogeneity of variance in the residuals.  The success or otherwise of the standardising procedure can be seen easily.  Plot the absolute values of the contrasts against  either the square root of the variances of the raw contrasts or the ages of the corresponding nodes.  Ideally, there should be no correlation between them.  If there is a significant effect, consider trying a different branch length assumption or data transformation.

Multiple nodes are another possible cause of heterogeneity of variance; they might have systematically different variances from bifurcating nodes.  To test for such an effect after performing a regression, calculate the residuals about the regression line and do an analysis of variance on the residuals using the ‘Number of sub-taxa’ column from the output as the grouping factor.  The variance of residuals (not the mean) by number of sub-taxa is of interest.  If they differ significantly (test by variance ratio), then tests of significance may lose some sensitivity.  If a test expected to be significant comes out non-significant in the presence of heterogeneity of variance, it may be useful to explore the data to see if one or a few taxonomic groups are responsible.  You might try deleting points with large residuals (i.e., points far away from the regression line) to see if the residual variance is reduced without much change in slope.  However, for obvious reasons this should be done sparingly.

In the face of persistent heterogeneity of variance, you may want to do a weighted regression.  Weighted regressions stretch or compress each of the data points as a way of equalizing the residual variances.  Many statistical packages have a weighted regression option.

Consistency TC  "Consistency" \l 1 
With taxonomic level:  Does the same pattern prevail at all taxonomic levels?  You can find out by splitting the contrasts into two or more groups on the basis of the ages of the nodes or lengths of the codes, and see if the pattern exists in each subset.  A common result is that patterns are stronger among higher nodes.  This is attributable to noise in the data: data inevitably contain measurement error and, at when close relatives are being compared, the error can be a high proportion of the apparent difference among taxa.  At higher taxonomic levels noise will tend to be averaged out and anyway there are greater real differences, so the signal-to-noise ratio is much higher.  If you are particularly interested in estimating a regression coefficient, you may need to base the estimate on higher-level contrasts – otherwise, the noise can lead least-squares regression to severely underestimate slopes (see Purvis and Harvey, 1995, for an example).  If, on the other hand, you have a pattern that holds among lower nodes but not higher up the tree, one possibility is that the phylogeny is less accurate at high taxonomic levels than it is at lower levels.

Among clades:  Does the pattern occur within each of the clades in your dataset or only within some?  If you sort the output file by code, contrasts within the same clade will be together.  It is then easy to analyse each higher-level clade separately to see if there is heterogeneity among them.  Significant heterogeneity suggests that the comparative net has been cast too widely: different clades may be responding differently to the same selection pressures.

General:  It is always a good idea to examine the scatter plot of contrasts in Y versus contrasts in X to determine whether the overall relationship depends upon only one or a few unusual points.  Sometimes one or a few outliers will exert disproportionate influence on the relationship.  Large outliers may be more likely with within-taxa analyses than with across-taxa analyses.  The reason is that slight deviations from an overall relationship may be relatively large deviations from the much more restricted range typically found within any one taxon. For example, a positive relationship between brain size and body size across taxa may span several orders of magnitude in both variables.  Slight deviations in either variable away from the relationship will not exert much influence on the overall trend.  But the same deviation within a genus containing only a few very similar species could possibly reverse the relationship within that genus.  An obvious implication of this is that independent contrasts methods are particularly affected by noise in the data: this is especially true of contrasts at low taxonomic level (see above).

Deviations may also be caused by ecological variables acting independently on one of the variables to move it away from the across-species trend.  If you are worried about such a possibility, consider an analysis excluding those species with markedly different ecologies (e.g. a mammalian dataset might be limited to exclude aquatic species).  Always bear in mind that differences among taxa may obscure the fact that the relationship within taxa can be quite different, depending upon the ecological conditions.  

11. Going against the grain – why you might like to ignore defaults. TC  "11. Going against the grain – why you might like to ignore defaults." \l 1 
CAIC suggests you use Crunch when all the variables are continuous and Brunch when the predictor variable is dichotomous.  But there are reasons why you might want to go against these defaults.  Firstly, you might be happy to include categorical variables as X’s in multiple regressions, despite the difficulty of modelling their evolution.  Under the regression view advocated by Grafen (1989), for instance, only the distribution of residuals must be normal.  If you want to, you can override the default and use Crunch instead of Brunch (and if you want to include more than one dichotomous variable, just tell CAIC they’re continuous).  If X can take more than two states, be warned that contrasts between taxa having very different states of X are likely to be very influential in the regression.

You might want to use Brunch in place of Crunch if you do not feel happy with fitting any evolutionary model to your data.  If you choose Brunch when all the variables are continuous, and analyse the contrasts with a sign test, the only thing being assumed is that evolution in different branches is independent.
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Appendix 1 – Details of the method used for continuous variables TC  "Appendix 1 – Details of the method used for continuous variables" \l 1 
A. Calculating and standardising linear contrasts at bifurcating nodes TC  "A. Calculating and standardising linear contrasts at bifurcating nodes" \l 1 
Linear contrasts are weighted sums in which the weights themselves add up to zero.  When the contrast is taken at a bifurcating node, i.e. within a group of two taxa, one of the weights is +1 and the other –1; the linear contrast in such cases is a simple difference.  The taxon with the higher value for the independent variable is assigned the weight +1; thus all contrasts for the independent variable will be positive.

The expected variance of such a two-taxon contrast is simply proportional to the sum of the branch lengths between each taxon and their common ancestor.  This follows from the assumption of a Brownian motion model of evolutionary change (Felsenstein 1985).  The method simply uses the branch lengths as the expected variances.  Thus contrasts between distant relatives will have a higher expected variance than contrasts between sister species.  If standard statistical techniques (such as regression) are to be applied to the contrasts, this heterogeneity of variance must first be overcome.  This is done by dividing each contrast by its expected standard deviation (the square root of the expected variance).  The resulting standardised linear contrasts, the output of the package, should hopefully be suitable for use in standard techniques of analysis (but see Section 10 for how to test this).

The value of each variable at the higher node must now be estimated.  It is calculated as a weighted sum of the values for the two daughter taxa.  The formula is

Xk = [ (1 / vi) Xi + (1 / vj) Xj ] / [ 1/vi + 1/vj],
where Xz is the value of a variable at the node or species z, and vz is the length of the branch between taxon z and the node above it.  The branch leading down to the node must be lengthened.  This increase in the variance of Xk reflects the error inherent in our estimation of Xk.  Thus the variance (branch length) becomes vk´, given by:

vk´ = vk + (vivj) / (vi + vj).
B. Calculating and standardising linear contrasts at multiple nodes  TC  "B. Calculating and standardising linear contrasts at multiple nodes " \l 1 
At multiple nodes (i.e. those with more than two daughter taxa) the situation is more complex.  Here, the logic of finding a simple difference between the daughter taxa falls down; we need some way to calculate a ‘difference’ between three or more taxa.  This method (Pagel, 1992) approaches the problem by assuming that the true phylogeny is bifurcating, and so aims to split the daughter taxa of each multiple node into two monophyletic groups.  A simple difference may then be found between these two groups or sub-nodes.

The method assumes that the variable you chose as the independent (X) variable can provide useful information about the true bifurcating phylogeny within the multiple node.  Daughter taxa are divided into two groups according to their values of X.  First the mean of X for all the daughter taxa of the node is calculated.  Then those taxa with X above this mean value are put into one group, while the rest are put into the other group.  The example in Figure A1 shows this procedure for a 5-way node.  Within each group or sub-node, the average values for each variable are calculated as a weighted mean according to:

Xk  =  ∑(1/vi)Xi  / ∑(1/vi)

where Xk is the value of variable X at node k, and the summation is over the n members of a node.  Next, the branches leading to the sub-nodes must be lengthened; this increase in the sub-nodes’ variances reflects error in the estimation of the sub-nodes themselves.  The ‘new’ branch lengths, va´ and vb´ will be given by:

vk´  =  vk  +  1 / ∑(1/vi)

where vk is the the branch length leading to sub-node k and the summation is again over the n members of the node.
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Figure A1.  The top part shows a multiple node with five taxa.  The numbers at the ends of the branches are the values for each taxon of the independent variable.  The length of the branch between the node and taxon i is represented by vi.  The mean value of the independent variable for these five taxa is 6, so the node is split into two sub-nodes as shown in the second part.  Sub-nodes a and b are now estimated as explained in the text, and then can be compared.  The branch lengths va and vb are arbitrarily set to be 1 initially but are increased (see text).

The linear contrast may now be computed as a simple difference between the two sub-nodes.  The sub-node with the greater value of the independent variable is again assigned the weight +1, while the other sub-node is weighted –1.  The variance of this contrast is proportional to (va´ + vb´).  As in the case of the bifurcating node, dividing the contrast by its expected standard deviation (the square root of its expected variance) will standardise it.  If all contrasts are thus standardised, they should display homogeneity of variance and thus be suitable for use in standard statistical techniques.

Appendix 2 – Details of the method used for dichotomous variables TC  "Appendix 2 – Details of the method used for dichotomous variables" \l 1 
The method tests the null hypothesis that changes in the dichotomous variable (X) have no effect on the dependent variable (Y).  It does this by splitting the variance in X into phylogenetically independent contrasts.  A contrast can be represented as a path linking two or more species through phylogeny (Burt 1989); contrasts whose paths do not meet or cross at any point will be phylogenetically independent (Burt 1989).  To be informative, a contrast has to include one or more species from each of the two X categories.  For each contrast, the method looks to see whether the ‘higher’ category (i.e. that coded by the larger integer) is associated with larger or smaller values of Y.  This procedure is particularly easy to apply if the dataset is made up of congeneric pairs of species, with each pair differing among themselves in the dichotomous trait.  Such comparisons within congeneric pairs were first employed by Salisbury (1942).  Few datasets are so well-behaved, however, and most analyses are complicated by the fact that we do not have a model for the evolution of the dichotomous trait, so we cannot generally estimate nodal values for this character.  The only exception to this rule is when all the daughter taxa of a node have the same value of X, when we assign this value of X to their common ancestor.  Although Y may be fitted to a Brownian motion model, nodal estimates of Y must not incorporate information from species used in a contrast at lower taxonomic level.  They cannot be used because to do so would be to assume that X has not been influencing Y – and this is the point under investigation.  To prevent this circularity, species are effectively deleted from the dataset once they have been used in a contrast; they are not then used to estimate nodal values in X or Y.

Two situations can complicate analyses.  Firstly, all the subtaxa within a taxon may have the same value of X: a contrast among them would not provide any information for the test.  Also, there will often be more than two taxa to contrast.  At such nodes it is not clear which of the possible pairs of subtaxa should be contrasted.  The method handles these situations as follows:

1.  When all the taxa at a node have the same X-value.

A contrast at this node would be uninformative.  Rather than waster our species data by using them in an uninformative contrast, we should prefer to contrast the entire node with a node or taxon with the other X-value.  In order to do this, the method estimates a representative value of Y for the node.   If the node represents a genus, the estimate will simply be the average of the species values.  Generally, the value of Y at node k is given by the formula:

Yk  =  ∑(1/vi)Yi  / ∑(1/vi)

where vi is the length of the path length in the phylogeny linking taxon i with its ancestral node.  The sum is across only those subtaxa of the node which are not used in another contrast.  The formula assumes a random walk model of evolution.  Parsimony says that the value of X shared by all the subtaxa used in the formula above is the one assigned to the node.  These nodal values of Y and X can be used in a contrast to be made at higher taxonomic level.

The length of the branch leading to node k is subject to a variance adjustment, for reasons discussed in Appendix 1.  The adjusted branch length, vk´, is given by:

vk´  =  vk  +  1 / ∑(1/vi)

where vk is the the branch length leading to node k.  The sum is again calculated using only those subtaxa of the node that are not used in another contrast.

2.  Taking a contrast among more than two taxa at a node.
Independence is guaranteed only if we take no more than one contrast at any node.  The approach used is analogous to that used in the method for continuous data: the taxa are split into two groups on the basis of their values of the X variable  Note that, throughout this procedure, other daughters of the same node are ignored if they have already been used in a contrast.  In effect, we use X to generate a phylogenetic hypothesis.  A contrast is then taken in exactly the same way as detailed in appendix 1B, but nodal values are not estimated.  Instead, the subtaxa are effectively deleted from the dataset.

3. Summary

As Burt (1989) points out, a phylogeny can be divided into independent contrasts in many different ways.  There is a trade-off between maximising the number of contrasts and increasing the proportion of variance that is ‘within’ contrasts (so being tested), as opposed to ‘between’ contrasts (so not being tested).  He says “there is no obviously ‘best’ compromise.”  This is true when the method is applied, as Burt used it, to datasets where both traits were continuous.  However, when the independent variable occurs in two states, a ‘best’ compromise is within reach: this method divides the phylogeny in such a way that all the variance in the independent variable falls ‘within’ contrasts.  The number of contrasts taken is the maximum compatible with such a division.

Appendix 3 – Validity and power of CAIC TC  "Appendix 3 – Validity and power of CAIC" \l 1 
Purvis et al. (1994) performed simulations to test the validity and power of CAIC, and to compare its performance with two other methods – phylogenetic autocorrelation (PA: Gittleman and Kot 1990) and across-species regression. Briefly, a 32-species phylogeny was generated randomly according to a pure birth process where all species had the same probability of speciating in the next time interval. Values of pairs of characters, Y and X, were generated for these species by a BASIC program. At each branch segment, the square root of the true branch length was multiplied by each of two standard normal random numbers; the products were the changes along the branch in X and in a third character, Z. The change in Y along the branch was then calculated as:

Y = . X + (1 – ) . Z
where  is the input correlation (Martins and Garland, 1991). In tests of validity,  = 0;  = 0.3 in tests of power. The values of Y and X for each species were the sums of the changes along all the branches linking the tips to the root of the tree. We conducted 1000 trials with  = 0 and 1000 with  = 0.3.

Comparative biologists often have incompletely resolved phylogenies, and often do not know the branch lengths. To simulate this state of affairs, we derived nine working phylogenies from the true phylogeny. These nine can be split into three groups: completely resolved (31 nodes), fairly resolved (25 nodes) and poorly resolved (10 nodes). The incompletely resolved phylogenies were generated by collapsing randomly-chosen branches to zero length. For each degree of resolution, we tested three different branch-length assumptions:


(i) Correct branch lengths;


(ii) Equal branch lengths (implying punctuational change – change was in fact gradual);


(iii) Topology branch lengths (CAIC’s other default).

The simulation results are shown in the accompanying tables. The first shows the results for  = 0 (the tests of validity). The first thing to note is that CAIC is valid when the branch lengths are correct, whether the phylogeny is completely resolved or not. The phylogenetic autocorrelation method, by contrast, is always invalid (the true null hypothesis is rejected more often than it should be by chance), sometimes markedly so. When branch length information is incorrect, the difference between the methods is less marked, with CAIC sometimes slightly better than PA, sometimes slightly worse. The equal branch lengths tend to perform noticeably better than the topology branch lengths, despite the former’s assumption of punctuational change being completely incorrect in these simulations: we recommend that the topology branch lengths be used only with caution. Whichever branch length assumption is made, however, both CAIC and PA always perform much better than the cross-species analyses. Fully one cross-species regression in six rejects the true null hypothesis at the p = 0.01 level, for instance. Uncertainty about branch lengths or phylogeny are not sufficient justification for cross-species analyses.

Results of simulations to test the validity of the three methods. Numbers are the proportions of 1000 trials in which the relationship between Y and X was significant at the level given in the first column, according to CAIC, phylogenetic autocorrelation (PA) and across-species (last column) methods. (From Purvis et al. 1994.)

	
	
	Fully resolved (31 nodes)
	Fairly resolved (25 nodes)
	Poorly resolved (10 nodes)
	Across

	p-value
	Method
	Real
	Equal
	Topology
	Real
	Equal
	Topology
	Real
	Equal
	Topology
	species

	0.1
	CAIC
	0.104
	0.194
	0.221
	0.115
	0.175
	0.243
	0.123
	0.124
	0.204
	0.400

	
	PA
	0.158
	0.181
	0.163
	0.171
	0.191
	0.167
	0.204
	0.222
	0.210
	

	0.05
	CAIC
	0.054
	0.124
	0.139
	0.061
	0.124
	0.174
	0.060
	0.068
	0.136
	0.314

	
	PA
	0.081
	0.107
	0.086
	0.083
	0.107
	0.087
	0.118
	0.138
	0.125
	

	0.01
	CAIC
	0.011
	0.045
	0.054
	0.012
	0.046
	0.067
	0.007
	0.013
	0.045
	0.166

	
	PA
	0.031
	0.042
	0.043
	0.039
	0.050
	0.048
	0.059
	0.070
	0.065
	

	0.001
	CAIC
	0.002
	0.011
	0.016
	0.002
	0.005
	0.018
	0.002
	0.003
	0.003
	0.081

	
	PA
	0.005
	0.009
	0.009
	0.006
	0.010
	0.005
	0.015
	0.017
	0.019
	


Results of simulations to test power. Numbers are the frequency in 1000 trials that the nominal p-value (first column) was exceeded, corrected for the Type I error rate by subtracting the corresponding values from the previous table.  Abbreviations are as before. (From Purvis et al. 1994.)

	
	
	Fully resolved (31 nodes)
	Fairly resolved (25 nodes)
	Poorly resolved (10 nodes)
	Across

	p-value
	Method
	Real
	Equal
	Topology
	Real
	Equal
	Topology
	Real
	Equal
	Topology
	species

	0.1
	CAIC
	624
	499
	468
	539
	472
	366
	233
	244
	195
	252

	
	PA
	371
	299
	381
	343
	269
	376
	253
	232
	268
	

	0.05
	CAIC
	554
	472
	450
	472
	427
	354
	167
	188
	160
	272

	
	PA
	387
	244
	326
	346
	233
	328
	228
	174
	203
	

	0.01
	CAIC
	359
	331
	345
	247
	268
	285
	78
	82
	101
	294

	
	PA
	225
	168
	171
	181
	177
	147
	117
	110
	106
	

	0.001
	CAIC
	126
	156
	190
	86
	118
	137
	15
	31
	39
	228

	
	PA
	187
	39
	36
	164
	38
	34
	65
	102
	88
	


Cross-species analyses are not even particularly powerful (second table). CAIC is the most powerful method when the phylogeny is completely or fairly resolved. With very unresolved phylogenies, PA and even cross-species may be more powerful (note that this does not justify their use, because their invalidity makes p-values impossible to interpret outside a simulation setting).  Additionally, while all three methods give unbiased estimates of , CAIC’s estimates are most precise (unpublished results).

The take-home messages from these simulations can be summarised as follows:

• Cross-species analyses should never be used: they are invalid and not powerful.

• CAIC is generally better than, or at least as good as, phylogenetic autocorrelation

• Well-resolved phylogenies mean more powerful tests

• Branch lengths matter to CAIC: check the efficacy of the branch lengths you use (see Section 10 and Garland et al. 1992).
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